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Abstract. In this short note, we summarize five different units that have
been traditionally used in electrodynamics. Among them, we focus on two most
common unit systems, Gaussian and rationalized MKS. In addition, we discuss
a special unit system in FLASH referred to as “none” in flash.par in which
physical units are rescaled to further simplify MHD equations. Finally we seek
for a conversion table among these three unit systems.

1. Basic Dimensions and Units

In discussing the units and dimensions, we choose the traditional choice of taking
three independent dimensions as length (l), mass (m), and time (t).

1.1. Laws, relationships, and definitions

In table 1, we list several key physical quantities along with dimensions in MKS
and Gaussian units. See more in (NRL 1994). Multiply the value in MKS
units by the conversion factor to get the value of a quantity in Gaussian units.
Multiples of 3 in the conversion factors result from the approximated speed of
light c = 2.9979× 1010 cm/sec ≈ 3× 1010 cm/sec.

Relationships & Laws

1. Continuity equation (charge conservation) for charge ρ: ∂ρ
∂t +∇ · j = 0.

2. Displacement D: D = εE, where ε is permittivity.

3. Magnetic intensity H: B = µH, where µ is permeability.

4. Coulomb’s law on the force between two point charges q and q′, separated
by a distance r:

F1 = k1
qq′

r2
, (1)

where the constant k1 is a proportionality constant whose magnitude and
dimensions either are determined by the equation if the magnitude and
dimensions of the unit of charge have been specified independently or are
chosen arbitrarily in order to define the unit of charge. Note that the
unit of charge can be deduced from the relationship that the unit of force
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(F = ma) is mlt−2, and hence, by equating this with the right hand side

of equation (1) the unit of charge is m1/2l3/2t−1.

5. Ampére force law for steady-state magnetic phenomena is that the force
per unit length between two infinitely long, parallel wires separated by a
distance d and carrying currents I and I ′ is

dF2

dl
= 2k2

II ′

d
. (2)

6. It is easily checked that the ratio k1/k2 has the dimension of a velocity
squared (l2t−2), and in fact, it can be found that k1/k2 = c2, where c is
the velocity of light.

7. From equations (9) and (10), the ratio of electric and magnetic fields E/B
has the dimensions l/tα.

8. Maxwell’s equations:

−k3
∂B

∂t
= ∇×E, : Faradays’s Induction, (3)

4πk2αj +
k2α

k1

∂E

∂t
= ∇×B, : Ampére force law, (4)

∇ ·E = 4πk1ρ, (5)

∇ ·B = 0. (6)

9. We find that
k1

k2k3α
= c2, k3 =

1

α
. (7)

10. Generalized Ohm’s law:

E = −v ×B

c
+ ηj +

1

c

j×B

ene
− ∇pe
ene

, (8)

where q = −e is electric charge, and ne is the number of electrons per unit
volume. For resistive Ohm’s law, E = ηj, or η = E/j.

11. In vacuum, c = 1/
√
ε0µ0.

Definitions

1. Magnetic diffusivity (or magnetic viscosity) η is defined by electric con-
ductivity σ: η = 1/µ0σ0.

2. Current I is defined by I = dq/dt, where q is electric charge. Thus the
charge between times t1 and t2 is obtained by integrating both sides, q =∫ t2
t1 Idt.

3. Permittivity ε is the measure of the resistance that is encountered when
forming an electric field in a medium. It is a measure of how an electric
field affects, and is affected by, a dielectric medium.
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4. Permeability µ is the measure of the ability of a material to support the
formation of a magnetic field within itself. It is a degree of magnetization
that a material obtains in response to an applied magnetic field.

