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Résumé. Nous présentons une nouvelle méthode de multirésolution adaptative pour la simulation
numérique de la magnétohydrodynamique idéale. Les équations qui régissent la dynamique, i.e., les
équations d’Euler compressible couplées aux équations de Maxwell sont discrétisées suivant un schéma
de type volumes finis sur un maillage cartésien en deux dimensions. L’adaptativité en espace est obte-
nue en utilisant une analyse de multirésolution en moyenne de cellule proposée par Harten, qui est une
méthode fiable pour le raffinement local du maillage tout en contrôlant l’érreur. La discrétisation tempo-
relle est un schéma de Runge-Kutta qui intègre un contrôle automatique du pas de temps. Pour imposer
l’incompressibilié du champs magnétique, une approche par multiplicateur de Lagrange généralisé est
utilisée, ici de type parabolique-hyperbolique. Pour illustrer les capacitées de cette méthode, des ap-
plications à des problèmes de Riemann ont été réalisées. Les coûts en mémoire sont présentés, et la
précision de la méthode est évaluée par comparaison avec les solutions exactes du problème.

Abstract. We present a new adaptive multiresoltion method for the numerical simulation of ideal
magnetohydrodynamics. The governing equations, i.e., the compressible Euler equations coupled with
the Maxwell equations are discretized using a finite volume scheme on a two-dimensional Cartesian
mesh. Adaptivity in space is obtained via Harten’s cell average multiresolution analysis, which allows
the reliable introduction of a locally refined mesh while controlling the error. The explicit time dis-
cretization uses a compact Runge–Kutta method for local time stepping and an embedded Runge-Kutta
scheme for automatic time step control. An extended generalized Lagrangian multiplier approach with
the mixed hyperbolic-parabolic correction type is used to control the incompressibility of the magnetic
field. Applications to a two-dimensional problem illustrate the properties of the method. Memory
savings and numerical divergences of magnetic field are reported and the accuracy of the adaptive
computations is assessed by comparing with the available exact solution.
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Introduction

Plasmas and electrically conducting fluids, ubiquitous in our daily life, are of major importance, as for
example, in the Sun, which strongly influences the magnetic field around Earth, or for the dynamo action
inside the liquid metal of Earth. The numerical simulation of magnetohydrodynamics (MHD) modeling such
phenomena encounters, in comparison to ordinary hydrodynamics, additional complexities which are not only
due to the presence of multiple spatial and temporal scales. The nonlocal character of boundary conditions
of the magnetic field requires specific approaches, like matching the magnetic field at the boundary with the
field in a surrounding vacuum, and in particular, the incompressibility of the magnetic field necessitates precise
and efficient numerical techniques. Divergence errors in the magnetic field modify the underlying physics of the
problem. Traditionally, Helmholtz decompositions, also called Hodge decompositions, are used to project the
magnetic field onto divergence free fields. However, this approach is computationally expensive as it requires
the solution of a Poisson equation, which implies the solution of very large linear systems especially in 3D. For
a discussion on this topic we refer the reader e.g. to [2, 3, 20, 23]. Divergence cleaning techniques based on
Lagrange multipliers have been introduced in the finite element context by Assous et al. [1] for time-dependent
Maxwell equations. Since then different developments leading to various types of approaches can be found in the
literature [2, 3, 19, 23]. Munz et al. [18] introduced a generalized Lagrangian multiplier formulation of Maxwell
equations, which leads to different PDEs for the multiplier, being either of hyperbolic, parabolic, elliptic or
mixed types. In the current work we use a variant of the previously cited approaches, the Extended Generalized
Lagrange Multiplier (EGLM) designed by Dedner et al. [5] with a mixed parabolic-hiperbolic correction. The
idea of the latter technique is not to enforce the divergence free condition exactly, but to promote a natural
evolution of the system toward a divergence free state as discussed in [15].

The adaptive method of the present paper falls into the multiresolution (MR) category, which is designed to
speed up finite volume schemes for time dependent conservation laws, based on ideas originally introduced in
the work of Harten [13, 14]. The MR method is also combined with time adaptive strategies using either local
or controlled time stepping. A review of multiresolution techniques can be found in the book of Müller [17], or
in the review [10] and references therein.

