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Abstract

Runtime performance is a limiting factor in large cosmological simulations. A paral-
lel application code called FLASH, which can be used for cosmological simulations
is investigated in this report. FLASH is an Adaptive Mesh Refinement (AMR) code,
parallelised using MPI, and incorporating a Particle-Mesh (PM) Poisson solver. Pro-
files of a cosmological simulation based on FLASH, indicate that the procedure which
accumulates particle mass onto the mesh is the major bottleneck. A parallel algorithm
devised by the FLASH center may help to overcome this bottleneck. In this project, the
algorithm is implemented for the latest beta release of FLASH, which cannot currently
perform cosmological simulations. There is interest in FLASH because the adaptive
mesh can be refined to resolve shocks in cosmological simulations. In addition, the new
version of FLASH is designed with an emphasis on flexible and easy to extend code
units.

The communication strategy in the implemented parallel algorithm does not involve
guard cell exchanges (halo swaps). As such, it uses less memory than the previous im-
plementation in the previous version of FLASH. Due to time restrictions, the delivered
implementation is only compatible with a uniform grid in both uniform and adaptive
grid modes. In addition, results indicate it is approximately 3-5 times slower than the
previous implementation. This is using a 3D simulation involving 1283 particles on up
to 64 processors. Potential optimisation strategies are discussed in the report.



Contents

1 Introduction 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The MapParticlesToMesh Procedure . . . . . . . . . . . . . . . . 3
1.3 Outline of Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Algorithms 5
2.1 FLASH Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Assigning Particle Mass to the Mesh . . . . . . . . . . . . . . . . . . . 7

2.2.1 FLASH 2.5 Algorithm . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 FLASH 3.0 Algorithm . . . . . . . . . . . . . . . . . . . . . . 8

3 Implementation 11
3.1 Accumulating Mass in a Single Block . . . . . . . . . . . . . . . . . . 11
3.2 Accumulating Mass in Multiple Blocks . . . . . . . . . . . . . . . . . 12
3.3 Communicating the Particle Datatype . . . . . . . . . . . . . . . . . . 15

4 Installation 16
4.1 The IVS on HPCx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1.1 Santa-Barbara . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1.2 Pancake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 FLASH 3.0 on HPCx . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.1 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.2 Sedov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.3 Pancake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Results and Analysis 25
5.1 Runtime Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 mpiprof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3 xprofiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.4 Paraver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.5 HPCx Specific Optimisations . . . . . . . . . . . . . . . . . . . . . . . 34

6 Adaptive Mesh Implementation 36

7 Future Optimisations 39

i



7.1 Calculation Optimisations . . . . . . . . . . . . . . . . . . . . . . . . 39
7.2 Communication Optimisations . . . . . . . . . . . . . . . . . . . . . . 43

8 Conclusions 44
8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
8.2 Summary of achievements . . . . . . . . . . . . . . . . . . . . . . . . 46
8.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

ii



List of Tables

5.1 Time for 10 iterations of Grid_mapParticlesToMesh, when us-
ing 1283 particles on various numbers of processors for both IVS and
FLASH 3.0 beta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.2 Time and MPI communication information for 10 iterations of Grid_map-
ParticlesToMesh, when using 1283 particles, and a uniform grid
on various numbers of processors for both IVS and FLASH 3.0 beta . . 29

iii



List of Figures

2.1 Block structure in a 2D domain. . . . . . . . . . . . . . . . . . . . . . 6
2.2 Child blocks created during a refinement in a 3D domain. . . . . . . . . 7
2.3 Sieve algorithm pseudo-code . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Assigning mass to nearest neighbour grid points in a 2D domain . . . . 12
3.2 Accumulating mass across an internal boundary in a 2D domain . . . . 13
3.3 Accumulating mass across an external boundary in a 2D domain, with

periodic boundary conditions in both directions. . . . . . . . . . . . . . 14

4.1 IDL script output from an IVS run using 32 processors with 128k StB
dataset, against a Hydra_MPI run with 512k StB dataset . . . . . . . . 19

4.2 Totalview screenshot showing error during an adaptive grid simulation
with lrefine_min=lrefine_max=4 . . . . . . . . . . . . . . . . 23

5.1 Technique used to time mass assignment procedure . . . . . . . . . . . 25
5.2 Time for 10 iterations of Grid_mapParticlesToMesh , when us-

ing 1283 particles on various numbers of processors for both IVS and
FLASH 3.0 beta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.3 Totalview screenshot showing error during profiling with mpiprof . . . 28
5.4 Time for 10 iterations of Grid_mapParticlesToMesh, when us-

ing 1283 particles, and a uniform grid on various numbers of processors
for both IVS and FLASH 3.0 beta . . . . . . . . . . . . . . . . . . . . 29

5.5 xprofiler profile for 10 iterations of Grid_mapParticlesToMesh,
when using 1283 particles, and a uniform grid on 8 processors . . . . . 31

5.6 xprofiler line-by-line profile of a section of maptononhostblock
over 10 iterations, when using 1283 particles, and a uniform grid on 8
processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.7 Paraver trace for 1 iteration of Grid_mapParticlesToMesh, when
using a 1283 particles, and a uniform grid on 8 processors . . . . . . . . 33

5.8 Runtime performance using different compilation flags, when using
1283 particles, and an adaptive grid with lrefine_min=lrefine_max=3
on various numbers of processors. . . . . . . . . . . . . . . . . . . . . 35

6.1 Performing prolongation to generate a symmetric mass cloud in a 2D
domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.2 Performing restriction in a 2D domain. . . . . . . . . . . . . . . . . . . 38

iv



Acknowledgements

Firstly, I would like to thank my supervisor Gavin Pringle for all his help with the
project. He organised a useful project by coordinating with people at the FLASH center
and the Virgo Consortium. In addition, he has always been available to answer any of
my questions.

I must also thank key people from the FLASH center. In particular, Anshu Dubey who
developed the Sieve algorithm used in this project. Anshu Dubey provided a useful
skeleton code to use in the project, and created key code components at short notice.
Other members that helped with my project are Klaus Weide, Lynn Reid and John
ZuHone. Thanks also to Tom Theuns from the Virgo Consortium.

I would like to thank Elena Breitmoser for helping to install and verify the Improved
Virgo Simulation, and also for proof reading this dissertation. Also, thanks to Chris
Johnson for explaining the Paraver profiling tool.

A special thanks to my fellow M.Sc. student Bruce Duncan. He has always been avail-
able to answer various UNIX questions, and has helped hugely with my understanding
of the FLASH application.

The software used in this work was in part developed by the DOE-supported ASC /
Alliance Center for Astrophysical Thermonuclear Flashes at the University of Chicago.



Chapter 1

Introduction

1.1 Overview

This project investigates the optimisation of a procedure in the FLASH simulation code
[1]. FLASH is a modular Fortran90 code, developed initially to study thermonuclear
flashes, and is parallelised using the Message Passing Interface (MPI) [2]. FLASH is
an Adaptive Mesh Refinement (AMR) code that uses the PARAMESH package [3] to
discretise the computational domain into a block structured adaptive grid. The provision
of an adaptive grid is an extremely desirable feature. This is because it enables a high
resolution grid to be applied to only interesting regions of the computational domain,
so that extra insight can be achieved, without requiring the added computational time
and storage of a high resolution uniform grid. The grid is also dynamic, in the sense
that the discretisation of the domain changes as the simulation evolves.

Recently, the code was extended with new modules to perform cosmological simula-
tions [4]. This has involved creating modules that add particles to the system which
simulate dark matter particles [5]. Current theories believe that the universe contains a
large quantity of unseen matter, “dark matter”, which interacts with visible matter by
gravitational force only. Therefore, inserting the missing mass component into cosmo-
logical simulations is critical. One of the attractions of using FLASH for cosmological
simulations is that its adaptive mesh can be refined to capture shocks in the simula-
tion. This can be used, for example, to resolve the sudden acceleration caused by an
exploding star.

The gravitational force between particles in a simulation is generally evaluated using
one of three techniques. These methods are named particle-particle (PP), particle-mesh
(PM), and particle-particle-particle-mesh (P 3M ) [6]. Although other techniques exist,
such as the Barnes-Hut tree algorithm [7]. Originally, cosmological simulations were
particle based codes (PP). This means that gravitational force between particles are
evaluated as a direct N -Body sum, which is of order O(N 2) work. FLASH, however, is
a particle-mesh based code (PM) which approximates the force between particles. This
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is of order O(NlogN) work, and is generally faster than the direct summation method
for large N .

One research group that is extremely interested in using FLASH for cosmological sim-
ulations is the Virgo Consortium [8]. The research areas of Virgo are described on their
website as “large-scale distribution of dark matter, the formation of dark matter haloes,
the formation and evolution of galaxies and clusters, the physics of the intergalactic
medium and the properties of the intracluster gas” [8]. This is challenging research
which is performed on supercomputer resources around the world. Machines used in-
clude the IBM Regatta system at Max-Planck Rechenzentrum in Garching, hereafter
referred to as RZG, the IBM Regatta UK national supercomputer called HPCx, and
various Sun SMPs termed "Cosmology Machines" at Durham. Up until now they have
only used simulations with P 3M or treecode methods. They are therefore very inter-
ested in using FLASH because it is an AMR code which, as such, can resolve shocks.

The extended FLASH simulation code is known to perform poorly for dark matter sim-
ulations [5]. In [5], a profile is shown for the 64k Santa-Barbara (StB) input dataset on
32 processors on HPCx. The Santa-Barbara dataset refers to a dataset that is representa-
tive of a dark matter only cosmological run, and 64k indicates 643 particles. The profile
reveals that a large portion of runtime is spent solving Poisson’s equation to evaluate the
force between dark matter particles. In this implementation, an iterative solver based on
a MultiGrid method is used to solve Poisson’s equation. Such an algorithm is known to
perform well in serial, but does not parallelise easily. In an attempt to improve parallel
performance, the solver is replaced by a Fast Fourier Transform (FFT). The FFT solver
is implemented by Tom Theuns [9] of the Virgo Consortium and EPCC. The resultant
code is described in detail in [5], and is henceforth referred to as the Improved Virgo
Simulation (IVS).

The IVS is evaluated in [10]. Profiles reveal that the time to complete the StB simu-
lation for a 64k and 128k data set is greatly reduced. Function level profiles for IVS
indicate that the new bottlenecks are the subroutines MapParticlesToMesh and
RedistributeParticles. It is also shown that the code does not scale past 64
processors for a reasonably sized dataset (128k StB). The tests are performed on the
machines: The IBM Power PC, MareNostrum, at BSC in Barcelona, hereafter referred
to as BSC, the vector NEC-SX8 at Stuttgart, hereafter referred to as HLRS, HPCx and
RZG. This is a disappointing result as high application scalability is crucial for tack-
ling larger and more complicated problems. The limited scalability has motivated this
project, which will attempt to overcome the largest bottleneck in the application code.

Work in this project is devoted to the optimisation of the MapParticlesToMesh sub-
routine only. This is because there is already a new implementation of ReDistribute-
Particles. No performance figures are available, but scalabilty is vastly improved
[11]. The subroutine is implemented for FLASH 3.0 beta. It should be noted that the
IVS is an extended version of FLASH 2.5.

