I. hy_uhd_prim2flx.F90

Consider the momentum and induction equations:

$$
\begin{gather*}
\frac{\partial \rho u}{\partial t}+\nabla \cdot(\rho u u-B B)+\nabla \cdot p t o t=0 \tag{1}\\
\frac{\partial B}{\partial t}+\nabla \cdot(u B-B u)=0 \tag{2}
\end{gather*}
$$

The x-components of the above two equations are:

$$
\begin{gather*}
\frac{\partial \rho u_{x}}{\partial t}+\frac{\partial \rho u_{x} u_{x}}{\partial x}+\frac{\partial \rho u_{y} u_{x}}{\partial y}+\frac{\partial \rho u_{z} u_{x}}{\partial z}-\frac{\partial B_{x} B_{x}}{\partial x}-\frac{\partial B_{y} B_{x}}{\partial y}-\frac{\partial B_{z} B_{x}}{\partial z}+\frac{\partial p t o t}{\partial x}=0 \tag{3}\\
\frac{\partial B_{x}}{\partial t}+\frac{\partial\left(u_{y} B_{x}-u_{x} B_{y}\right)}{\partial y}+\frac{\partial\left(u_{z} B_{x}-u_{x} B_{z}\right)}{\partial z}=0 \tag{4}
\end{gather*}
$$

In the subroutine hy_uhd_prim2flx, for dir==DIR_X the fluxes are calculated as followings:

$$
\begin{aligned}
& \text { F(FO2XMOM_FLUX })=\rho u_{x} u_{x}-B_{x} B_{x}+p t o t \\
& \text { F(F03YMOM_FLUX) }=\rho u_{y} u_{x}-B_{y} B_{x} \\
& \text { F(FO4ZMOM_FLUX) }=\rho u_{z} u_{x}-B_{z} B_{x}
\end{aligned}
$$

\#ifdef FLASH_USM_MHD

$$
\text { F(FO6MAGX_FLUX) }=0.0
$$

\#endif

$$
\begin{aligned}
& \text { F(FO7MAGY_FLUX) }=u_{x} B_{y}-u_{y} B_{x} \\
& \mathrm{~F}(\text { FO8MAGZ_FLUX })=u_{x} B_{z}-u_{z} B_{x}
\end{aligned}
$$

The fluxes $F\left(F 02 X M O M _F L U X\right), ~ F\left(F 03 Y M O M _F L U X\right)$ and $F\left(F 04 Z M O M _F L U X\right)$ are coded based on equation (3). However, the F(FO7MAGY_FLUX) and F(F08MAGZ_FLUX) are written in an opposite way with equation (4). I think if (3) is coded properly, then (4) has to be coded as followings:

$$
\begin{aligned}
& \text { F(FO7MAGY_FLUX) }=u_{y} B_{x}-u_{x} B_{y} \\
& \mathrm{~F}(\text { FO8MAGZ_FLUX })=u_{z} B_{x}-u_{x} B_{z}
\end{aligned}
$$

I don't know what I thought is right or wrong? If it is wrong then can you explain why the magnetic fields are oppositely coded with equation (4).

II. hy_uhd_addViscousFluxes.F90

The viscosity term is added into the momentum equation is as following:

$$
\begin{equation*}
\frac{\partial \rho u}{\partial t}+\nabla \cdot(\rho u u-B B)+\nabla \cdot p t o t-\nabla \cdot \tau=0 \tag{5}
\end{equation*}
$$

where

$$
\tau=\mu\left[(\nabla u)+(\nabla u)^{T}-\frac{2}{3}(\nabla थ u) I\right] .
$$

The x-component of equation (5) can be written as

$$
\begin{align*}
\frac{\partial \rho u_{x}}{\partial t}+[\ldots] & +\frac{\partial}{\partial x} \mu\left(-\frac{4}{3} \frac{\partial u_{x}}{\partial x}+\frac{2}{3} \frac{\partial u_{y}}{\partial y}+\frac{2}{3} \frac{\partial u_{z}}{\partial z}\right)+\frac{\partial}{\partial y} \mu\left(-\frac{\partial u_{x}}{\partial y}-\frac{\partial u_{y}}{\partial x}\right) \\
& +\frac{\partial}{\partial z} \mu\left(-\frac{\partial u_{x}}{\partial z}-\frac{\partial u_{z}}{\partial x}\right)=0 \tag{6}
\end{align*}
$$

Where $[\ldots] \equiv \frac{\partial \rho u_{x} u_{x}}{\partial x}+\frac{\partial \rho u_{y} u_{x}}{\partial y}+\frac{\partial \rho u_{z} u_{x}}{\partial z}-\frac{\partial B_{x} B_{x}}{\partial x}-\frac{\partial B_{y} B_{x}}{\partial y}-\frac{\partial B_{z} B_{x}}{\partial z}+\frac{\partial p t o t}{\partial x}$.