The aim of this paper is to combine for the first time the divergence cleaning technique for the magnetic
field introduced by Dedner et al. [5] with adaptive multiresolution computations and to check its feasibility
interplaying with adaptivity. The adaptive multiresolution code originally developed by Roussel et al. [21] has
been extended to include Maxwell equations governing the magnetic field [12]. For divergence cleaning the
EGLM formulation is used. The resulting new method is applied to a Riemann test problem for which the
exact solution is known and the divergence of the magnetic field remains zero. The accuracy of the adaptive
computations is assessed and their efficiency in terms of memory compression compared to a finite volume
scheme on a regular grid is reported.

The paper is organized as follows: after a presentation of the governing MHD equations in Section 1, we recall
the EGLM formulation in Section 2. In Section 3 space and time discretizations are briefly described together
with the EGLM discretization with the mixed hyperbolic-parabolic correction. In Section 4, numerical results
are presented. Finally, some remarks and perspectives for further development of the method are presented.

1. MHD Ideal Equations

The ideal magnetohydrodynamics equations are a mathematical model for the interaction of a compressible,
inviscous and eletrically conducting fluid and a magnetic field. This model is derived from the Euler equations
of gas dynamics coupled with the Maxwell equations, which gives an additional evolutionary equation for the
magnetic field, and a divergence-free constraint based on Gauss’ law. The ideal two-dimensional MHD system
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is given by the following equations

∂ρ

∂t
+∇ · (ρu) = 0, (Mass conservation) (1a)

∂E

∂t
+∇ ·

[(

E + p+
B ·B
2

)

u− (u ·B)B

]

= 0, (Energy conservation) (1b)

∂ρu

∂t
+∇ ·

[

ρuu+

(

p+
B ·B
2

)

I−BB

]

= 0, (Momentum conservation) (1c)

∂B

∂t
+∇ · (uB−Bu) = 0 (Induction equation), (1d)

together with

∇ ·B = 0 (Divergence constraint), (2)

where ρ represents density, p is the pressure, u = (vx, vy, vz) is the velocity vector , B = (Bx, By, Bz) is the
magnetic field vector, I is the identity tensor of order 2, and γ is the adiabatic constant (γ > 1). The pressure is
given by the constitutive law p = (γ − 1)

(

E − ρu·u

2 − B·B

2

)

. The above system is completed by suitable initial

and boundary conditions. Nevertheless, the induction equation can be rewritten as
∂B

∂t
+ ∇ × (B× u) = 0.

Therefore, applying the divergence operator yields
∂

∂t
(∇ ·B) = 0, as ∇ · (∇× ) ≡ 0, which shows that if

the initial condition of the magnetic field is divergence-free it will remain divergence-free during time evolution.
However, numerically, the incompressibility of the magnetic field is not always preserved, and thus, non-physical
results could be obtained or the computations may even become unstable [3].

Since the 1980s usual numerical MHD methodologies consider the enforcement of the physical property of
the divergence-free constraint. In the context of this study, having in mind the application of a multiresolution
method using explicit time integration, we adopt EGLM-MHD with the mixed parabolic-hyperbolic correction
described in the following section.

2. IDEAL MHD EQUATIONS WITH EGLM

The Extended Generalized Lagrangian Multiplier conservative system formulation with the hyperbolic-
parabolic correction was proposed in Dedner et al. [5]. It fits well in a pre-existing MHD model by introducing
an additional scalar field ψ, which couples the divergence constraint equation (Eq. 2) to Faraday’s law, modi-
fying the induction equation (Eq. 1d). Moreover, some source terms are added similary to what was proposed
in [19]. The mixed hyperbolic-parabolic correction introduces two parameters, one related to the hyperbolic
correction, namely ch, to propagate the divergence errors, and another one, related to the parabolic correction
cp, to control the rate at which monopoles are damped in the new divergence constraint equation and a source
term in the new divergence constraint equation.