FLASH 3.0 beta is a preliminary version of the FLASH center’s next major release,
FLASH 3.0. It includes the design enhancements of the full release, but does not con-
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tain the same level of functionality as exists in FLASH 2.5. The focus of FLASH 3.0 is
about creating code units that are more flexible and easier to extend [13]. This has been
achieved by making the design much more object-orientated. The promise of greater us-
ability appeals to many current users of FLASH, including the Virgo Consortium. This
prompted the decision to abandon the planned optimisation of the IVS in this project.
Therefore, instead of optimising MapParticlesToMesh in FLASH 2.5, as in the
original plan, it was decided to implement the procedure for FLASH 3.0 beta. A discus-
sion of the risks associated with choosing a project based on FLASH 3.0 beta appears
in the author’s project preparation report [12].

1.2 The MapParticlesToMesh Procedure

To understand the purpose of the MapParticlesToMesh procedure, a brief intro-
duction to PM techniques is first provided.

The mesh based approximation technique was developed to evaluate forces between N

particles faster. This is necessary in the field of cosmology because realistic simulations
typically use N > 107 particles [15]. This equates to a high computational time to
evaluate the gravitational forces between N particles. Such a cost can be prohibitive.
One way to reduce this work is to approximate the gravitational forces using a PM
technique. The steps performed during a single time-step are described in more detail
in [16] [17], and are briefly summarised below.

1. Assign particles’ masses to the mesh using an interpolation scheme. Different
interpolation schemes are used depending on their accuracy and computational
cost. The default scheme in FLASH is Cloud-In-Cell (CIC) [1].

2. Solve Poisson’s equation on the mesh in order to obtain the gravitational potential.

3. Perform a finite difference of the gravitational potential to obtain the force at each
mesh point.

4. Interpolate the forces back to the particle positions

5. Advance the particles’ position and velocity.

MapParticlesToMesh performs the task specified in Step 1. It is used to assign
the particle mass to grid points on the mesh. An efficient implementation is crucial in
the FLASH code, and in any well-designed PM simulation code, for that matter.

1.3 Outline of Sections

Chapter 2 gives an overview of the algorithm implemented in IVS and the proposed al-
gorithm for FLASH 3.0 beta. Also included, is background information which explains
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how the the computational domain in a FLASH simulation is decomposed. This helps
to explain the key differences between the algorithms.

Chapter 3 describes the implementation of the algorithm. It includes how the imple-
mentation is designed to cope with the different boundary condition modes of FLASH.

Chapter 4 explains the installation of actual scientific simulations for IVSand FLASH
3.0 beta. These scientific simulations are used to quantify how output from Grid_map-
ParticlesToMesh compares to MapParticlesToMesh. Also discussed are the
test cases created to ensure the delivered implementation performs as intended.

Chapter 5 uses a scientific simulation introduced in the previous chapter to assess the
performance of Grid_mapParticlesToMesh. The performance of Grid_map-
ParticlesToMesh is compared against MapParticlesToMesh for a variety of
processor counts. Various profiles of Grid_mapParticlesToMesh are taken to
explain the reasons for the observed poor performance.

Chapter 6 describes the approach taken to accumulate particle mass across blocks which
exist at different refinement levels.

Chapter 7 discusses future optimisations based upon the results from the Chapter 5.
Then finally, Chapter 8 is a summary of achievements and evaluation of the project.
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Chapter 2

Algorithms

Section 2.1 gives an overview of the structure and placement of blocks in FLASH. This
is necessary to understand the intricate details of the proposed algorithm described in
Section 2.2. The implementation of the Sieve algorithm is described in Chapter 3.

2.1 FLASH Geometry

The computational domain in IVS and FLASH 3.0 beta consists of a number of blocks
which are distributed amongst processes. The structure of each block is identical. Here,
each block contains NXB, NYB, NZB internal grid points, and NGUARD guard grid points
at each block boundary. The block structure in a 2-dimensional domain is shown in
Figure 2.1. A guard grid point is henceforth referred to as its more common name of
guard cell. In other publications, a guard cell is also described as a halo cell. These
parameter values and particular problem constraints (e.g. type of boundary conditions)
are described in a file named flash.par, which is read by the FLASH executable at
runtime.

In IVS, the computational domain is decomposed using the PARAMESH package only.
This is also available in FLASH 3.0 beta, but there is also the option of decomposing
the computational domain with a uniform grid. A uniform grid is appealing as it has no
AMR related overhead [13].

In uniform grid mode, only one block per process exists during the entire simulation.
This is a logical decision on the basis that refinements do not occur at any time. Since
a block always retains the same number of grid points, running a simulation with more
processes increases the overall resolution. In real terms, this means that a particular
problem can be solved more accurately (in general) by distributing it across more pro-
cessors.

In adaptive grid mode, the number of blocks per process is not fixed. Blocks are created
and destroyed during the course of a simulation to change the resolution in different
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NGUARD

NGUARD

NGUARD NGUARD

NYB

NXB

Figure 2.1: Block structure in a 2D domain.
(Reproduced from the FLASH User Guide, version 2.5 [1].)

regions of the domain. The block parameters NXB, NYB, NZB and NGUARD are passed
to the PARAMESH package at runtime.

Only certain blocks in the computational domain are able to refine or derefine. These
are known as leaf blocks, and are the blocks that represent a particular region of the
domain at the highest refinement level. All calculations are performed using the leaf
blocks during the simulation. Control over the maximum and minimum refinement
levels is possible by setting the parameters lrefine_min and lrefine_max in
the input file flash.par. These set the minimum and maximum levels of refine-
ment possible in the computational domain. Note, that setting lrefine_min and
lrefine_max generates a uniform grid. Whenever a leaf block is marked for refine-
ment, it will spawn 2NDIM child blocks covering the same region, where NDIM is the
number of dimensions. This means each child block is half the size as its parent in each
dimension. Figure 2.2 shows a leaf block spawning 8 child blocks in a 3D domain.

Despite spawning child blocks, the parent block is retained in the simulation, but is
no longer marked as a leaf block. Whenever a derefinement occurs, the child blocks
are destroyed and its parent becomes the new leaf block. In a FLASH simulation each
particle is assigned to a single leaf block in the computational domain.

The block distribution specified by the PARAMESH package is generated using a
Morton-space filling curve [1]. Here, a Morton-space filling curve provides a way to
decompose parallel computing problems between processes in a way that maximises
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Figure 2.2: Child blocks created during a refinement in a 3D domain.
(Taken from PARAMESH Users Guide [3].)

both load balance and data locality. The criteria used is:

1. The distribution of blocks should maximise the load balance across all processes.

2. Where possible, blocks contained in the same region of the computational domain
should be assigned to the same process.

3. Where possible, nearest-neighbour blocks in different processes should exist in
nearest-neighbour processes.

Thus, if a particle contributes mass to blocks in different processes, it is likely that the
blocks exist in nearby processes. Other space filling curves exist, such as Hilbert and
Peano curves [14], and are also well suited to this type of problem.

2.2 Assigning Particle Mass to the Mesh

A dark matter particle in a FLASH simulation exists within a single internal grid cell
of only one leaf block. A simple technique for assigning the particle mass to the mesh,
is to assign the mass to the single grid point containing the particle. However, such
a simple interpolation scheme gives a crude mass distribution, and thus a poor force
approximation. Therefore, higher level interpolation schemes exist which “smear” the
particle mass across many more grid points. As previously stated, the default interpola-
tion scheme in FLASH is the Cloud-In-Cell (CIC) scheme, which involves 2NDIM grid
points.

The higher level interpolation schemes are desirable for increased accuracy, however,
they present difficulties for developing a particle mass assignment procedure. This is
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because a nearest neighbour grid point may exist in the internal section of a different
block. Here, an internal section corresponds to grid points between NGUARD+1 and
NGUARD+N[XYZ]B+1 in Figure 2.1, where N[XYZ]B is used to indicate NXB, NYB
and NZB. Therefore, the mass of a particle may need to be assigned to grid points in
more than one block. To further complicate matters, the block could exist in a different
process.

The basic problem is, therefore, assigning particles’ mass to blocks in a mesh distributed
across multiple processes. Here, processes must coordinate so that a particle’s mass
can be assigned to any grid point in the computational domain. There are two different
approaches, which involve communicating different types of information. The approach
adopted in IVS is explained in Section 2.2.1, and the intended approach for FLASH 3.0
beta is explained in Section 2.2.2.

2.2.1 FLASH 2.5 Algorithm

The IVS technique involves utilising guard cells. When particle mass assignment is
performed, the guard cell grid points are used to accumulate mass assignment intended
for non-internal grid points. After assigning mass from all particles, the potentially
updated guard cell grid points are communicated to the neighbouring block.

The communication consists of a message exchange between blocks whose block faces
touch. Here, the “halo” message consists of the guard cell grid points associated with
the touching block face. If the blocks are local to the current process, then the halo
swap is achieved by a direct memory copy. Otherwise, the halo swap involves an MPI
send / receive pair between processes. The mass stored in the halo, or guard cells, is
used to update the receiving block’s internal grid points.

This approach is implemented in the procedure named MapParticlesToMesh. It is
possible to analytically calculate the number of message exchanges. This is because the
halo swaps occur irrespective of whether any mass is accumulated in the guard cell grid
points. In a uniform grid implementation, each block sends (3NDIM

− 1) halo messages.
That is, a block sends a message to each block that is a face or corner neighbour. In
addition, the same number of messages are received by the block. This equates to a very
large number of messages when each block in the computational domain is considered.
Most will be direct memory copies however, and not MPI messages, as typically there
are many blocks assigned to each processor.

2.2.2 FLASH 3.0 Algorithm

This algorithm, developed by [11], involves accumulating particles’ mass in a block’s
internal grid points only. Mass is never accumulated in guard cell grid points, as FLASH
3.0 will ultimately give the option of using no guard cell.
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An extremely desirable feature of the algorithm is that it does not require guard cell
grid points. Guard cells take a significant portion of the total memory allocated to
blocks. For example, a 3D simulation with NXB=NYB=NZB=50, and NGUARD=4 will
use approximately 35% less memory by eliminating guard cells. This is calculated by
considering the ratio of internal block data to total block data [3], i.e.

NXB×NYB×NZB
(NXB+(2×NGUARD))×(NYB+(2×NGUARD))×(NZB+(2×NGUARD))

Using a reduced memory operation mode is necessary for simulations involving a large
number of dark matter particles. For example, IVS simulations using only 256k (2563)
particles were too memory demanding and crashed on HPCx [10].

The first step of the algorithm involves accumulating the mass of a particle in the grid
points of the host block. Here, the term host block is used to denote the block which
contains the current particle. At first, the position of the grid point containing the parti-
cle and its nearest neighbour grid points are calculated. If all the nearest neighbour grid
points are found to exist in the internal section of the host block, then all the particle
mass is accumulated over grid points within the host block. Alternatively, only a portion
of the particle’s total mass can be accumulated in the hosts internal grid points. This
means that a further portion of particle mass should be assigned to grid point within
other blocks, which, in turn, may exist in other processes.

A particle attribute named currentmass is used to keep track of the portion of mass
not yet assigned to grid points. A search is performed for the nearest neighbour grid
points in local blocks. Each time a portion of a particle’s mass is accumulated in a near-
est neighbour grid point, the value of currentmass is reduced accordingly. When
the currentmass attribute is numerically zero, mass accumulation is complete. If
the currentmass is non-zero, the particle is communicated to the next process.