The viscosity term is controlled by subroutine hy_uhd_addViscousFluxes.
Consider the case dir==DIR_X, the viscous flux is coded as following:
Flux(F02XMOM_FLUX:F04ZMOM_FLUX) = Flux(F02XMOM_FLUX:F04ZMOM_FLUX)\& -idx*mu_loc*(U(VELX_VAR:VELZ_VAR,ix,iy,iz)-U(VELX_VAR:VELZ_VAR,ix-1,iy,iz))

Flux(F02XMOM_FLUX) = Flux(FO2XMOM_FLUX)-idx*mu_loc*(U(VELX_VAR,ix,iy,iz)-U(VELX_VAR,ix-1,iy,iz)//3.

These two command lines can be rewritten as

$$
\begin{aligned}
& \text { Flux(FO2XMOM_FLUX) }=\text { Flux(FO2XMOM_FLUX) }-\mu \frac{4}{3} \frac{\partial u_{x}}{\partial x} \\
& \text { Flux(F03YMOM_FLUX) }=\text { Flux(F03YMOM_FLUX) }-\mu \frac{\partial u_{y}}{\partial x} \\
& \text { Flux(F04ZMOM_FLUX) }=\text { Flux(F04ZMOM_FLUX) }-\mu \frac{\partial u_{z}}{\partial x}
\end{aligned}
$$

\#if NDIM >= 2

$$
\begin{aligned}
& \text { !! d/dz=0 } \\
& \text { Flux(FO2XMOM_FLUX) }=\text { Flux(FO2XMOM_FLUX) }+ \text { idy*mu_loc* }{ }^{*} \text { \& } \\
& \text { (U(VELY_VAR, ix , iy+1,iz)-U(VELY_VAR, ix ,iy-1,iz)+ \& } \\
& \text { U(VELY_VAR,ix-1,iy+1,iz)-U(VELY_VAR,ix-1,iy-1,iz))/3. }
\end{aligned}
$$

This line can be rewritten as

$$
\text { Flux(F02XMOM_FLUX) }=\text { Flux(F02XMOM_FLUX) }+\mu \frac{4}{3} \frac{\partial u_{y}}{\partial y} \text { ???? }
$$

I think that we should multiply 0.5 to get the exact form of Flux(FO2XMOM_FLUX)
$\operatorname{Flux}\left(F 02 X M O M _F L U X\right)=\operatorname{Flux}\left(F 02 X M O M _F L U X\right)+\mu \frac{2}{3} \frac{\partial u_{y}}{\partial y}$
\#if NDIM $==3$

$$
\begin{aligned}
& \text { Flux(F02XMOM_FLUX) }=\text { Flux(F02XMOM_FLUX })+0.5^{*} i d z^{*} m u _l o c^{*} \& \\
& (2 . / 3 .)^{\star}(\mathrm{U}(\mathrm{VELZ} \text { _VAR, ix ,iy,iz+1)-U(VELY_VAR, ix ,iy,iz-1)+ \& } \\
& \left.U\left(V E L Z _V A R, i x-1, i y, i z+1\right)-U\left(V E L Y _V A R, i x-1, i y, i z-1\right)\right) / 2 .
\end{aligned}
$$

This line can be rewritten as
Flux(F02XMOM_FLUX) $=$ Flux(F02XMOM_FLUX) +

$$
\mu \frac{2}{3}\left(\frac{u_{z}(i x, i y i z+1)-u_{y}(i x, i y, i z-1)}{\Delta z}+\frac{u_{z}(i x-1, i y, i z+1)-u_{y}(i x-1, i y, i z-1)}{\Delta z}\right)
$$

I think that this line in not coded correctly. It should be like this
Flux(F02XMOM_FLUX) $=$ Flux(F02XMOM_FLUX) +
$\mu \frac{1}{3}\left(\frac{u_{z}(i x, i y, i z+1)-u_{z}(i x, i y, i z-1)}{2 \Delta z}+\frac{u_{z}(i x-1, i y, i z+1)-u_{z}(i x-1, i y, i z-1)}{2 \Delta z}\right)$
$=\operatorname{Flux}\left(F 02 X M O M _F L U X\right)+\mu \frac{2}{3} \frac{\partial u_{z}}{\partial z}$

If what I thought is wrong, please give explanations. Thank you very much.

