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1 Introduction

The Center for Astrophysical Thermonuclear Flashes, or Flash Center, was founded at the
University of Chicago in 1997 under contract to the United States Department of Energy
as part of its Accelerated Strategic Computing Initiative (ASCI). The goal of the Center
is to solve several problems related to thermonuclear flashes on the surfaces of compact
stars (neutron stars and white dwarfs), in particular X-ray bursts, Type Ia supernovae,
and novae. To solve these problems requires the participants in the Center to develop
new simulation tools capable of handling the extreme resolution and physical requirements
imposed by conditions in these explosions, and to do so while making efficient use of the
parallel supercomputers developed by the ASCI project, the most powerful constructed to
date.

The FLASH code (Fryxell et al. 2000) represents an important step along the road to
this goal. FLASH is a modular, adaptive, parallel simulation code capable of handling
general compressible flow problems in astrophysical environments. FLASH has been de-
signed to allow users to configure initial and boundary conditions, change algorithms, and
add new physical effects with minimal effort. It uses the PARAMESH library to manage
a block-structured adaptive grid, placing resolution elements only where they are needed
most. FLASH uses the Message-Passing Interface (MPI) library to achieve portability and
scalability on a variety of different message-passing parallel computers.

This user’s guide is designed to enable individuals unfamiliar with the FLASH code to
quickly get acquainted with its structure and to move beyond the simple test problems
distributed with FLASH, customizing it to suit their own needs. Section 2 discusses how
to quickly get started with FLASH, describing how to configure, build, and run the code
with one of the included test problems, then examine the resulting output. Users familiar
with the capabilities of FLASH who wish to quickly ‘get their feet wet’ with the code should
begin with this section.

Section 3 describes the equations and algorithms used by the physics modules distributed
with FLASH. It assumes that the reader has some familiarity both with the basic physics
involved and with numerical hydrodynamics methods. This familiarity is absolutely essential
in using FLASH (or any other simulation code) to arrive at meaningful solutions to physical
problems. The novice reader is directed to an introductory text, examples of which include

Fletcher, C. A. J. Computational Techniques for Fluid Dynamics (Springer-Verlag, 1991)
Laney, Culbert B. Computational Gasdynamics (Cambridge UP, 1998)

LeVeque, R. J., Mihalas, D., Dorfi, E. A., and Miiller, E., eds. Computational Methods
for Astrophysical Fluid Flow (Springer, 1998)

Roache, Patrick. Fundamentals of Computational Fluid Dynamics (Hermosa, 1998)

The advanced reader who wishes to know more specific information about the various algo-
rithms is directed to the literature references in this section.

Section 4 describes in more detail the use of the configuration and analysis tools dis-
tributed with FLASH. Section 5 describes the different test problems distributed with
FLASH. The sixth section describes the FLASH code structure at length and gives detailed
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instructions for extending FLASH’s capabilities by adding new problem setups. This section
also discusses the code modules included with FLASH 1.6 and describes how new solvers

may be integrated into the code. Finally, the seventh section gives guidance on contacting
the authors of FLASH.

2  Quick start

This section describes how to quickly get up and running with FLASH, showing how to
configure and build it to solve the Sedov explosion problem, how to run it, and how to
examine the output using IDL. To begin, verify that you have the following:

e A copy of the FLASH source code distribution. This is most likely available either as
a Unix tar file or as a local Concurrent Versions System (CVS) source tree. To request
a copy of the distribution, click on the “Code Request” link at the Flash Code Group
web site, http://flash.uchicago.edu/flashcode/. You will be asked to fill out a
short form before receiving download instructions.

e A Fortran 90 compiler and a C compiler. Most of FLASH is written in Fortran 90.
Information available at the Fortran Market web site (http://www.fortran.com/) can
help you select a Fortran 90 compiler for your system.

e An installed copy of the Message-Passing Interface (MPI) library. A freely available
implementation of MPI has been created at Argonne National Laboratory and can be
accessed on the World Wide Web at http://www-unix.mcs.anl.gov/mpi/mpich/.

e If you plan to use the Hierarchical Data Format (HDF) for output files (the de-
fault), you will need an installed copy of the freely available HDF library. Currently
FLASH supports HDF versions 4 and 5 (the two formats are not compatible). HDF
is available from the HDF Project of the National Computational Science Alliance
at http://hdf .ncsa.uiuc.edu/. The contents of HDF output files produced by the
FLASH io/hdf* modules are described in detail in section 6.2.