Communication involves all processes exchanging buffers containing all partially ac-
cumulated particles. If a process has no partially accumulated particles, then it still
participates in the communication using an empty buffer. A process attempts to ac-
cumulate mass in its internal grid points from each received particle. As before, the
value of currentmass is reduced accordingly. The algorithm terminates when the
currentmass attribute of every single particle in all processes is numerically zero.

The communication between processes is a particularly desirable feature of the so-
called Sieve algorithm. This is because communication between processes is restricted
to a relatively small number of large messages. In contrast, the algorithm in Section
2.2.1 relies on a very large number of small messages. Therefore, the implemented
Sieve algorithm should be able to hide the latency of the parallel machine’s communi-
cation network better.

Another extremely desirable feature is the algorithm’s ability to exploit the block dis-
tribution generated by the PARAMESH package [3]. Here, blocks are distributed to
processes in the computational domain according to several criteria (see Section 2.1).
This means it is possible to design a communication pattern based on the PARAMESH
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block ordering. In other words, increase the probability of assigning particles’ mass in
as few moves as possible.

The algorithm, named the Sieve algorithm [11] is shown in Figure 2.3.

Put_particles_in_sieve
Repeat until (currentmass(all particles)==0)
For each particle i
For each block j on myPE

if(i maps on j)
do mapping
currentmass(i) = currentmass(i)-mass_mapped_on(j)

end if
do global sum of currentmass
if(currentmass_global_sum /= 0)

send mySieve to neighbour
receive sieve from neighbour

end if
end For

end For

Figure 2.3: Sieve algorithm pseudo-code

The neighbour is determined by:

Receive from process: myPE + i ∗ (−1)i

Send to process: myPE + i ∗ (−1)i+1

Here, myPE is the process number, and i is the iteration number. i is local to each
process, and runs from 0 to P − 1, where P is the number of processes. This generates
a back-and-forth message exchange motion, which gives rise to the Sieve algorithm
name.

Specifying communication between the above processes is designed to assign particles’
mass in a minimal number of particle exchanges. In addition, the size of the communi-
cation message will drop rapidly with each process visited. A more detailed description
of the algorithm can be found in [18].
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Chapter 3

Implementation

The implementation of the Sieve algorithm (Figure 2.3) is attempted in two parts. Ini-
tially, Grid_mapParticlesToMesh is implemented for the simpler problem of
a uniform grid. The procedure is tested for correctness in several sample problems.
The second stage of implementation involves extending Grid_mapParticlesTo-
Mesh to perform mass assignment when the underlying grid is adaptive. In an adaptive
grid, the refinement levels of different blocks must be taken into account to ensure that
appropriate grid points receive mass assignment. Fortunately, development is simplified
as many code units can be reused for the second stage of implementation. The adaptive
mesh work is shown in Chapter 6. This is because FLASH 3.0 beta encapsulates the
uniform and adaptive grid implementations behind a common grid interface.

3.1 Accumulating Mass in a Single Block

The first situation to consider is when the grid point containing the particle, and its
nearest neighbour cells exist in the internal section of a block. Figure 3.1 illustrates
this type of mass accumulation in a 2D domain. Here, the grid point marked with a
“P” represents the grid point containing the particle. Next to this grid point are the
nearest neighbour grid points, which are coloured black. It should be noted that nearest
neighbour cells do not always receive a portion of the mass. Whether they do depends
on the accuracy of the mass assignment scheme (e.g. the CIC scheme accumulates mass
in two grid points for each dimension).

Some important FLASH parameters are also shown in Figure 3.1. These are the in-
dices ip, jp of the grid point containing the particle. Also shown are fixed parameters,
gr_ilo, gr_ihi in the x-direction and gr_jlo, gr_jhi in the y-direction, which
represent the edge internal grid points in each dimension. The edge internal grid points
are calculated from parameters specified in the flash.par file. For the x-direction,
gr_ilo=NGUARD+1 and gr_ihi=NXB+NGUARD+1. The block in Figure 3.1 as-
sumes NXB=8 and NGUARD=4. Note that only a single halo of guard cell grid points
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are shown. Also, the implementation functions exactly the same if NGUARD=0.

Figure 3.1: Assigning mass to nearest neighbour grid points in a 2D domain

If all nearest neighbour grid points exist in the internal section of a block, the mass
assignment can be performed very simply. This is because there is no need to constrain
which nearest neighbour grid points receive mass assignment. When this occurs the
currentmass attribute of the particle is set immediately to 0.0.

3.2 Accumulating Mass in Multiple Blocks

Mass assignment is more complicated when a particle exists in an edge internal grid
point. This is because particle mass may need to be accumulated in grid points in mul-
tiple blocks. Figure 3.2 shows how this could occur for a particle P in a 2 dimensional
simulation. Here, abutting blocks at position x1 are shown. Note, that they are depicted
separately for clarity. The grid cells that receive mass assignment are coloured black.

A simple function is written to ensure the guard cells grid points are never used. It
is designed to determine which particles accumulate mass in only the internal section
of one block. The purpose is to simplify the mass accumulation procedure for these
particles.

For a particle which accumulates mass over multiple blocks, the currentmass at-
tribute is needed to know when mass accumulation is complete. In mathematical terms
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Figure 3.2: Accumulating mass across an internal boundary in a 2D domain

it is appropriate to state that a particle is completely assigned when currentmass
is numerically zero. However, when using a numbering system with finite precision
this may not be the case. Therefore, the particle is considered totally assigned when
the relative property remaining is less a tolerance value of MAPPING_TOLERANCE.
The MAPPING_TOLERANCE is currently set to 1.0 × 10−10. This seems appropriate
because the default behaviour in FLASH is to promote all real variables to double preci-
sion [1]. It is possible to increase the accuracy of mass accumulation by using a smaller
tolerance. However, it is found that using a tolerance of 1.0× 10−14 sometimes leads to
lack of convergence.

It is possible that a particle exists in an edge internal cell that is next to a computational
domain boundary. When this happens external boundary conditions must be applied.
Several types of boundary conditions are accounted for: reflective, outflow and peri-
odic. When using reflective boundary conditions, the mass assignment intended for a
guard cell is reflected back into the internal section of the block. In outflow boundary
conditions, the mass assignment is lost if the nearest neighbour cell exists beyond an
external boundary. Finally, in periodic boundary conditions, the mass assignment is
required in a grid point on the far side of the computational domain.

Care must be taken to ensure that periodic boundary conditions are upheld. There-
fore, so-called apparent particle coordinates are employed, which are formed in terms
of the system’s periodicity. Figure 3.3 illustrates a 2D computational domain with pe-
riodic boundary conditions. Here, P represents the particle position, and P’ represents
the apparent particle position for each neighbouring block. Notice that apparent parti-
cle positions are required to potentially accumulate mass in all nearest neighbour grid
points of P.

The code fragment required to generate apparent particle positions, is:
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Figure 3.3: Accumulating mass across an external boundary in a 2D domain, with
periodic boundary conditions in both directions.

ax(1) = particle_x
if(faces(LOW, IAXIS) == PERIODIC) then
iUpper = 2
ax(2) = particle_x - (gr_imax - gr_imin)

else if(faces(HIGH, IAXIS) == PERIODIC) then
iUpper = 2
ax(2) = particle_x + (gr_imax - gr_imin)

end if

Here, the actual particle position in the x-direction is specified as particle_x, and
the computational domain limits are specified as gr_imin and gr_imax. The ar-
ray ax is used to store the actual x-coordinate and the apparent x-coordinate. Similar
arrays named ay and az store the same information, but for the y and z dimension re-
spectively. Use of the arrays ax, ay, az enable Fortran90 do loops to iterate over each
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position. This leads to a maximum of 2NDIM stored particle locations. Each location
represents an opportunity for the block to receive mass assignment across a periodic
boundary. A potential future optimisation involves reducing the number of particle lo-
cations which are checked (see Section 7.1).

3.3 Communicating the Particle Datatype

The situation may arise that a particle only partially contributes mass to grid points
owned by the current process. If this happens the mass from the particle needs to be
accumulated in grid points that exist in blocks owned by other processes.

The particles are stored in an array of the datatype particles. However, the particles
that are exchanged between processes have the new datatype partialParticles.
This is because the partialParticles datatype contains the further attribute, namely
currentmass. It should be noted that the partialParticles datatype contains
far fewer attributes than the particles datatype. This is because it is not used for
any physical calculations. It is only used for accumulating mass in grid points.

However, a large array of partialParticlesmay still consume a significant amount
of memory. For example, an array of 2563 partialParticles consumes approx-
imately 40MB per processor, when distributed across 32 processors. This assumes the
maximum particles that can exist on a processor is 1.4×N

P
, where N is the number of

particles, P is the number of processors, and 1.4 is a value indicating the amount of
clustering in the particle distribution. The number of partialParticles attributes
is taken to be 7, and the real datatype is assumed to be 8 bytes.

Allocating extra memory is avoided by storing the partialParticle data in a pre-
existing array of particles named gr_ptSendBuf. This is an option because the
partialParticles datatype contains fewer fields of the same primitive datatype.
There is also another array used for receiving particles, named gr_ptDestBuf. The
partially mapped particles are exchanged between processes using MPI point-to-point
MPI_Sendrecv communication. Use of MPI_Sendrecv is safe during develop-
ment because it is deadlock free as the receive buffer is provided at the same time as the
send.

If all particles currently on one processor are assigned to grid points, then this pro-
cessor has no particles to communicate to the next processor. When this happens a
single element of the data structure is sent to participate in the necessary point-to-point
communication. This is because all processors must participate.
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Chapter 4

Installation

To verify the FLASH applications perform as expected, several problems with known
solutions are installed on HPCx. These are pre-written problems that are provided with
the FLASH application. Two sample problems are installed for IVS and FLASH 3.0
beta. These are the Santa-Barbara and Pancake problem for IVS, and the Sedov and
Pancake problem for FLASH 3.0 beta. The sample problems are used to check the
correctness of Grid_mapParticlesToMesh, and also compare the performance
of Grid_mapParticlesToMesh against MapParticlesToMesh. In addition
to the sample problems, two extra use-cases are devised for FLASH 3.0 beta, which
further test Grid_mapParticlesToMesh.

Section 4.1 describes the test problems installed for IVS. Initially, it describes the in-
stallation of the Santa-Barbara problem for IVS. This is a dark matter only simulation,
which is an ideal problem to use as a test case because of the demand it places on the
MapParticlesToMesh procedure. Unfortunately, only IVS supports the Hierachi-
cal Data Format (HDF) [22] dark matter datasets (HDF5 is a file format for storing
scientific data). As such, the test can only be used to verify a correct install of IVS.

A second dark matter simulation, called the Pancake problem is installed. This is be-
cause it is a test problem available to both IVS and FLASH 3.0 beta. The Pancake
simulation is a common test-case, which is used to verify many astrophysical com-
puter codes. It is a popular test-case because it generates conditions that appear in
many astrophysical problems. [15] states that it “provides a good simultaneous test of
particle dynamics, Poisson solver, and cosmological expansion.”. Another reason for
its widespread use is that it has a known analytical solution. This adds weight to the
validity of the test, and also enables code accuracy to be evaluated.