The remaining terms in the equations are not changed. The conservative characteristic of this system is not
lost if one just uses the standard Generalized Lagrangian Multiplier conservative system (GLM) approach, i.e.,
if we do not consider the source terms. Here we are not presenting the results for this case, as they are similar
to EGLM-MHD.
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The resulting EGLM-MHD equations with hyperbolic-parabolic correction are written in dimensionless form
[5]

∂ρ

∂t
+∇ · (ρu) = 0, (3a)

∂E

∂t
+∇ ·

[(

E + p+
B ·B
2

)

u−B (u ·B)

]

= −B · (∇ψ), (3b)

∂ (ρu)

∂t
+∇ ·

[

ρuu+

(

p+
B ·B
2

)

I−BB

]

= −(∇ ·B)B, (3c)

∂B

∂t
+∇ · [uB−Bu+ ψI] = 0, (3d)

∂ψ

∂t
+ c2h∇ ·B = −c

2
h

c2p
ψ. (3e)

where the parameter ch > 0. This parameter has a strong influence on the correction. In [5] different choices for

the parameter ch and cp were suggested and discussed, for example ch = ch(t) := cCFL
min(dx,dy)

dt , cCFL ∈ (0, 1).

A fixed ratio c2p/ch = 0.18, independent of the resolution, was also suggested. For futher details and other

choices we refer to [6, 24]. Here we use the resolution independent value c2p/ch = 0.18.
Considering the vector of convervatives quantities Q = (ρ,E, ρu,B, ψ) the EGLM-MHD system can be

written in the compact form
∂Q

∂t
+∇ · F(Q) = S(Q) (4)

where F denotes the physical fluxes and S contains all source terms.

3. Space-time adaptive strategies

Applying a Finite Volume (FV) discretization to the compact form of the EGLM-MHD system (Eq. 4) results
in an Ordinary Differential Equation (ODE) system of the form

dQ̄

dt
= −F(Q̄) + S(Q̄), (5)

where Q̄(t) denotes approximated cell-averages of the quantities on the cells C forming a partition of the
computational domain, F(Q̄) is the numerical flux, and S(Q̄) is the numerical source term. Approximate
solutions Q̄n at a sequence of time instants tn are obtained using an explicit ODE solver. For time integration,
explicit Runge-Kutta schemes of second and third order are used. The initial value of ψ is zero. The resulting
FV reference scheme follows the steps:

• The parameter ch is computed.
• In each step of the time integration scheme:

(1) A spliting method is used.
(2) The homegeneous GLM system is solved:

– The normal component of the magnetic field BN in the flux direction (Eq. 3d) and the
divergence constraint equation (Eq. 3e) are decoupled from the other variables. These two
equations form a linear system and a local Riemann problem can be compute directly, where
the numerical flux is (ψ, c2hBN ) for BN and ψ, respectively. The same is done in the other
direction, in the two-dimensional case.

– For the remaining variables we compute the numerical flux using HLLD scheme with Davis
limiter [16].
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• The computed values of ψ are used to update the mixed correction source term for ψn+1, computing

ψn+1 = exp
(

−∆tn
c2
h

cp2

)

ψ.

• The other source terms are added.

The adaptive method of the present paper falls into the MR category, which is designed to speed up finite
volume schemes for time dependent conservation laws. The MR method is also combined with time adaptive
strategies using either local or controlled time stepping. In the following, a brief summary of these techniques
is given. For a detailed description of these combined space-time adaptive strategies, we refer to [8–11,21].

3.1. MR Scheme

The main idea behind MR schemes is to use the decay of wavelet coefficients of the numerical solution to
obtain information on the local regularity of the solution. Small coefficients occur in regions of smoothness of
the solution, where coarser grids can be used, while fine grid refinement is only applied in regions where the
coefficients are significant, corresponding to strong variations [4]. Adaptive MR representations are obtained by
stopping the refinement in a cell at a certain scale level, where the wavelet coefficients are non-significant. In the
finite volume context, instead of using a cell-average representation on the uniform fine mesh, the MR scheme
computes the numerical solution represented by cell-averages on an adaptive sparse mesh, which is formed by
the cells whose wavelet coefficients are significant and above a given threshold. Localized structures in MHD
solutions, such as discontinuities or shocks, could appear in different space positions in different variables, and
thus, the adaptive mesh of the MHD system is a union of the individual adaptive meshes, as presented in the
example of Fig. 1.

A natural way to store the reduced MR data is to use a tree data structure, where grid adaptivity is related
with an incomplete tree, and where the refinement may be interrupted at intermediate scale levels. This means
that, using the tree terminology, a MR grid is formed by leaves, which are nodes without children. These leaves
are related to the cell, which indeed will be evolved in time.