e To use the output analysis tools described in this section, a copy of the IDL language
from Research Systems, Inc. (http://www.rsinc.com/). IDL is a commercial product.
It is not required for the analysis of FLASH output, but without it the user will need
to write his or her own analysis tools. (FLASH output formats are described in Section
6.2.) The FLASH code group is currently working with members of the Mathemat-
ics and Computer Science Division at Argonne National Laboratory to develop more
sophisticated visualization tools to distribute either as part of or alongside FLASH.

e The GNU make utility, gmake. This utility is freely available and has been ported to
a wide variety of different systems. (For more information, see the entry for make in
the development software listing at http://www.gnu.org/.) On some systems make is
an alias for gmake. GNU make is required because FLASH 1.6 and higher uses macro
concatenation when constructing Makefiles.



FLASH has been tested on the following Unix-based platforms. In addition, it may work
with others not listed (see section 6.5).

e SGI single- and multiprocessor systems running IRIX

Intel- and Alpha-based systems running Linux, including clusters

Cray/SGI T3E running UNICOS

The ASCI Nirvana machine, built by SGI

The ASCI Blue Pacific machine, built by IBM

The ASCI Red machine, built by Intel

To begin, unpack the FLASH source code distribution. If you have a Unix tar file, type
‘tar xvf FLASHX.Y.tar’ (without the quotes), where X.Y is the FLASH version number
(for example, use FLASH1.61.tar and FLASH1.61/ for FLASH version 1.61). If you are
working with a CVS source tree, use ‘cvs checkout FLASHX.Y’ to obtain a personal copy
of the tree. You may need to obtain permission from the local CVS administrator to do this.
In either case you will create a directory called FLASHX.Y/. Type ‘cd FLASHX.Y to enter
this directory.

Next, configure the FLASH source tree for the Sedov explosion problem. Type

./setup sedov -defaults

This configures FLASH for the sedov problem, using the default hydrodynamic solver, equa-
tion of state, and I/O format defined for this problem. For the purpose of this quick start
example, we will use the default I/O format, HDF 4. The source tree is configured to create
a two-dimensional code by default.

If your system is not one of the configured sites (type 1s source/sites for a list), or for
some reason hostname does not return the correct site name, setup will attempt to locate
your operating system type (determined via uname) in source/sites/Prototypes/. If this
also does not succeed, you will need to do one of two things. If hostname or uname did not
succeed, you can specify your site name or OS type using the -site or -ostype option to
setup. Type ./setup without any options to see the syntax. If you are working on a new
system with no available prototype, create a directory under source/sites with the name
of your system (mkdir source/sites/‘hostname‘) and copy the file Makefile.h from a
similar prototype directory to it. Then run ./setup sedov -defaults.

The next step is to edit the file object/Makefile.h. This file contains all of the site-
dependent and architecture-dependent parts of the Makefile. Verify that the compiler set-
tings (FCOMP, CCOMP, and CPPCOMP) and the library paths (LIB) are correct for your system.
No other changes should be necessary at this stage (later on you may wish to fiddle with
the compiler optimization settings). Future versions of FLASH will make use of the GNU
configure program to handle this step.

From the FLASH root directory (ie. the directory from which you ran setup), execute
gmake. This will compile the FLASH code. If you should have problems and need to



# runtime parameters

lrefine max = 4

basenm = "sedov_ 4"

restart = .false.

trstrt = 0.005

nend = 1000

tmax = 0.02

gamma = 1.4

xlboundary = -21 # code -21 is outflow
xrboundary = -21

ylboundary = -21

yrboundary = -21

Figure 1: FLASH parameter file contents for the quick start example.

recompile, ‘gmake clean’ will remove all object files from the object/ directory, leaving the
source configuration intact; ‘gmake realclean’ will remove all files and links from object/.
After ‘gmake realclean,” a new invocation of setup is required before the code can be built.

Assuming compilation and linking were successful, you should now find an executable
named flashX in the object/ directory, where X is the major version number (e.g., X =1
for X.Y = 1.61). You may wish to check that this is the case.