Section 4.2 describes the test problems installed for FLASH 3.0 beta. It begins with
the installation of two use-cases, which are designed to test Grid_mapParticles-
ToMesh in isolation. It then describes the Sedov problem, which is used to verify the
FLASH 3.0 beta installation. The Sedov problem, as a hydrodynamics only simulation,
does not use the Grid_mapParticlesToMesh procedure. Therefore, the Pancake
problem, previously discussed, which uses the Grid_mapParticlesToMesh pro-
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cedure is installed.

It is found that the Pancake simulation terminates early in FLASH 3.0 beta. The rea-
son for premature termination is explained in Section 4.2.3. This means that results
cannot be compared against the analytical solution in FLASH 3.0 beta. Instead, vali-
dation is achieved by comparing results from an identical simulations run using IVS.
It is assumed that a valid installation of the Santa-Barbara problem for IVS, implies
the Pancake problem performs correctly on IVS. As such, comparing results between
IVS and FLASH 3.0 beta during the Pancake simulations, verifies that Grid_map-
ParticlesToMesh performs as expected.

In IVS and FLASH 3.0 beta, a Python setup script is used to configure FLASH to solve
different problems. It is executed as follow:

./setup problem [-arg1 -arg2]

Here, problem is the simulation to run, and -arg1 is an example of an optional argu-
ment, such the dimensionality of the problem. Running the script copies the appropriate
source files into an object directory, and creates a problem specific Makefile.h and
Makefile.

4.1 The IVS on HPCx

4.1.1 Santa-Barbara

The Santa-Barabara test problem is configured as follows:

./setup epcc_static -auto -3d -maxblocks=450

The resultant Makefile produces an executable, however, the simulation is found to
core-dump. This is unexpected, because the installation procedure for HPCx is the
same as described in [10]. However, it has since been discovered that several XLF
compiler upgrades happened on HPCx during the interim [20].

In order to determine why the program crashed, the core-dump is analysed using the
coretrace wrapper script to the dbx debugger [21]. This makes it possible to iden-
tify the procedure which caused the program to crash. The problem is traced to the
file InitParticlePositions.F90. When the file is compiled using the -C flag,
the coretrace output displays a Trace/BPT trap error. This indicates that the
core-dump occurs because an array is accessed out of bounds.

The report [10] describes similar core-dumps occurring on the IBM Regatta+ cluster at
RZG. Here, the solution is to compile the problematic Fortran files using the mpxlf_r
compiler script. As such, the same strategy is adopted to resolve the IVS core-dumps
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on HPCx. It is found that the following three Fortran files require special compila-
tion: InitParticlePositions.F90, multigrid.F90 and checkpoint-
_wr.F90. This enables the program to run to completion.

The compiler script mpxlf_r prevented the core-dumps because the script contains
the flag, qsave. This instructs the compiler to place unsaved local variables in static
storage (qsave), and not on the runtime stack (unlike qnosave in mpxlf90_r). In
the end it is thought best to compile the three files using the mpxlf90_r compiler
script with the qsave flag.

For consistency with [10], results are obtained using a serial installation of HDF5 ver-
sion 1.4.4. It is required to install this version on HPCx because only HDF5 version
1.6.4 exists on HPCx at the time of investigation. The configuration, make,
install lines used are:

export OBJECT_MODE=64
export F90="xlf90_r -q64"
export CC="cc_r -q64"
export CFLAGS="-D_LARGE_FILES"
export FFLAGS="-qsuffix=f=f90"
./configure --enable-fortran --disable-shared
--prefix=/hpcx/home/z004/z004/cdaley/HDF5-1.4.4/hdf5-1.4.4
make
make check
make install

A simulation using the 128k StB dataset is run on 32 processors, and the HDF5 check-
point files are evaluated using h5diff, sfocu and IDL. The techniques and results
obtained are shown below.

h5diff

Two HDF5 files can be compared using the h5diff [22] utility which is provided with
HDF5. This is the easiest way to check that the HDF5 checkpoint files are correct. Here,
the h5diff utility is used to compare the checkpoint files from the current installation
against the template checkpoint files.

The path to the h5diff utility is
/usr/local/packages/hdf5/hdf5_serial/bin/h5diff.
This installation of HDF5 is used because the command line tool was only introduced
in HDF5 version 1.6.0.

The HDF5 files are found to differ. However, this is not surprising as the HPCx com-
piler has been upgraded, and some different compiler flags are used. Therefore, the
checkpoint files are verified using the sfocu tool (Section 4.1.1) and the IDL script
(Section 4.1.1).
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sfocu

The Serial FLASH Output Comparison Utility (sfocu) is used to verify the correctness
of the gas component in the checkpoint file. It works by quantifying the similarity of
data in checkpoint files. The data in the checkpoint file from the HPCx installation is
compared against the data in the template checkpoint file. It is found that the maximum
magnitude error is 1.315×10−14. This indicates correctness of the gas component, as
a value of order 10−13 to 10−15 is acceptable [23].

IDL script

The dark matter component in the simulation is verified using an IDL script. Results
are shown for the 128k StB data-set. The simulation is run using 32 processors, and the
parameters: lrefine_min=5, lrefine_max=7, pm_level=7. Results shown in Figure 4.1,
closely match the 32 processor IVS run on an NEC-SX8 in [23].

Figure 4.1: IDL script output from an IVS run using 32 processors with 128k StB
dataset, against a Hydra_MPI run with 512k StB dataset

This completes the verification of the StB simulation using IVS.

19



4.1.2 Pancake

The Pancake problem is installed using a so-called MultiPole solver instead of the de-
fault MultiGrid solver. This is to be compatible with the FLASH 3.0 beta Pancake
installation, which can only use the MultiPole solver. The config file is edited as fol-
lows:

#REQUIRES gravity/poisson/multigrid
REQUIRES gravity/poisson/multipole

The following setup line is used.

./setup pancake -auto -3d

There is a single error during compilation, which curiously involves a dependency
on multigrid.o from MapParticlesToMesh.o. The entry is simply removed
from the Makefile.

Results are compared against the Pancake simulation for FLASH 3.0 beta in Section
4.2.3.

4.2 FLASH 3.0 on HPCx

4.2.1 Use Cases

The quality of the uniform grid implementation of Grid_mapParticlesToMesh is
ensured by using two different test cases. These test cases were used during develop-
ment to help locate errors in the implementation. However, the same test cases now
form part of a regression test-suite to ensure further development does not introduce
new errors.

In FLASH 3.0 beta, new problems can be created by placing all the problem specific
source files in an appropriately named directory in FLASH3/source/Simulation/-
SimulationMain. The Python script, discussed previously, is configured to look in
this directory for all FLASH 3.0 beta simulations. By creating an appropriate Makefile,
the source files residing in these directories are compiled and linked into the FLASH
executable.

For the author’s test cases, the problem-specific source files for the Pancake simula-
tion are copied into new directories, named Test1 and Test2. This is because the
Pancake problem in FLASH 3.0 beta is known to use the Grid_mapParticles-
ToMesh procedure. As such, editing certain files allows control over the data passed
to Grid_mapParticlesToMesh, which is appropriate for a test case.
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Single Particle Mass Assignment

The first test involves placing a single particle at various locations in the computational
domain and evaluating the mass assignment to grid points. It is created by editing
the procedure Gravity_potentialListOfBlocks so that only a single particle
is passed to the Grid_mapParticlesToMesh procedure. This is a one proces-
sor test, so results are checked against a serial implementation of the Grid_map-
ParticlesToMesh procedure. The serial implementation is executed after the
actual Grid_mapParticlesToMesh procedure, which allows results to be com-
pared. The serial implementation is also written by the author. It is a sensible test
because the serial implementation is less complex as all data is known to exist on a
single process. This also means there is no need to incorporate parallel communication.

The test is challenging because the particle is placed in grid points next to block bound-
aries. This is designed to test whether mass assignment occurs as expected across in-
ternal block boundaries and external block boundaries. Extremely infrequent particle
placements are also investigated, e.g. the particle next to a boundary in each dimension
of a 3D domain. In the literature, this type of test is categorised as a white-box test [19].
They are tests that require programmer knowledge of the source code to test different
flows of execution though the program. It is found that the mass assignment is the same
in the serial and parallel implementation.

Comparison of Serial and Parallel Runs

This test case involves running the application on 1, 2, 3, 4, 5, 6, 7 and 8 proces-
sors. Here, the application refers to the test case mentioned above minus the serial
Grid_mapParticlesToMesh implementation.

Each time the application is run the particle density stored in the mesh is printed to file.
The files from parallel runs are compared against the file from the serial run. Each grid
point is compared by using a serial Fortran90 program written by the author. Correct
parallel performance is assumed when the relative error between the particle density in
corresponding grid points is always less than 1 × 10−10. It is found that the tolerance
criterion is satisfied by each test simulation run on different number of processors.

4.2.2 Sedov

To verify installation of FLASH 3.0 beta a test problem named Sedov is used. This is
a hydrodynamics problem which has a known analytical solution. It involves tracking
the spherical blast waves from a point like explosion in a homogeneous medium. The
Sedov problem investigated is a 2D simulation with non-planar symmetry.

The installation involves creating a machine specific Makefile, which contains the path
to the C and Fortran90 compilers and the HDF5 libraries. The following setup script
is run to copy the appropriate source files into the object directory.
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./setup Sedov -auto

The flash.par input file is provided on the FLASH website. This configures the
simulation to run for t = 0.05 seconds or 10000 timesteps (whichever occurs first).
During the simulation, HDF5 output files are created every t = 0.01 seconds. The
HDF5 files are analysed using IDL routines provided with the FLASH 3.0 beta source
code. The use of the IDL routines is simplified as there is a GUI named xflash3. The
IDL image is found to match the image on the FLASH website.

For more information, a detailed step-by-step guide can be found in the User Guide on
the FLASH website [1].

4.2.3 Pancake

Difficulties are encountered during the installation of the Pancake problem. This is
partly because FLASH 3.0 beta has only recently been extended to perform simulations
involving dark matter particles. Initially, it is found that the original Pancake problem
is limited to one particle in FLASH 3.0 beta. This does not provide a demanding test
of Grid_mapParticlesToMesh. Upon request, the FLASH team corrected the
test to include multiple particles. The updated test required debugging to permit it to
function with FLASH 3.0 beta.

The Pancake test problem is configured as follows:

./setup -auto -3d -unit=physics/Gravity/GravityMain/Poisson Pancake

As mentioned earlier, the Pancake simulation freezes early in FLASH 3.0 beta. This
happens irrespective of the values stored in lrefine_min and lrefine_max.
Generally, it is found that for refinement levels of lrefine_min=lrefine_max<

4, the simulation runs for a few time steps. When the refinement is set to values greater
than lrefine_min=lrefine_max=3, and sometimes when varying the number of
processors, the freeze occurs in the first time step.

The bug is investigated by forcing a core dump when the error first occurs. This is
achieved by compiling the source files with the -C flag. The -C option is used to ensure
each reference to an array element or array section is within the boundaries of the array.
Some FLASH source files cannot be compiled using the -C flag. This is because of the
presence of zero-sized subscripted arrays, however, this does not necessarily imply an
error as zero-sized subscripted arrays are valid in certain circumstances [30]. As such,
these files are compiled without the -C option.

