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Chapter 1

Magnetohydrodynamics

1.1 Anisotropic MHD

Magnetic, viscous, and heat transport occur at di�erent rates parallel and perpendicular to the �eld in a strongly magnetized
plasma. This anisotropy must be taken into account when evaluating energy containment time in magnetic con�nement fusion
applications. The classical transport parameters were derived by Braginskii and can be found in the NRL plasma formulary.

The Anisotropic MHD unit is based on the Unsplit Staggered Mesh MHD solver and uses all the same switches, in addition
to parameters that control the transport. This unit is not compatible with the existing isotropic transport units for magnetic
resistivity, viscosity, and conductivity units. The new switches are as follows. The parameter max_flux is a holdover from a
previous method of calculating ∆t. It can be ignored.

## -------------------------------------------------------##

## Resistive MHD parameters ##

# Transport unit flags

useAnisotropicConductivity = .true.

useAnisotropicResistivity = .true.

useAnisotropicViscosity = .true.

use_Braginskii = .true.

#If Braginskii_Z_dependence is false, Z=1 is assumed.

Braginskii_Z_dependence = .false.

#If use_Braginskii is false, the following parameters act

#as prescribed constant values. If use_Braginskii is true,

#then each positive value is treated as a maximum.

viscosity_0 = 1.

viscosity_1 = 1.

viscosity_2 = 1.

viscosity_3 = 1.

viscosity_4 = 1.

conductivity_para = 1.e3

conductivity_perp = 1.e3

conductivity_caret = 1.e3

resistivity_para = 1.e-4

resistivity_perp = 1.e-4

resistivity_Hall = 1.e-4

# Constraint on dt, preventing fast changes in density

# and energy due to transport fluxes

max_flux = 1.e-3

## -------------------------------------------------------##

In the Braginskii formulation, the important time scales are the collision frequencies and gyrofrequencies. The electron and
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ion collision frequencies given in SI units are

νe = τ−1
e =

ne4 lnΛ
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where n = ne = ni is the number density of the particles and ln Λ is the Coulomb logarithm. The electron and ion gyrofrequencies
are

ωce = eB/me, ωci = eB/mi,

and the ratios of these frequencies are de�ned as the electron and ion skin depths

δe = ωce/νe, δi = ωci/νi.

1.1.1 Heat Conductivity

The electron heat �ux due to temperature gradients is given by

qeT = −κe
||∇||(kTe)− κe

⊥∇⊥(kTe)− κe
�b×∇⊥(kTe),

where κ|| is the parallel heat conductivy, κ⊥ is the perpendicular heat conductivity, κ� is the thermal gradient drift, and b is
the unit vector parallel to the magnetic �eld. The thermal conductivities are

κe
|| = κ0

||(Z̄)
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me
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� =
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,

where κ0
||(Z̄) and κ0

⊥(Z̄) are functions that depend on only the ion charge. When the plasma is hot or the initial temperature
is discontinuous, the thermal conductivity is the fastest time scale phenomenon. Placing caps on the conductivity may greatly
speed up the calculations. This principle applies to viscosity and magnetic resistivity as well.

1.1.2 Magnetic resistivity

The anisotropic magnetic resistivity is given by the tensor

←→η =

 η⊥ −ηH 0
ηH η⊥ 0
0 0 η‖


where the parallel, perpendicular, and Hall resistivities are

η‖ = η0‖(Z̄)meνe/ne
2

η⊥ = meνe/ne
2

ηH = η0‖(Z̄)meωce/ne
2 = η‖δe.