FLASH expects to find a flat text file named flash.par in the directory from which it is
run. This file sets the values of various runtime parameters which determine the behavior of
FLASH. If it is not present, FLASH will use default values for the runtime parameters, which
may or may not produce desirable results. Here we will create a simple flash.par which
sets a few parameters and allows the rest to take on default values. With your text editor,
create flash.par in the main FLASH directory with the contents of Figure 1. This instructs
FLASH to use up to four levels of adaptive mesh refinement (AMR) and to name the output
files appropriately. We will not be starting from a checkpoint file (this is the default, but
here it is explicitly set for purposes of illustration). Output files are to be written every
0.005 time units, and we will integrate until ¢ = 0.02 or 1000 timesteps have been taken,
whichever comes first. The ratio of specific heats for the gas (7y) is taken to be 1.4, and
all four boundaries of the two-dimensional grid have outflow (zero-gradient or Neumann)
boundary conditions. Note the format of the file: each line is a comment (denoted by a hash
mark, #), blank, or of the form variable = value. String values are enclosed in double quotes
("). Boolean values are indicated in the Fortran style, .true. or .false.

We are now ready to run FLASH. To run FLASH on N processors, type

mpirun -np N object/flashX

remembering to replace N and X with the appropriate values. Some systems may require you
to start MPI programs with a different command; use whichever command is appropriate
to your system. The FLASH executable can take one command-line argument, the name of
the runtime parameter file. The default parameter file name is flash.par.
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You should see a number of lines of output indicating that FLASH is initializing the
Sedov problem, listing the initial parameters, and giving the timestep chosen at each step.
After the run is finished, in the current directory you should find several files:

e flash.log echoes the runtime parameter settings and indicates the run time, the build
time, and the build machine. During the run, a line is written for each timestep, along
with any warning messages. At the end of the run, a performance summary is written
to this file.

e flash.dat contains a number of quantities as functions of time: total mass, total
energy, total momentum, etc. This file can be used directly by plotting programs such
as gnuplot; note that the first line begins with a hash (#) and thus is ignored by
gnuplot.

e sedov_4_hdf_chk_000* are the different checkpoint files. These are complete dumps of
the entire simulation at intervals of trstrt, suitable for use in restarting the simulation.
They are also the primary output products of FLASH.

e sedov_4 hdf plt_cnt_000% are plot files. These are files containing only density, tem-
perature, pressure, and total energy (in single precision, for some I/O modules). They
are designed to be written more frequently than checkpoint files for the purpose of
making simulation movies (or for analyses that do not require all of the checkpointed
quantities).

We will use the xflash routine under IDL to examine the output. Before doing so, we need
to set the values of two environment variables, IDL_PATH and XFLASH DIR. Under csh this
can be done using the commands

setenv XFLASH DIR "$PWD/tools/idl"
setenv IDL_PATH "${XFLASH_DIR}:$IDL_PATH"

If you get a message indicating that IDL_PATH is not defined, just enter
setenv IDL_PATH "$XFLASH DIR"

Now run IDL (idl) and enter xflash at the IDL> prompt. You should see a control panel
widget as shown in Figure 2. The path entry should be filled in for you with the current
directory. Enter sedov_4 hdf chk_ as the base filename and enter 4 as the suffix. (xflash can
generate output for a number of consecutive files, but if you fill in only the beginning suffix,
only one file is read.) Click the ‘Discover Variables’ button to scan the file and generate the
variable list. Choose the image format (screen, Postscript, GIF) and the problem type (in
our case, Sedov). Selecting the problem type is only important for choosing default ranges
for our plot; plots for other problems can be generated by ignoring this setting and overriding
the default values for the data range and the coordinate ranges. Select the desired plotting
variable and colormap. Under ‘Options,” select whether to plot the logarithm of the desired
quantity, and select whether to plot the outlines of the AMR, blocks. For very highly refined
grids the block outlines can obscure the data, but they are useful for verifying that FLASH
is putting resolution elements where they are needed. Finally, click ‘Velocity Options’ to
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Figure 2: Control panel for the xflash visualization tool under IDL.

overlay the velocity field. The ‘xskip’ and ‘yskip’ parameters enable you plot only a fraction
of the vectors so that they do not obscure the background plot.

When the control panel settings are to your satisfaction, click the ‘Plot’ button to generate
the plot. For Postscript and GIF output, a file is created in the current directory. The result
should look something like Figure 3, although this figure was generated from a run with eight
levels of refinement rather than the four used in the quick start example run. With fewer
levels of refinement the Cartesian grid causes the explosion to appear somewhat diamond-
shaped.