Analysis of the forced core dump reveals that the application freezes during a PARAMESH
routine. It is found that the same error occurs when the source files are compiled with
no optimisation flags. The simulation is run inside the Totalview debugger [31]. As the
code is compiled with the -C option, the debugger runs straight to the problem section,
as shown in Figure 4.2.
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Figure 4.2: Totalview screenshot showing error during an adaptive grid simulation with
lrefine_min=lrefine_max=4

When the variables are analysed it is discovered that the loop indices particleBegin
and particleEnd are set to unexpected values. This is because the array perBlk
contains spurious values

The reason for the spurious values is traced back to the particles array not being
allocated. This is leading to a memory corruption error when values are written to
unallocated memory.

The problem arises because the grid is initialised in Grid_initDomain before the
particles are initialised in Particles_init. This order is specified in the program
because the initial refinement level of the blocks is determined by the distribution of
particles.

An attempt is made to place the particle initialisation routine before the block initiali-
sation routine. This causes a problem because there are no blocks available to associate
with each particles. Another attempt is made to move the particle array allocation state-
ment before the block initialisation routine, but this causes other problems. It seems
the solution is to split the particle initialisation routine into two parts, as is the case in
FLASH 2.5. Unfortunately, there is no further time available to resolve the problem.
In summary, the Pancake problem still requires debugging. This is not related to the
Grid_mapParticlesToMesh implementation.

As mentioned previously, the Pancake simulation generally runs for a few time steps
when using refinement levels of lrefine_min=lrefine_max< 4. These few iter-
ations allow the correctness of only the Grid_mapParticlesToMesh procedure
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to be verified against the MapParticlesToMesh procedure in IVS.

The same simulation in IVS and FLASH 3.0 beta is run on one processor, and uses
a refinement criteria of lrefine_min=lrefine_max=2. This enables a compar-
ison between MapParticlesToMesh and Grid_mapParticlesToMesh over
the first 5 timesteps, before the FLASH 3.0 beta termination. Results are obtained
by printing the assigned particle density in each grid point of the mesh to file, after
executing the MapParticlesToMesh and Grid_mapParticlesToMesh pro-
cedures. Values in corresponding grid points are compared using a serial Fortran90
program written by the author. Results show that the particle density differs on average
by a relative error of 1.0× 10−6. Here, the particle density relative error for a particular
grid point is calculated as:

Relative Error = |FLASH2−FLASH3|
FLASH2

where FLASH2 is the IVS grid point value, and FLASH3 is the FLASH 3.0 beta grid
point value. As calculations are performed in double precision this does not indicate a
correct implementation. However, the discrepancy can be explained because the initial
particles’ position is different in IVS and FLASH 3.0 beta. To make the test fair, the
position and block identifier for each particle in IVS is printed to file. This is performed
before the call to MapParticlesToMesh. These particle positions are then read
into the FLASH 3.0 beta simulation before the call to Grid_mapParticlesTo-
Mesh. The particle density is compared in the same way once MapParticlesTo-
Mesh and Grid_mapParticlesToMesh are executed. Using particle positions
from IVS is only valid because the computational domain is decomposed the same in
each simulation. It is found that the maximum relative error between mapping in a cell
is 1.0 × 10−14. This is within the tolerance of the rounding error, so the implemented
algorithm is performing as expected for this test case.
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Chapter 5

Results and Analysis

5.1 Runtime Performance

The runtime of the MapParticlesToMesh procedure is measured using the stan-
dard MPI timer MPI_Wtime. This involves inserting a call to MPI_Wtime before
and after the MapParticlesToMesh procedure. No clock-tick conversion is neces-
sary because MPI_Wtime returns a double precision value containing elapsed time in
seconds. Figure 5.1 shows how the calling procedure Gravity_potentialList-
OfBlocks is instrumented to perform the timing.

DOUBLE PRECISION :: start_time, end_time, total_time
integer, parameter :: iREPEAT=100
integer :: iRep, ierr

call MPI_Barrier(ierr)
start_time = MPI_Wtime()
do iRep = 1, iREPEAT, 1
call Grid_MapParticlesToMesh(..)

end do
end_time = MPI_Wtime()
call MPI_Barrier(ierr)
total_time = end_time - start_time

Figure 5.1: Technique used to time mass assignment procedure

The Grid_mapParticlesToMesh procedure is executed iREPEAT times to im-
prove timing accuracy. All input/output (I/O) and any calls to the FLASH internal tim-
ing system are removed from Grid_mapParticlesToMesh. The FLASH internal
timing system is not used for the benchmark because it was found to be unreliable in
IVS [10]. Unless otherwise stated, all results are obtained using a 64-bit FLASH 3.0
beta installation, and source files are compiled to -O3 optimisation. The same instru-
mentation is performed in IVS to obtain timings for MapParticlesToMesh.
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The procedure is timed during a 1283, 3-dimensional simulation on various number of
processors. All simulations in this chapter are 3-dimensional. Refinement is fixed dur-
ing the adaptive grid simulation by setting lrefine_min=lrefine_max=3. This
divides the computational domain into 64 blocks, which are then distributed amongst
processors. As the number of blocks are fixed, the problem size is independent of the
number of processors. Thus, the strong scaling properties of MapParticlesTo-
Mesh and Grid_mapParticlesToMesh are investigated, and results are shown
in Table 5.1 and Figure 5.2. It should be noted that this is the largest problem that
can be investigated. Larger values of lrefine_min cause the program to coredump
during initialisation, as values are written to the particles array before the array
is allocated (see Section 4.2.3). As memory is corrupt, the outcome of initialisation is
unpredictable, and sometimes the program crashes. Unfortunately, for the same reason,
it is not possible to run the simulation on one processor for lrefine_min=3.

Number processors FLASH2 time (s) FLASH3 time (s)
1 63.8 -
2 20.9 54.3
4 10.9 27.4
8 4.0 14.0

16 2.4 10.0
32 1.5 8.5
64 1.6 8.1

Table 5.1: Time for 10 iterations of Grid_mapParticlesToMesh, when using
1283 particles on various numbers of processors for both IVS and FLASH 3.0 beta

For the simulation investigated, results show that the Grid_mapParticlesTo-
Mesh is consistently slower than the MapParticlesToMesh. In summary,
Grid_mapParticlesToMesh is not as fast as hoped. Therefore, its performance
is investigated using the mpiprof, xprofiler and Paraver profilers. This permits a detailed
analysis of any bottlenecks that may exist in the code.

5.2 mpiprof

mpiprof is a wrapper library created for IBM platforms that is used to obtain detailed
information about MPI communication [24]. It provides elapsed time measurements
of each MPI operation, and a call graph giving a procedure level breakdown of the
caller of each MPI operation. Ideally, the low overhead mpitrace wrappers would be
used to measure MPI communication time. However, results are less useful because no
record is made of the procedure executing the MPI operation. Therefore, mpiprof is
used during the investigation. Source files must be compiled with the -g flag.

It is found that the mpiprof library cannot be used to profile an adaptive grid build of the
FLASH simulation. When linked, the simulation terminates during initialisation with
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Figure 5.2: Time for 10 iterations of Grid_mapParticlesToMesh , when using
1283 particles on various numbers of processors for both IVS and FLASH 3.0 beta

the following error from each process:

ERROR: 0032-121 Invalid rank (-1) in MPI_Group_translate_ranks, ←↩

task 1

The error is raised during execution of the procedure Fill_Old_Loc, which is part of
the PARAMESH package. It occurs because invalid data is passed to the MPI profiling
interface function named .PMPI_Group_Translate_Ranks. Figure 5.3 shows
the location of the error. Here, the simulation is run inside the Totalview debugger.

The same error occurs when the FLASH application is linked to the mpitrace library. It
also occurs in the same procedure during an IVS simulation. In IVS, the procedure is
found in the source file amr_morton.F90. It is in a different source file because the
IVS application uses an older version of the PARAMESH package.

Since the adaptive grid version of the code cannot be profiled, the uniform grid version
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Figure 5.3: Totalview screenshot showing error during profiling with mpiprof

is investigated. A uniform grid installation of FLASH 3.0 beta is obtained using the
following setup line.

./setup -auto +noio +ug -3d -unit=physics/Gravity/GravityMain/←↩

Poisson Pancake

The runtime of Grid_mapParticlesToMesh is shown in Figure 5.4 for a simu-
lation using 1283 particles on 8, 27, 64, 125 processors. By definition, a uniform grid
implementation assigns only one block to each process. As such, using these processor
counts ensures each block represents a cuboidal section of the computational domain.
It should be noted that simulations were compiled using the -g flag. Results are not
shown for IVS because there is no uniform grid implementation.

In a uniform grid implementation, the resolution of the problem increases linearly with
processor count. As such, adding processors to the simulation increases the total num-
ber of grid points. Results in Figure 5.4 clearly show that the procedure runs faster for
higher processor counts.

Times from an mpiprof profile of the procedure are shown in Table 5.2. Here, the
procedure’s total MPI communication time, and broken down MPI communication time
is shown. The time taken to run the Grid_mapParticlesToMesh procedure is
displayed in the call graph section of the trace files. It is decided to show the maximum
MPI communication time across all trace files in the table. This is because the procedure
only executes as fast as the slowest CPU. The first column of the table shows the runtime
of the procedure (from Figure 5.4).
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Figure 5.4: Time for 10 iterations of Grid_mapParticlesToMesh, when using
1283 particles, and a uniform grid on various numbers of processors for both IVS and
FLASH 3.0 beta

Processors Procedure (s) Comm (s) MPI_Sendrecv (s) MPI_Allreduce (s)
8 10.6 1.5 0.3 1.2

27 5.0 2.0 0.9 1.1
64 3.7 2.2 1.2 1.0

125 3.2 2.2 1.2 1.0

Table 5.2: Time and MPI communication information for 10 iterations of Grid_map-
ParticlesToMesh, when using 1283 particles, and a uniform grid on various num-
bers of processors for both IVS and FLASH 3.0 beta

The results show that the time spent performing the MPI_AllReduce on different
number of processors is relatively constant. On the other, the time spent performing the
MPI_Sendrecv increases with number of processors. It can be seen that the cost of
performing the MPI_Sendrecv operations relative to the MPI_AllReduce opera-
tions increases with processor count. This can be understood on the basis, that there
are more blocks in the computational domain at higher processor counts. Therefore,
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there are fewer particles on each block, so the importance of communication relative
to calculation increases. In addition, more blocks in the computational domain mean a
particle will visit more blocks on average before being completely assigned to the mesh.
This equates to more MPI messages consisting of fewer particles. As such, more mes-
sages lead to the impact of MPI_Sendrecv increasing because of cumulative message
latency.

The time to complete the MPI_AllReduce seems to be more problem independent
than the MPI_Sendrecv. This is because the MPI_AllReduce does not involve
large quantities of data. It is used simply to determine whether to continue the point-to-
point communication. It may be thought that at higher processor counts the time spent
waiting for the MPI_AllReduce would increase. However, it seems the time spent
waiting for more processors to synchronise is offset by the reduced amount of work
on each processor. Recall that all results are obtained from simulations using 1283

particles. This means that as work becomes more distributed, even a lightly loaded
processor will remain relatively synchronised with a heavily loaded processor.

Results for eight processors reveal that 10.6 seconds is spent in Grid_mapParticles-
ToMesh. Of this time, 1.5 seconds is communication, which indicates the Grid_map-
ParticlesToMesh is dominated by computation at low processor numbers. At
higher processor counts, the relative cost of communication increases. An analysis of
the computation bottlenecks using eight processors is provided in the following Section.