The magnetic �eld changes according to

∂B

∂t
= ∇× (←→η J)

=
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)
∂
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∂
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

2



1.1.3 Viscosity

The ion stress tensor is

Πxx = −π0

2
(Wxx +Wyy)−

π1

2
(Wxx −Wyy)− π3Wxy

Πyy = −π0

2
(Wxx +Wyy)−

π1

2
(Wxx −Wyy)− π3Wxy

Πxy = Πyx = −π1Wxy +
π3

2
(Wxx −Wyy)

Πxz = Πzx = −π2Wxz − π4Wyz

Πyz = Πzy = −π2Wyz + π4Wxz

Πzz = −η0Wzz

where the z-axis is de�ned as parallel to the magnetic �eld. The values for the ion viscosities are

π0 = 0.96nkTiτi

π1 = (3/10)nkTiτi/δ
2
i

π2 = (6/5)nkTiτi/δ
2
i

π3 = (1/2)nkTiτi/δi

π4 = nkTiτi/δi,

and the rate of strain tensor is de�ned as

Wjk =
∂vj
∂xk

+
∂vk
∂xj
− 2

3
δjk∇ · v.

1.1.4 Charge dependence

Many of the Braginskii transport equations contain a numerical factor that depends on Z̄, the average charge of each ion. Five
values at integer values of Z̄ are provided in the Braginskii paper [1].

Z̄ 1 2 3 4 ∞
κ0
||(Z̄) 3.1616 4.890 6.064 6.920 12.471

κ0
⊥(Z̄) 4.664 3.957 3.721 3.604 3.25
η0‖(Z̄) 0.5129 0.4408 0.3965 0.3752 0.2949

Approximate �ts can be used to provide an estimate of each factor at non-integer Z̄.

κ0
‖(Z̄) = 12.47− 13.92 · exp

(
−0.4023 · Z̄0.5967

)
κ0
⊥(Z̄) = 3.250 + 26080 · exp

(
−9.825 · Z̄0.09648

)
η0‖(Z̄) = 0.2949 + 0.5285 · exp

(
−0.8845 · Z̄0.5525

)
However, it is common to assume that Z = 1 because the numerical factors in the Braginskii transport equations vary by only
a factor of order unity. This is accomplished by using the default setting for Braginskii_Z_depend.

Braginskii_Z_depend = .false.
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Chapter 2

Magnetohydrodynamics Test Problems

2.1 Anisotropic Conductivity Loop Field Problem

The correct behaviour of the anisotropic conductivity can be checked qualitatively with the 2D loop �eld problem. The temper-
ature pro�le is initially speci�ed by the periodic function

T (x, y) = T0 sin

(
2πx

Lx

)
+ Tbkgd

and the magnetic �eld is everywhere non-zero and pointing in the azimuthal direction φ̂. The magnetic and hydrodynamic �uxes
are held constant. Only thermal conduction is performed.

Figure 2.1 shows that when the parallel conductivity is set to κ|| = 107 W/(m·K) and the perpendicular conductivity is
zero, the thermal gradient quickly becomes zero parallel to the magnetic �eld. Figure 2.2 likewise shows that when the parallel
conductivity is set to κ⊥ = 107 and the parallel conductivity is zero, the thermal gradient becomes zero perpendicular to the
magnetic �eld. Since the point r = 0 falls on all lines of constant φ, the temperature becomes spatially uniform.

Figure 2.1: Anisotropic thermal conduction in presence of loop �eld when κ|| = 107 and κ⊥ = 0 W/(m·K).
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Figure 2.2: Anisotropic thermal conduction in presence of loop �eld when κ|| = 0 and κ⊥ = 107 W/(m·K).

2.2 Anisotropic Conductivity Uniform Field Problem

Figure 2.3: In�uence of anisotropic thermal conduction on a Gaussian temperature distribution in a uniform �eld.
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2.3 Anisotropic Resistivity Loop Field Problem

2.4 Anisotropic Viscosity Loop Field Problem

Figure 2.4: In�uence of anisotropic viscosity on velocity loop with a Gaussian distribution in a uniform magnetic �eld. (a) Initial
conditions, (b) Case π0 = 1 at t = 0.02 (c) Case π1 = 1 at t = 0.02 (d) Case π2 = 1 at t = 0.02 (e) Case π3 = 1 at t = 0.02 (f)
Case π4 = 1 at t = 0.02.
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