In general, there are three basic steps in the application of a MR scheme: refinement, evolution, and coarsen-

ing. The refinement operator is a precautionary measure to account for a possible translation of the solution or
the creation of finer scales in the solution between two subsequent time steps. Since the regions of smoothness
or irregularities of the solution may change with time, the MR grid at tn may not be convenient anymore at the
next time step tn+1. Therefore, before doing the time evolution, the representation of the solution should be
interpolated onto an extended grid that is expected to be a refinement of the adaptive grid at tn, and to contain
the adaptive grid at tn+1. After that, the time evolution operator is applied on the leaves of the extended grid.
To compute numerical fluxes between cells of different levels, we also add extra cells, called virtual leaves, that
will not be used in the time evolution. Conservation is ensured by the fact that the fluxes are always computed
on the higher level, the value being projected to the leaves of a lower level. Then, a wavelet thresholding
operation (coarsening) is applied in order to unrefine the cells in the extended grid that are not necessary for
an accurate representation of the solution at tn+1. This data compression is based on the definition of deletable
cells, where the wavelet coefficients are not significant, i.e., their magnitudes are bellow a threshold parameter
ǫℓ, where ℓ denotes the cell scale level.

In order to control the L1-norm, Harten’s thresholding strategy is used, for which

ǫℓ =
ǫ0
|Ω|2

d(ℓ−L+1), 0 ≤ ℓ ≤ L− 1, (6)

where d = 2 is the space dimension, L is the finest scale level, and |Ω| is the area of the domain. For comparison,
we shall also consider level independent threshold parameters: ǫℓ ≡ ǫ, for all 1 ≤ ℓ ≤ L− 1.

For the applications of the present paper, the multiresolution analysis corresponds to a prediction operator
based on a third order polynomial interpolation on the cell-averages. The time integration is performed by a
second order Runge-Kutta scheme combined with local time steping (MR/LT), or an embbeded Runge-Kutta
2(3) for automatic time step control (MR/CT).
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Figure 1. One-dimension representation of an exact solution of the dimensionless MHD vari-
ables: (a) density, pressure, velocity and magnetic field; and (b) corresponding adaptive mesh
in the level ×x plane constructed with a constant threshold parameter ǫ = 0.001.

3.2. MR/LT Scheme

In order to save CPU time, instead of evolving the solution with a single time step on all grid cells, the
solution may be integrated with a different time step for each level, as proposed in [8]. For the MR/LT scheme,
the time step ∆tn at the finest scale level L is determined by the CFL condition. The principle is then to evolve
the cells at lower levels 0 ≤ ℓ < L with larger time steps ∆tnℓ = 2L−ℓ∆tn. The required missing values in ghost
cells are interpolated at intermediate time levels.
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3.3. MR/CT Scheme

In the MR/CT scheme, the time integration is performed with a global but variable time step ∆t, whose
size is chosen dynamically. The MR/CT scheme adopts a strategy from ODE simulations, where the time step
size selection is based on the estimated local truncation error. The main reason for controlling the error in
the solution is to obtain an accurate and safe integration in the whole interval. To make the integration more
efficient, when the estimated local error is smaller than a given tolerance δdesired, the time step ∆t is increased.
On the other hand, if the local error increases, the time step is decreased. It may happen that a new time
step is larger than the limit prescribed by the CFL condition. For the applications of the present paper, the
MR/CT scheme is based on the embedded Runge-Kutta Fehlberg 2(3) ODE solver [9]. The initial time step is
determined by an input CFL(0) parameter provided by the user. From one time instant to the next one, given
the current ∆t, the next ∆tnew is determined to maintain the local truncation error below δdesired. Precisely,
it has the form ∆tnew = ξ∆t, with

ξ =

[

δdesired

|Q̄(RK2) − Q̄(RK3)|

]1/3

.

where Q̄(RK2) and Q̄(RK3) stand for the solutions produced by second and third order Runge–Kutta schemes.
To prevent the time step of varying too abruptly or to be sure that ∆tnew in fact will produce an error less
than δdesired, the time step variation is limited by a factor that decreases exponentially from 10%, in the initial
time step, to 1% after few iterations.

The reference EGLM-MHD FV code used in this work has been developed in [12] in C++ language, inspired
by the Fortran code developed by [7], including an upgrade and new features for the implementation of the
numerical flux HLLD. The EGLM–MHD–MR code developed in [12] has been implemented in the CARMEN
code [21], which nowadays also includes automatic time step control and local time adaptivity, as described
in [8, 9, 11].