5.3 xprofiler

xprofiler is an IBM X-Window based profiling tool which is based on the more common
gprof tool. These tools are used to determine how long is spent executing each function
and subroutine in a program. Profiles are generated by sampling the program counter
periodically when the program is run [25]. Source files must be compiled with the -pg
option to obtain profiling information. xprofiler can also provide a line-by-line profile,
provided the source files are compiled with the -g flag. Optimisation is left switched
on to reduce the overall impact of instrumentation. The profile is recorded over 10
iterations of Grid_mapParticlesToMesh procedure.

The xprofiler tool is invoked with the following command line:

xprofiler flash3 gmon* -a /source/files/path

This loads the FLASH 3.0 beta parallel program executable with the merged statistic
file from each process. A profile is exported from the xprofiler tool, and is shown in
Figure 5.5. It should be noted that the Figure is edited to show just the key aspects of
the profile.

All procedures are represented by their symbolic object name in Figure 5.5. The most
expensive procedure in the profile is attributed to _mcount. This is a symbol used by
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%time seconds calls name
37.9 65.28 .__mcount
6.6 11.43 ._lapi_shm_dispatcher
4.9 8.37 12131360 .__mappingmodule_NMOD_mapcarefullytohostblock
4.5 7.72 237404160 .__mappingmodule_NMOD_biscellcontainedinblock
4.4 7.5 629696160 .__mappingmodule_NMOD_bmapstointernalcell
3.8 6.57 11190720 .__mappingmodule_NMOD_maptononhostblock
3.6 6.16 473123040 .__gr_applybcstohostblock_NMOD_getcellindex
3.4 5.89 ._lapi_dispatcher
2.9 4.92 29675520 .__mappingmodule_NMOD_attempttomapblock
2.7 4.69 ._pxldmod
2.3 4 640 .__particledecision_NMOD_gr_mapparticlesandfilldestbuf
1.8 3.16 101294080 .__mappingmodule_NMOD_bpropertycompletelymapped
1.8 3.12 ._xldmdlo
1.7 2.94 .__itrunc
1.5 2.63 ._xldintv
1.5 2.51 .LAPI__Msgpoll
1.4 2.37 32162240 .__mappingmodule_NMOD_calculateweightsforinputblock
1.3 2.16 8 .particles_init
1.2 2.07 .REG_3stream_store
1.2 2.02 ._xlidflr
1.2 2 32162392 .grid_getblkptr
1.1 1.84 .qincrement
0.9 1.62 61837800 .grid_getblkboundbox
0.9 1.48 .__stack_pointer
0.8 1.38 16984532 ._sin
0.7 1.21 .qincrement1
0.6 1.01 36597760 .__particledecision_NMOD_attemptremotemapping@AF5_3
0.5 0.89 32162240 .pt_assignweights
0.4 0.72 8 .particles_initpositions
0.3 0.58 8840160 .__mappingmodule_NMOD_mapnaivelytohostblock
0.3 0.5 ._is_yield_queue_empty
0.3 0.45 41806880 .grid_getblkbc
0.2 0.38 12131360 .__gr_applybcstohostblock_NMOD_applybcs
0.2 0.28 36597760 .__particledecision_NMOD_attemptremotemapping
0.2 0.28 ._xldipow
0.2 0.26 8 .pt_createtag
0.2 0.26 ._sqrt
0.1 0.23 20971520 .__mappingmodule_NMOD_bparticlemapsnaivelytoblock
0.1 0.23 20971520 .__mappingmodule_NMOD_mapparticletohostblock
0.1 0.22 32162392 .grid_releaseblkptr
0.1 0.16 50647072 .grid_getdeltas
0.1 0.15 50647040 .__particledecision_NMOD_lrefine
0.1 0.12 ._xldmdlo.GL
0.1 0.1 12131360 .__gr_applybcstohostblock_NMOD_initialisecellindicies

Figure 5.5: xprofiler profile for 10 iterations of Grid_mapParticlesToMesh,
when using 1283 particles, and a uniform grid on 8 processors

gprof to give an indication of the time associated with instrumentation. Other expen-
sive procedures include _lapi_dispatcher, _lap_shm_dispatcher, LAPI-
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__Msgpoll. These cannot not be located in the FLASH object files, so are likely to be
MPI communication routines. The IBM MPI implementation is built on the Low-level
Application Programming Interface (LAPI) library [5]. There is also a contribution
from intrinsic functions and datatype conversions.

A striking thing about the profile is the number of calls to the procedures: bis-
cellcontainedinblock, bmapstointernalcell, getcellindex. These
account for approximately 20% of the runtime in the profile. This is a long time to
spend in simple functions.

A more in-depth analysis is possible by performing a line-by-line profile. This is inves-
tigated for a section of the procedure named maptononhostblock. The resultant
profile is shown in Figure 5.6. It is included because it is the focus of possible future
optimisations in Section 7. The numbers at the far left of Figure 5.6 show the number of
ticks recorded at each source code statement. Generally a tick represents 0.01 seconds
[25].

1 call Grid_getBlkPtr(mapping_block,solnVec,CENTER)
EachZ: do k = -1*K3D, K3D, 1

12 EachY: do j = -1*K2D, K2D, 1
43 EachX: do i = -1, 1, 1
309 if(bMapsToInternalCell(ip+i, jp+j, kp+k).eqv..true.) then

291 solnVec(iVar, ip+i, jp+j, kp+k) = &
solnVec(iVar, ip+i, jp+j, kp+k) + (wt(i, j, k)*rho)

9 particle_currentProperty = particle_currentProperty - &
(wt(i, j, k)*particle_property)

end if
5 end do EachX

end do EachY
28 end do EachZ
17 call Grid_releaseBlkPtr(mapping_block,solnVec,CENTER)

Figure 5.6: xprofiler line-by-line profile of a section of maptononhostblock over
10 iterations, when using 1283 particles, and a uniform grid on 8 processors

Figure 5.6 shows most clock ticks occur at the if statement expression involving a call
to bMapsToInternalCell. The update of the array solnVec is also expensive.
The solnVec update involves successive writes to non-contiguous memory addresses.
Therefore, values are probably being read from main memory for each update.

To obtain further information, the Paraver tool is used to obtain a visual trace of the
runtime behaviour of the procedure in Section 5.4. This also enables a much more de-
tailed analysis than mpiprof because individual messages can be analysed. The mpiprof
profile is useful for a general overview, as analysis is provided at procedure level gran-
ularity.
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5.4 Paraver

Paraver is a tool created by the European Center for Parallelism of Barcelona, which
is used to provide performance visualisation of computer codes [26]. It can be used to
analyse multi-threaded / multi-process computer codes. In MPI codes, visual traces are
created for each process running the application, and detailed quantitative information
is held about the program’s performance. It is useful for obtaining insight about the
runtime operation of a program, and for locating any performance bottlenecks.

At the time of investigation, the Paraver profiler is not compatible with 64-bit applica-
tions on HPCx. As such, FLASH 3.0 beta is compiled in 32-bit mode for the purpose
of this study. Paraver does not require instrumentation or special compilation of the
source files for analysis.

It is found that Paraver profiles can be obtained during adaptive grid simulations with
fixed refinement (i.e. lrefine_min=lrefine_max). However, the resultant pro-
files were unstable, and caused Paraver to crash during analysis. As such, the Paraver
profile presented in this report is based on the simulation using a uniform grid.

An 8 processor 1283 simulation is investigated, and the resultant trace for one iteration
of Grid_mapParticlesToMesh is shown in Figure 5.7. The trace is obtained by
recording information until Grid_mapParticlesToMesh completes. Termination
of the simulation is forced using an MPI_Finalize followed by a Fortran90 stop.
The MPI_Finalize call is required to obtain a Paraver profile. The Figure shows
a zoomed in section of the FLASH 3.0 beta simulation.

Figure 5.7: Paraver trace for 1 iteration of Grid_mapParticlesToMesh, when
using a 1283 particles, and a uniform grid on 8 processors

The trace shows MPI communication occurs in seven rounds. Here, each round of com-
munication is composed of MPI_Sendrecv message exchanges between processors,
and a single collective MPI_Allreduce communication. In the figure, MPI_Send-
recv messages are marked with a tracer line joining two processors, where the arrow
at the start of the tracer line indicates which processor sends the message. The message

33



before the MPI_Sendrecv is the collective MPI_Allreduce. Finally, the dark re-
gions of the trace (blue if viewed in colour) indicate time spent performing sequential
work. As there are seven communication rounds, it means that some particles visit ev-
ery single process. This is expected because only 8 blocks exist in the computational
domain and there are periodic boundary conditions in each dimension.

Interestingly, the time spent in first MPI_Sendrecv is much longer than expected.
This is because the MPI communication buffers are allocated during the first iteration.
As such, the time spent in the first MPI_Sendrecv operation is slightly misleading
because it includes allocation time.

The trace shows a relatively long time is spent performing collective MPI_AllReduce
operations. However, no MPI_AllReduce can be seen before the first MPI_Sendrecv
operations. In actual fact, the MPI_AllReduce is executed, but it is completed in an
extremely short amount of time. This indicates that the processors remain relatively
synchronised before the first MPI_AllReduce. This can be understood because the
pancake problem has a uniform initial particle distribution. For this reason, each pro-
cessor, P, is assigned part of the computational domain, which has 1283

P
particles.

The time spent executing the large MPI_AllReduce in the second and third round
of communication is 0.08 seconds each. This compares to the corresponding MPI-
_Sendrecv operations which take approximately 0.01 seconds each. It is clear, form
this figure, that the reason for the relatively large time spent in the MPI_AllReduce
is load imbalance. This is because the calculation phase takes different lengths of time
depending on the quantity of particles that assign of portion of mass to the new block.
Also, there will be some loss of synchronisation due to the MPI_Sendrecv operation
being exchanged between processors at different rates. Although, not clear from Fig-
ure 5.7, the time taken to send point-to-point messages (once synchronised) generally
decreases with each particle communication exchange. This is because the number of
particles placed in the send buffer generally decreases with each processor visited, and
as such there are fewer bytes to communicate.

5.5 HPCx Specific Optimisations

The easiest type of optimisation involves adjusting the compilation and linking flags.
By default, every file in the FLASH 3.0 object directory is compiled with
-O3 -qcache=auto -qtune=auto optimisation.

The FLASH User Guide strongly advises against using a higher level of optimisation
than -O3 on an IBM platform. However, it is interesting to see how the performance
of Grid_mapParticlesToMesh improves at higher optimisation levels. As such,
only the files containing Grid_mapParticlesToMesh and its child procedures are
compiled at a higher level of optimisation. The flag -O4 is used during compilation,
and -qipa is used during compilation and linking.
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Results are repeated 3 times and are shown in Figure 5.8. Error bars are displayed, but
are very small.

 1

 10

 100

 1  10  100

T
im

e 
ta

ke
n 

(s
ec

on
ds

)

Number of processors

-O3

-O4 -qipa

FLASH2

Figure 5.8: Runtime performance using different compilation flags, when using 1283

particles, and an adaptive grid with lrefine_min=lrefine_max=3 on various
numbers of processors.

It is clear that the overall performance improves when using a higher level of opti-
misation. Importantly, the correctness of the code is also maintained. The reason
for the significant improvement is because of the -qipa flag during linking. This
causes some small procedures e.g. bPropertyCompletelyMapped and get-
CellIndex, which are called by procedures in different source files, to be inlined.