5. Electric field E of a point charge q is defined from the Coulomb’s Law in
equation (1) as the force per unit charge:

E = k1
q

r2
(e.g., E =

qq′

4πεr2
), (9)

6. The magnetic field B is derived from the Ampére force law in equation
(2) as being numerically proportional to the force per unit current with
a proportionality constant α that may have certain dimensions chosen
for convenience. Thus for a long straight wire carrying a current I, the
magnetic induction B at a distance d has the magnitude (and dimensions)

B = 2k2α
I

d
(e.g., B =

µI

2πr
), (10)

Physical Quantity Symbol Dimensions MKS Units Gaussian Units
SI Gaussian

length l l l meter (m) centimeter (cm)
time t t t second (sec) second (sec)
mass m m m kilogram (kg) gram (g)

(electric) charge q q m1/2l3/2t−1 coulomb statcoulomb

displacement D ql−2 m1/2l−1/2t−1 coulomb/m2 statcoulomb/cm2

charge density ρ ql−3 m1/2l−3/2t−1 coulomb/m3 statcoulomb/cm3

current I qt−1 m1/2l3/2t−2 ampere statampere

current density j qt−1l−2 m1/2l−1/2t2 ampere/m2 statampere/cm2

electric field E mlt−2q−1 m1/2l−1/2t−1 volt/m statvolt/cm
permittivity ε t2q2m−1l−3 1 farad/m —

magnetic intensity H ql−1t−1 m1/2l−1/2t−1 ampere-turn/m oersted

magnetic field B mt−1q−1 m1/2l−1/2t−1 tesla gauss
permeability µ mlq−2 1 henry/m —

magnetic flux Φ ml2t−1q−1 m1/2l3/2t−1 weber maxwell

electric conductivity σ tq2m−1l−3 t−1 siemens/m sec−1

resistivity η t−1q−2ml3 t ohm-m sec

force F mlt−2 mlt−2 newton dyne
frequency f t−1 t−1 hertz hertz

momentum p mlt−1 mlt−1 kg-m/sec kg-m/sec
thermal conductivity κ mlt−3 mlt−3 watt/m-deg (K) erg/cm-sec-deg (K)

fluid viscosity µ ml−1t−1 ml−1t−1 kg/m-sec poise

Table 1. Dimensions of physical quantities in MKS (SI) and Gaussian units.

x
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System k1 k2 k3 α

Electrostatic (esu) 1 c−2 1 1
Electromagnetic (emu) c2 1 1 1

Gaussian 1 c−2 c−1 c
Heavyside-Lorentz 1

4π
1

4πc2
c−1 c

Rationalized MKS 1
4πε0

(= c2

107
) µ0

4π = 1
107

1 1

Table 2. Magnitudes and dimensions of the electromagnetic constants for
five systems of units. Values in red are two constant values that can (and
must) be chosen arbitrarily, and the others can be defined accordingly. Two
systems in blue, Gaussian and rationalized MKS, are the most common and
popular choices of systems.

System ε0 µ0
Electrostatic (esu) 1 c−2

Electromagnetic (emu) c−2 1
Gaussian 1 1

Heavyside-Lorentz 1 1

Rationalized MKS 107

4πc2
4π
107

Table 3. Definitions of ε0 and µ0 in five systems of units. Values in red are
constant values that can (and must) be chosen arbitrarily.

2. Conversions

In this section we present tables of conversion in which factors are to be multi-
plied to convert one system to the other. We note that there is a special system
referred to as “none” in FLASH. This system rescales the magnetic field (thus
the derived quantity electric field implicitly) in such a way that factors of 4π and
the speed of light c are absorbed into the physical variables. As a result, they
simply can be substituted by unity. Of course, this doesn’t mean that π = 1/4
at all! The advantage of this “none” unit system in FLASH is to provide a very
simplified set of Maxwell’s equations in their final form.

Three different choices for scaling B field are considered: none, cgs (same as
Gaussian) and SI (same as MKS). Among three of them, the conversion between
“none” to “Gaussian” is of our most interest in FLASH. And we consider each
case now.

2.1. unitSystem=“none” in flash.par

It is the most convenient unit system that simplifies the Maxwell’s equation
without appearing µ0, ε0, and 4π, while providing all physical variables in cgs
unit. In other words, in this unit, those electromagnetic variables are still in
cgs (but not (cgs) Gaussian!) without µ0, ε0, and 4π. One thing to keep in
mind is that, in order to specify an initial value for a magnetic diffusivity η for
resistive MHD, users should give a value which is in the same unit as diffusivity
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constants (e.g., kinematic viscosity) that have units of l2t−1. This is because
that the value η is used in Diffuse computeDt.F90 which expects to have all
diffusivity constants in the units of l2t−1.