4. Numerical Tests

To verify the code and to analyze the numerical effects that MR schemes could have on the divergence
cleaning of the magnetic field, we study in this paper an example of an initial condition similar to a 1D
Riemann problem, in a 2D MHD code. The initial condition is given in Table 1 and the exact solution at time
t = 0.1 in Table 2. The latter is computed based on the algorithms described in [22], with the program available
at https://web.mathcces.rwth-aachen.de/mhdsolve/.

Table 1. 1D Riemann like initial condition, for the 2D domain [−0.5, 0.5]× [−0.5, 0.5] .

ρ p vx vy vz Bx By Bz ψ

x ≤ 0 1.08 0.95 1.20 0.01 0.50 1.00/
√
π 1.80/

√
π 2.00/

√
2π 0.00

x > 0 1.00 1.00 0.00 0.00 0.00 1.00/
√
π 2.00/

√
π 2.00/

√
2π 0.00

NOTE: Adapted from [5]. Values of the magnetic field B have a different normalization to be adequate to the
computed exact solution, and γ = 5

3 .



102 ESAIM: PROCEEDINGS

Table 2. Exact solution of the MHD system at time t = 0.1, for y ∈ [−0.5, 0.5].

x interval ρ p vx vy vz Bx By Bz

[−0.5000,−0.1040) 1.0800 0.9500 1.2000 0.0100 0.5000 1/
√
π 1.0155 0.7979

[−0.1040, 0.0147) 1.4626 1.6026 0.6139 0.1011 0.5716 1/
√
π 1.4064 1.1050

[0.0147, 0.0276) 1.4626 1.6026 0.6139 0.1011 0.3484 1/
√
π 1.5816 0.8351

[0.0276, 0.0576) 1.6459 1.9526 0.5763 0.2460 0.2440 1/
√
π 1.5816 0.7436

[0.0576, 0.0888) 1.4832 1.9526 0.5763 0.0482 0.2440 1/
√
π 1.4083 0.7436

[0.0888, 0.1026) 1.2914 1.5481 0.5299 −0.1938 0.1162 1/
√
π 1.6069 0.8485

[0.1026, 0.2348) 1.2914 1.5481 0.5299 −0.0854 −0.0604 1/
√
π 1.4837 1.0491

[0.2348, 0.5000) 1.0000 1.0000 0.0000 0.0000 0.0000 1/
√
π 1.1284 0.7979

In Figure 2 we present the numerical solution at the final time t = 0.1 of the simulation for the MR method
for the different MHD variables. Similar results have been obtained with the FV method on a regular grid.
Except for vy, all the other variables are well represented by the used HLLD numerical flux at this resolution.

Figure 3 presents the time evolution of the divergence of the magnetic field with different MR thresholds
values. Using the MR method with Harten’s threshold strategy, the divergence of the magnetic field is well
controlled with small values during the whole simulation.

For the MR/LT scheme, the enforcement of the update of ψ due to the divergence correction in all RK stages
improves the reduction of the divergence of the magnetic field, as shown in Table 4. This procedure is also
required for the MR/CT scheme, as shown in Table 5. We observe that for the MR scheme (Table 3), without
local time stepping or time step control, these extra computations do not reduce the divergence of the magnetic
field. In all studied cases, the solution behavior or norms do not change significantly. These tables also present
the compression of leaves, i.e., the compression of the cells that are effectively being used in the time evolution
compared to the uniform mesh and the total memory used including the auxiliary cells to compute the flux and
interpolations. We observe that in these threshold strategies the required additional memory is small compared
to the improvement obtained for the divergence correction.

Table 3. Memory compression, L2 error of density and L∞ error of the divergence of B for
the MR method with constant and level dependent threshold.