Unfortunately, there is no further time available to perform a more thorough study.
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Chapter 6

Adaptive Mesh Implementation

A particularly desirable feature of the FLASH application is the provision of AMR. As
such, a version of Grid_mapParticlesToMesh is required that is fully compat-
ible with an adaptive mesh. The implementation must be able to perform correct grid
point assignment when a portion of a particle’s mass is assigned to blocks at different
refinement levels.

It is mentioned in Section 2.2 that particle mass may accumulate in each nearest neigh-
bour grid point when using a high level interpolation scheme. This equates to 3NDIM

grid points, when the host grid point is also considered.

Figure 6.1 shows a 2D domain, in which a particle assigns a portion of mass to blocks
at different refinement level. The grid points which accumulate mass are marked with
a cross. Notice, that in order to obtain a symmetric mass cloud, the number of grid
points is not equal to 3NDIM. A symmetric mass cloud gives the most appropriate mass
distribution. Clearly though, it involves consideration of each block’s refinement level.

A proposed intermediate solution involves ignoring refinement levels all together, and
simply accumulating mass at the refinement level of the current block [11]. Choosing
this option affects the quality of the mass distribution because the accumulated mass in
all nearest neighbour grid points is assymmetric in shape. However, as an intermedi-
ate step it seems appropriate. Unfortunately, it cannot be used as an intermediate step
in Grid_mapParticlesToMesh because it is incompatible with the termination
criterion. Recall, that termination occurs when the currentmass attribute of all par-
ticles is numerically zero. When non-symmetric portions of mass are extracted from
the particle, the reduced currentmass attribute is unlikely to become numerically
zero. In other words, mass is not conserved between the particle and the mesh.

Therefore, Grid_mapParticlesToMesh must incorporate a way of generating a
symmetric mass cloud. For symmetry, mass accumulation must occur in 3NDIM nearest
neighbour grid points at the same refinement level. Clearly, this is not possible so
“prolongation” and “restriction” techniques are introduced. These are techniques for
accumulating mass in the current block, when its grid points are at a different refinement
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Figure 6.1: Performing prolongation to generate a symmetric mass cloud in a 2D do-
main

level to the host block. Prolongation is used to describe the interpolation of coarse grid
points into finer grid points, and is shown in Figure 6.1. The alternative procedure
named restriction, involves accumulating mass in a coarse grid point from the finer grid
points in the host block.

The technique adopted in Grid_mapParticlesToMesh for prolongation and re-
striction involves each process calculating the mass assignment in the host block’s near-
est neighbour grid points. This allows each process to determine the mass that should
be accumulated in each region of the physical domain. Further, it ensures each pro-
cess calculates the same mass accumulation in regions of the physical domain. This
technique is the only way to ensure that the currentmass attribute in each particle
reaches numerical zero.

Each process calculates which of its grid points occupy the same physical region as the
host’s grid points. Once this is determined it is possible to perform mass accumulation
by restriction or prolongation. When restriction is necessary, the calculated mass in
each host grid points is copied into grid points occupying the same region of physical
space. It is possible that the mass in multiple host grid points is copied into a single
grid point of the current block. When prolongation is necessary, the calculated nearest
neighbour host grid points must be interpolated. This is attempted by using an inter-
polation procedure from IVS. Unfortunately, due to lack of time prolongation is not
successfully implemented.

At the time of implementation, the only sample problem available is Pancake. For
testing, the refinement parameters lrefine_min and lrefine_max are set to dif-
ferent values and the Pancake problem is run. It is found that blocks in the adaptive grid
do not refine to different resolutions. Refinements sometimes happen, but every block
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in the computational domain is set to the same resolution. This is because of the uni-
form particle distribution of the Pancake problem. Therefore, to obtain a computational
domain at various resolutions, the source code is modified to fire arbitrary refinements
for certain blocks. This enables the restriction and prolongation routines to be tested.

Arbitrary refinements are fired to form the block decomposition shown in Figure 6.2.
A particle is placed in grid point P in block 1. Mass accumulation must occur in
grid points that correspond to the shaded nearest neighbour grid points. This means
mass assignment should occur for grid point 10 and 11 of block 2. This is obtained
in Grid_mapParticlesToMesh, however, it is found that mass accumulation in
MapParticlesToMesh occurs in grid point 9 and 10 of block 2. This is a small
bug in the FLASH 2.5 implementation which is reported to the FLASH development
team. However, it indicates the Grid_mapParticlesToMesh implementation in
an adaptive grid is working correctly for this test case.

Figure 6.2: Performing restriction in a 2D domain.
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Chapter 7

Future Optimisations

The initial profiles reveal that Grid_mapParticlesToMesh runs slower than Map-
ParticlesToMesh for 1283 particles. To improve the runtime performance, some
potential optimisations are discussed. These are categorised as either calculation opti-
misations in Section 7.1 or communication optimisations in Section 7.2.

7.1 Calculation Optimisations

The runtime performance of the implemented algorithm is dominated by significant cal-
culation costs. Therefore, the procedures would benefit from a sequential optimisation.

A line-by-line breakdown of several procedures (e.g. mapCarefullyToHostBlock,
bIsCellContainedInBlock,bMapsToInternalCell, etc.) reveal that a large
portion of time is spent evaluating if statements. It is possible to replace some of these
if statements with pre-processor #ifs, e.g. the dimensionality, NDIM. Although this
eliminates the runtime branch, it sacrifices runtime flexibility, because code must be
recompiled to change the dimensionality.

A more general solution is to alter the code so that the if statement can be removed. An
example where the code should be altered is the if statement in Figure 5.6. This is used
to constrain mass assignment to grid points, but is particularly costly because the if
statement is enclosed in the centre of nested do loops. Further, the condition tested in
the if statement is the return value of the function bMapsToInternalCell, which
itself contains a number of if statements.

These if statements within bMapsToInternalCell compare the position of a grid
point against the block grid point limits. Here, a logical .true. is returned if the grid
point index is greater than or equal to the low grid point index limit, and less than the
high grid point limit in each dimension. One way to improve performance is to evaluate
all particle positions at a single time. In addition, the integer value 1 could be used in
place of a logical .true.. Introducing such a concept enables the mass assignment
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expression to be replaced with:

EachZ: do k = -1*K3D, K3D, 1
EachY: do j = -1*K2D, K2D, 1

EachX: do i = -1, 1, 1
solnVec(iVar, ip+i, jp+j, kp+k) = &
solnVec(iVar, ip+i, jp+j, kp+k) + &
(real(valid(i, j, k))*wt(i, j, k)*rho)

end do EachX
end do EachY

end do EachZ

Here, valid(i,j,k) is an array containing a 0 or 1 in each element. When the array
contains a 1, mass assignment will occur. The operation is effectively nullified if the
element i, j, k in array valid(i,j,k) is 0.

It is actually possible to eliminate all if statements in the procedure by creating expres-
sions that return either a 0 or 1. The cryptic expression below, provides this functionality
by using a combination of the Fortran90 intrinsic functions max and sign.

do i = -1, 1, 1
valid_i(i) = max(sign(1,gr_ihi-(ip+i))*sign(1,(ip+i)-gr_ilo),0)

end do

Here, a grid point index (ip+i) is compared against the high gr_ihi and low
gr_ilo grid point index limits of the block. If the grid point index is within the index
limits then each sign expressions will return 1. These signed expressions are multiplied
together to give 1, and then the maximum of this value and 0 is returned. In thus case,
the value stored in valid_i(i) is 1.

On the other hand, the grid point could exist outside the block index limits. Under these
circumstances one of the two sign expressions will return -1. As such, performing the
max function returns a 0, which indicates no mass assignment. There is no opportunity
for both sign expressions to return -1 because gr_ihi>gr_ilo.

The proposed code to replace the Figure 5.6 fragment is:

subroutine OptimisedMapToSameRefinement()
implicit none
integer :: i, j, k
integer, dimension(-1:1, -1:1, -1:1) :: valid
integer, dimension(-1:1) :: valid_i, valid_j, valid_k
real, dimension(-1:1, -1:1, -1:1) :: property_reduction
real, pointer :: solnVec(:,:,:,:)

!Initialise all elements as valid, and then correct later.
valid_i(:)=1; valid_j(:)=1; valid_k(:)=1;

!Valid expressions because gr_ihi > gr_ilo.
do k = -1*K3D, K3D, 1

valid_k(k) = max(sign(1,gr_khi-(kp+k))*sign(1,(kp+k)-gr_klo),0)←↩

-K3D+1
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end do

do j = -1*K2D, K2D, 1
valid_j(j) = max(sign(1,gr_jhi-(jp+j))*sign(1,(jp+j)-gr_jlo),0)←↩

-K2D+1
end do

do i = -1, 1, 1
valid_i(i) = max(sign(1,gr_ihi-(ip+i))*sign(1,(ip+i)-gr_ilo),0)

end do

!valid(i,j,k), property_reduction(i,j,k), wt(i,j,k)
!enable pipeline to be kept filled as elements are independent.

call Grid_getBlkPtr(mapping_block,solnVec,CENTER)
EachZ: do k = -1*K3D, K3D, 1

EachY: do j = -1*K2D, K2D, 1
EachX: do i = -1, 1, 1

!Stores a 0 if not valid, and a 1 if it is valid.
!This depends on the dimensionality of the problem.

valid(i, j, k) = valid_i(i)*valid_j(j)*valid_k(k)

solnVec(iVar, ip+i, jp+j, kp+k) = &
solnVec(iVar, ip+i, jp+j, kp+k) + &
(real(valid(i, j, k))*wt(i, j, k)*rho)

property_reduction(i, j, k) = &
(real(valid(i, j, k))*wt(i, j, k)*particle_property)

end do EachX
end do EachY

end do EachZ
call Grid_releaseBlkPtr(mapping_block,solnVec,CENTER)

particle_currentProperty = particle_currentProperty - &
sum(property_reduction)

end subroutine OptimisedMapToSameRefinement

The removal of the if statements gives the compiler more opportunity to optimise
the code. Unforunately, there is no further time available to look at hardware counters.
However, it is thought that the compiler would be able to schedule instructions to reduce
pipeline stalls. If successful, the key ideas presented above could be transferred to the
routines mapcarefullytohostblock and bmapstointernalcell.

The line-by-line breakdown in Figure 5.6 reveals that writing values to the array soln-
Vec is particularly expensive. This is because the values accessed in solnVec are not
stored in contiguous memory addresses. A possible optimisation involves reordering
the solnVec array so that the grid attribute index, iVar corresponds to the last array
index. This would result in the loop over i, j, k accessing elements in contiguous
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memory locations, which will improve cache usage. However, reordering the indices
in such a widely used data structure may be detrimental to the performance of other
procedures in the application. For instance, in other procedures, the iVar indice may
vary most rapidly if it is necessary to access multiple grid attributes for a single grid
point.

Alternatively, the solnVec data structure can be accessed less frequently. The mass
accumulation for all particles on a block can be stored in a local array representing
internal grid points. Then, when all particles have been processed, the local array can
be copied into the non-contiguous elements of solnVec.

The xprofiler profile shows that the function getcellindex is responsible for 3.6%
of time and is called 47,312,304 times. This is pure runtime overhead because the
function only serves as a data accessor function. As such, it can be safely removed
from the program, and the data in the module can be accessed directly.