Unit check: ηcode(l2t−1) = ηflash.par(l2t−1). Expressions in paranthesis are

units for each.

2.2. unitSystem=“cgs” in flash.par

Quantity FLASH’s None Gaussian

magnetic field B B√
4π

electric field E cE√
4π

current density j
√
4π
c j

vector potential A A√
4π

magnetic diffusivity

(aka magnetic viscosity, or resistivity) η c2

4πη

Table 4. Conversion table for electrodynamics quantities from FLASH’s
none to Gaussian.

In this case, FLASH explicitly converts magnetic field (B) and magnetic
diffusivity constant (η), expecting the initial values given by users are in cgs:

m1/2l−1/2t−1 for B, and t for η.

Unit check: ηcode(l2t−1) = c2

4π (l2/t−2) × ηflash.par(t). Expressions in paran-

thesis are units for each.

2.3. unitSystem=“SI” in flash.par

Quantity Gaussian Rationalized MKS
speed of light c 1√

µ0ε0

magnetic field B
√

4π
µ0

B

electric field E
√

4πε0E

current density j j√
4πε0

vector potential A
√

4π
µ0

A

magnetic diffusivity
(aka magnetic viscosity, or resistivity) η 4πε0η

Table 5. Conversion table for electrodynamics quantities from Gaussian to
Rationalized MKS.

For this case, it is important to make sure that users also convert all the
other physical (gas dynamics) variables to SI as well. FLASH additionally explic-
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Quantity FLASH’s None Rationalized MKS

magnetic field B B√
µ0

electric field E c
√
ε0E

current density j j
c
√
ε0

vector potential A A√
µ0

magnetic diffusivity

(aka magnetic viscosity, or resistivity) η 107

4π η = 1
µ0
η

Table 6. Conversion table for electrodynamics quantities from FLASH’s
none to Rationalized MKS.

itly converts magnetic field (B) and magnetic diffusivity constant (η), expecting
the initial values given by users are in SI: mt−1q−1 for B, and t−1q−2ml3 for η.

Unit check: ηcode(l2t−1) = 107

4π (m−1l−1q2) × ηflash.par(t−1q−2ml3). Expres-

sions in paranthesis are units for each. Note that µ0 = 4π × 10−7 henry/meter.

3. Remarks: original argument by Mateusz Ruszkowski

Consider a case in FLASH that if unitSystem=“none” is chosen in flash.par. Let
Bx be initialized by Bx0 (or Bflash.par) and By and Bz are all zeros in flash.par.

What is the initial strength B of B field in gauss for this initial condition? The
answer is

√
4πBx0.

To prove, note that using units = “none” means that the magnetic field
specified in flash.par is not rescaled in any way by the code. So, for example, if

we want to setup an equipartition field, then we would take B =
√

8πρc2is gauss,

calculated by some theorist who knows nothing about the inner workings of the
code, put it in flash.par, and this would be the field that the code would plug into
its equations (cis is a sound speed in isothermal gas). Now, since the magnetic
pressure in the code is pB = B2/2, this means that, in the code, pB = 4πpgas,
which is not an equipartition situation. So for units=“none”, the magnetic field
in flash.par is not really in gauss. Instead, the actual field strength B in gauss
is
√

4πBx0. Same goes for the field that is in the FLASH output files, i.e., the
actual field strength in gauss is

√
4πBchkpoint.

4. Example

Let’s have an example of solving the Dai and Woodward shock tube problem
(JCP, 1994) in Fig 8 using FLASH. Note that their governing equations have
factors of

√
4π for magnetic fields, whereas FLASH doesn’t. Therefore in order

to initialize the problem that is in Gausian cgs unit using FLASH’s none unit,
one has to divide magnetic fields by

√
4π to specify initial conditions.
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When plotting, use the conversion of multiplying the fields by
√

4π, that is√
4πBchkpoint, in order to compare the FLASH’s results with the results in the

paper.
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