Compression(%) ||ρ||L2 maxt,x,y ||∇ ·B||L2

Leaves Memory |∇ ·B|

ǫ method with ǫℓ = ǫ
0.030 5.87 9.22 0.0088 1.40 2.88 · 10−2

0.003 13.87 20.35 0.0053 6.60 · 10−5 9.85 · 10−2

0.001 16.11 23.08 0.0051 1.99 · 10−5 1.39 · 10−2

ǫ0 method with variable ǫℓ

0.030 11.75 17.46 5.73 · 10−3 9.66 · 10−13 4.84 · 10−14

0.003 16.73 23.83 5.09 · 10−3 11.37 · 10−13 9.07 · 10−14

0.001 17.80 25.14 5.06 · 10−3 10.80 · 10−13 9.60 · 10−14

NOTE: Computed with Runge–Kutta order 2 for MR. Parameters: L = 10, CFL = 0.4, final time= 0.1 and γ = 5

3
. Memory and

leaves compression used are related to the regular mesh L = 10.
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Figure 2. One-dimensional cuts of different MHD variables at time t = 0.1 computed with
MR using a corresponding finest underlying FV mesh of 5122 cells. The numerical parameters

are: γ =
5

3
, CFL= 0.4, and

ch
c2p

= 0.18. A level dependent threshold is used with ǫ0 = 0.001.

The corresponding adaptive mesh is shown on bottom, right.
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Figure 3. Time evolution of the L2 (top) and L∞ (bottom) errors of ∇ ·B obtained with the

MR method using a corresponding fine scale FV mesh of 5122. Further parameters are γ =
5

3
,

CFL= 0.4,
ch
cp

= 1.0 . Results for the fixed threshold ǫℓ = ǫ = 0.0001 are repesented in red,

ǫℓ = ǫ = 0.05 in green, and for the variable threshold with ǫ0 = 0.05 in blue.
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Table 4. Memory compression, L2 error of density and L∞ error of the divergence of B for
the MR/LT method with constant and level dependent threshold.

Compression (%) L2(ρ) maxt,x,y L2(∇ ·B)
Leaves Memory |∇ ·B|

ǫ0 method with variable ǫℓ

0.030 11.70 17.38 0.0059 6.20 · 10−4 9.81 · 10−7

0.003 16.62 23.67 0.0051 6.20 · 10−4 9.81 · 10−7

0.001 17.69 24.99 0.0050 6.20 · 10−4 9.81 · 10−7

ǫ0 method with variable ǫℓ and extra ∇ ·B correction∗

0.030 11.70 17.38 0.0059 4.90 · 10−8 1.09 · 10−9

0.003 16.62 23.67 0.0051 8.92 · 10−8 2.78 · 10−9

0.001 17.69 24.99 0.0051 8.97 · 10−8 3.10 · 10−9

NOTE: Computed with Runge–Kutta order 2. Parameters: L = 10, CFL = 0.4, final time= 0.1 and γ = 5

3
. ∗ Inclusion of the ψ

update on each stage of the RK method. Memory and leaves compression used are related to the regular mesh L = 10.

Table 5. Memory compression, L2 error of density and L∞ error of the divergence of B for
the MR/CT method with constant and level dependent threshold.

Compression(%) ||ρ||L2 maxt,x,y ||∇ ·B||L2

Leaves Memory |∇ ·B|

ǫ0 method with ǫℓ and extra ∇ ·B correction∗

0.030 11.11 16.47 0.0057 9.1 ·10−13 5.5 ·10−14

0.003 15.21 21.67 0.0051 4.4 ·10−10 1.9 ·10−11

0.001 16.14 22.82 0.0051 4.5 ·10−10 2.4 ·10−11

NOTE: Computed with Runge–Kutta order 2(3). Parameters: L = 10, CFL(0) = 0.4, final time= 0.1, δdesired = 0.001 and

γ = 5

3
. ∗ Inclusion of the ψ update on each stage of the RK method. Memory and leaves compression used are related to the

regular mesh L = 10.
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5. Final remarks

In the current study we presented a new adaptive MR code for ideal MHD equations coupled with a divergence
cleaning technique to impose the incompressibility of the magnetic field on locally refined adaptive mesh and
performed numerical experiments in two space dimensions.

For constant threshold values ǫ the magnetic fields do not remain divergence free, even larger values of
divergence do occur compared to the results obtained using Harten’s threshold strategy. Using the latter
strategy, the divergence of the magnetic field is well controlled and remains small during the simulation. Hence,
we conclude that Harten’s thresholding rule yields reasonable results for the current example. Applying the
same thresholding rule to MR/LT and MR/CT we found that the divergence is larger than for classical MR.

We concluded from this study that new strategies for applying divergence techniques are needed when apply-
ing adaptive time stepping methods. Investigation of such techniques will be the aim of future work together
with the implementation in three space dimensions.
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