A significant amount of time is spent in functions that assign particle mass to non-
host blocks. However, realistic simulations typically use blocks that have many more
internal grid points relative to guard cells. As such, more particles will contribute mass
entirely to internal grid points in a single block in a realistic simulation. Therefore, an
easy optimisation is to increase the number of internal grid points.

The memory performance of the MapNaivelyToHostBlock and MapCarefully-
ToHostBlock is likely to improve if the particles in the initial particles array
are sorted in block ID order. This would make it possible to have a single call to
the Grid_getBlkPtrAPI function. The Grid_getBlkPtr API function enables
data to be read and written to grid points in a single block. As multiple particles are
likely to contribute mass to this block, grid points will potentially remain in cache, and
so can be accessed faster than grid points in main memory. In addition, fewer calls to
Grid_getBlkPtr will minimise the impact of executing the API function.

The number of calls to bIsCellContainedInBlock can be reduced by consid-
ering only relevant particle positions. Recall that apparent particle positions are intro-
duced to remain compatible with periodic boundary conditions. At the current time, ev-
ery single apparent particle position is tested when attempting to assign mass to blocks
next to a computational domain boundary. However, the number of apparent particle
positions can be reduced by half, simply by considering whether the block exists on the
low or high side of the computational domain.

There is a significant amount of time spent executing FLASH API functions. Grid-
_getBoundBox, Grid_getDeltas, Grid_getBlkBC. This can be reduced by
storing the results in a look-up table, rather than recalculate the results each time. This
does not require a large amount of memory as the number of blocks in a simulation is
small relative to the number of particles.

Another optimisation is to replace the search over blocks with a call to the PARAMESH
neigh array.
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7.2 Communication Optimisations

Results in section 5.2 indicate that the MPI_AllReduce dominates the MPI commu-
nication time for 1283 particles run on 8 processors.

A simple optimisation involves reducing the frequency of calls to MPI_AllReduce
[27]. This will help reduce the impact of the MPI_AllReduce, but still provide the
possibility of early termination. The optimal frequency is problem dependent, and is
therefore hard to propose a suitable value. As such, it may be an idea to create a param-
eter which controls the frequency of the call to avoid testing everytime.

MPI communication can be further improved by optimising the point-to-pointMPI_Sendrecv
operation. This is possible by reducing the number of bytes that are communicated be-
tween processes. At the moment, an array of type particle is used as the source
and destination buffer. This affects performance because it is the partially mass ac-
cumulated particles that are communicated. These are stored in the buffer instead of
particles. At the time of writing a particle datatype consists of 16 reals, and a
partialparticle datatype consists of 7 reals. This means a large number of empty
fields are communicated unnecessarily. Further, it is possible to reduce the size of the
communicated message without the need for a dedicated partial particles’ buffer. This
involves using an MPI vector datatype to specify the partial particle attributes in the
particle datatype. Effectively, the derived datatype provides a stencil [28] over the
contiguous memory attributes of the partial particle. In the FLASH simulation, the
first ACTIVE_PART_PROPS reals contain the partial particle attributes. As such, the
following derived datatype is appropriate.

MPI_Type_vector (1, ACTIVE_PART_PROPS, NPART_PROPS, FLASH_REAL,
ActiveParticleType)

MPI_Type_commit(ActiveParticleType)

Here, the ActiveParticleType datatype is constructed using a single block of
ACTIVE_PART_PROPS instances of FLASH_REALs, and the pattern repeats every
NPART_PROPSFLASH_REALs. This derived datatype may then be used in the MPI_Sendrecv
communication. In theory, sending less data should reduce the time to exchange a mes-
sage. Alternatively, the particle particles’ attributes could be manually packed into the
destination buffer. This would ensure partial particles attributes are contiguous in mem-
ory. However, it is a messy solution which will make the program harder to understand.
This is because extra book-keeping will need to be introduced to keep track of the last
used memory location of the destination buffer.
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Chapter 8

Conclusions

8.1 Conclusion

This report has investigated an algorithm that assigns particles’ mass to a mesh. A
background of the algorithm is provided, along with a description of its desirable fea-
tures. The algorithm is implemented in a procedure named Grid_mapParticles-
ToMesh for FLASH 3.0 beta. It is found that the implementation performs in the
desired way for uniform grid simulations. This is verified by performing several test
cases, and comparing results against MapParticlesToMesh in IVS. Currently, the
implementation cannot be used with an adaptive grid, in which blocks are at a different
refinement level. However, the source code is organised to permit an easy extension.

The implemetation is of interest because it does not use guard cell exchange for parallel
communication. This is important because the removal of guard cell grid points reduces
memory consumption. It is shown that removal of guard cells in a typical 3D simulation
in FLASH 3.0 beta can reduce grid memory consumption by approximately 35%. The
implication is that potentially larger systems with more particles can be studied.

The technique of communicating partially accumulated particles between processes is
valid. Here, the particle can be passed around many times, and the appropriate process
can extract a portion of mass to accumulate in its internal grid points. A single particle
attribute named currentmass is used to keep a record of the particle’s mass yet to
be accumulated in grid points.

It is found that the runtime of Grid_mapParticlesToMesh is slower over all test
cases than MapParticlesToMesh in IVS. Typically runtime is 3-5 times slower
for a 1283 particle simulation on processor counts up to 64 on HPCx. This is disap-
pointing because the intention of the project is to overcome the bottlenecks in Map-
ParticlesToMesh.

The performance bottlenecks of Grid_mapParticlesToMesh are investigated us-
ing mpiprof, xprofiler and Paraver profilers. Profile results indicate that both calcula-
tion and communication is expensive. In an eight processor simulation, it is shown
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that calculation costs dominate. However, the impact of communication becomes more
important at higher processor counts.

Calculation is expensive because memory locality, which is composed of spatial and
temporal locality is poor. Spatial locality is low because successive references to near-
est neighbour grid points are not contiguous in memory. This is because of the way
the indices in the FLASH 3.0 beta block data structure are ordered. To improve the
spatial locality, it is proposed that either array indices are re-ordered, or a temporary
array is introduced. Temporal locality is low because many blocks are referenced when
accumulating particles’ mass to grid points. This can be reduced by eliminating a com-
plete search over each block existing in a process. Instead, information in PARAMESH
global data structures can be used to determine which blocks are neighbours with blocks
in different processes. This can be used to reduce the number of blocks that need to be
checked for potential mass accumulation. The flow of execution is also impeded by
many if statements. The large number of if statements are used to constrain mass
accumulation to internal grid points only. A technique which does not require if state-
ments, and still restricts mass accumulation to internal grid points is presented.

Communication is expensive because the strategy forces global synchronisation when-
ever particles are exchanged between processors. This means particle exchange is de-
layed until the slowest processor has finished processing each of its particles. Here,
a processor’s slow completion time may be due to load imbalance. Therefore, perfor-
mance is sacrificed by forcing the system to work in lock-step. Some techniques are
proposed for improving communication performance. This includes reducing the fre-
quency of calls to MPI_Allreduce, and using MPI derived datatypes to reduce the
amount of data sent during point-to-point communications.

It is hard to comment about the effectiveness of the algorithm until optimisation is at-
tempted. However, perhaps simpler strategies are better suited to this problem. For
example, the approach used in MapParticlesToMesh for IVS involves exchang-
ing accumulated grid points between blocks. This involves a large quantity of messages
between blocks in different processes. However, it is possible to overlap calculation
with communication to hide the cumulative message latency, which involves using non-
blocking sends and receives. In addition, no expensive collective communication is re-
quired to determine when mass accumulation is complete. Therefore, the system is not
forced to move in lock-step, and processors can proceed at their natural speed. It also
seems like a more appropriate strategy than the Sieve algorithm when the computational
domain is spread across a large number of processors. There may be analytically fewer
messages in the Sieve algorithm, but messages involve collective communications and
therefore forced synchronisation. The total cost of the MPI messages depends on the
number of processors a particle visits. Here, the number of visits depends on the quality
of the Morton-Space filling curve domain decomposition.

Finally, alternative algorithms should still be considered, and the approach adopted in
MapParticlesToMesh not discounted. MapParticlesToMesh does not in-
volve the expensive collective communication, which will ultimately limit the scalabil-
ity of Grid_mapParticlesToMesh. As such, optimsiation of MapParticles-
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ToMesh is still valuable. However, the memory required for guard cell exchange in
MapParticlesToMesh is not desirable. As such, both algorithms could be imple-
mented in Grid_mapParticlesToMesh, and users given the option of selecting
one.

8.2 Summary of achievements

A tested uniform grid implementation of the Sieve algorithm is delivered to the FLASH
center. The delivered procedure named Grid_mapParticlesToMesh brings FLASH
3.0 beta a step closer towards performing cosmological simulations. Before this project,
only the skeleton to Grid_mapParticlesToMesh existed.

The runtime of the procedure is compared against the MapParticlesToMesh pro-
cedure of IVS. In addition, the performance of Grid_mapParticlesToMesh is
analysed using various profilers. The analysis reveals the major performance bottle-
necks, which are discussed during the report. Some potential optimisations are pro-
posed, which may help improve the runtime of Grid_mapParticlesToMesh. It is
possible that some of the optimisation strategies can be used in other procedures in the
FLASH 3.0 betasource code. For example, the communication optimisations may be
useful for Grid_moveParticles, which implements a similar Sieve algorithm.

The delivered Grid_mapParticlesToMesh procedure is only a uniform grid im-
plementation. However, no major modifications to the code are required to implement
particle mass accumulation in an adaptive grid, as the Grid_mapParticlesTo-
Mesh was designed with adaptivity in mind.

This project gives useful feedback to the FLASH team about the practical performance
of the Sieve algorithm implementation. The descriptions presented in this report could
contribute to the FLASH userguide.

The Grid_mapParticlesToMesh procedure is tested using the Pancake problem.
Some minor problems with the Pancake were discovered and corrected. The memory
allocation bug still exists, however, the procedure which requires modification is speci-
fied in the report.

8.3 Future work

The Grid_mapParticlesToMesh procedure needs to be extended to incorporate
mass accumulation in grid points owned by blocks at different refinement levels.

The runtime performance of the Grid_mapParticlesToMesh procedure needs
to be investigated. This is because the time taken to perform a simulation with 1283

particles is too long. It would be valuable to measure the effect of some of the proposed
optimisations listed in this report.
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The performance of the code may improve if MPI-2 single-sided communications (Re-
mote Memory Access (RMA)) are used. Here, a processor is able to use a remote write
to accumulate mass in grid points belonging to another processor. Using RMA requires
only one processor to participate in the communication, meaning that the synchronisa-
tion is reduced.

The Grid_mapParticlesToMesh procedure operates without the use of guard
cells, and so requires less memory. To take advantage of this the rest of the FLASH
source code must be compatible with this reduced memory mode. The FLASH software
development team are currently re-writing code units to function without guard cells.
Where this is not possible, non-permanent guard cells will be introduced, which refers
to the idea of having a single working block per process with guard cell storage [29].
This guard cell storage is then used for all guard cell exchanges. Whenever a block
needs to receive data from a remote block, the data in the local block is copied to
the single working block with guard cell storage. The solution is advanced on the
working block, and then the updated data is copied back to the appropriate local block.
This technique is relatively slow, so the approach in Grid_mapParticlesToMesh,
which avoids guard cell exchange is appropriate.
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