FLASH is intended to be customized by the user to work with interesting initial and
boundary conditions. In the following sections we will cover in more detail the algorithms
and structure of FLASH and the sample problems and tools distributed with it.

3 Algorithmic overview

FLASH provides a general simulation framework capable of incorporating several different
types of physics module (e.g., hydrodynamics on structured or unstructured meshes, N-body
solvers, reactive source terms, etc.) and initial or boundary conditions. However, it has been
built to solve a particular class of problems, namely reactive, compressible flows in astro-
physical environments. Thus, FLASH 1.x is distributed with a particular set of algorithms
to handle compressible hydrodynamics on a block-structured adaptive mesh, together with
an appropriate nuclear equation of state and nuclear reaction network. We treat each of
these elements in turn.
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Figure 3: Example of xflash output for the Sedov problem with eight levels of refinement.

3.1 Hydrodynamics

The hydrodynamic module in FLASH 1.x is based on the PROMETHEUS code (Fryxell,
Miiller, and Arnett 1989). This code solves Euler’s equations for compressible gas dynamics
in one, two, or three spatial dimensions. These equations can be written in conservative
form as

dp

i . = 1

8t+v pv 0 (1)
%Ltv+v-pvv+vp — 2)
OpE
%-&-V-(pE—i—P)v = pv-g (3)

where p is the fluid density, v is the fluid velocity, P is the pressure, E is the sum of the
internal energy € and kinetic energy per unit mass,
L,
E=¢+ §’U y (4)
g is the acceleration due to gravity, and ¢ is the time coordinate. The pressure is obtained
from the energy and density using the equation of state. For the case of an ideal gas equation
of state, the pressure is given by

P = (y—1)pe, (5)

where v is the ratio of specific heats. More general equations of state are discussed below.
For reactive flows, a separate advection equation must be solved for each chemical or
nuclear species:
OpX,
ot

+V-pXyv=0, (6)



where X, is the mass fraction of the ¢th species, with the constraint that 3, X, = 1. The
quantity pX, represents the partial density of the /th fluid. The code does not explicitly
track interfaces between the fluids, so a small amount of numerical mixing can be expected
during the course of a calculation.

The equations are solved using a modified version of the Piecewise-Parabolic Method
(PPM), which is described in detail in Woodward and Colella (1984) and Colella and Wood-
ward (1984). PPM is a higher-order version of the method developed by Godunov (1959).
Godunov’s method uses a finite-volume spatial discretization of the Euler equations together
with an explicit forward time difference. Time-advanced fluxes at cell boundaries are com-
puted using the analytic solution to Riemann’s shock tube problem at each boundary. Initial
conditions for each Riemann problem are determined by assuming the nonadvanced solution
to be piecewise constant in each cell. Using the Riemann solution has the effect of introduc-
ing explicit nonlinearity into the difference equations and permits the calculation of sharp
shock fronts and contact discontinuities without introducing significant nonphysical oscilla-
tions into the flow. Since the value of each variable in each cell is assumed to be constant,
Godunov’s method is limited to first-order accuracy in both space and time.

PPM improves on Godunov’s method by representing the flow variables with piecewise
parabolic functions. It also uses a monotonicity constraint rather than artificial viscosity
to control oscillations near discontinuities, a feature shared with the MUSCL scheme of van
Leer (1979). Although this could lead to a method which is accurate to third order, PPM
is formally accurate only to second order in both space and time, as a fully third-order
scheme proved not to be cost-effective. Nevertheless, PPM is considerably more accurate
and efficient than most formally second-order algorithms.

PPM is particularly well-suited to flows involving discontinuities, such as shocks and con-
tact discontinuities. The method also performs extremely well for smooth flows, although
other schemes which do not perform the extra work necessary for the treatment of disconti-
nuities might be more efficient in these cases. The high resolution and accuracy of PPM are
obtained by the explicit nonlinearity of the scheme and through the use of intelligent dis-
sipation algorithms, such as monotonicity enforcement, contact steepening, and interpolant
flattening. These algorithms are described in detail by Colella and Woodward (1984).

A complete description of PPM is beyond the scope of this user’s guide. However, for
comparison with other codes, we note that the implementation of PPM in FLASH 1.x uses
the direct Eulerian formulation of PPM and the technique for allowing nonideal equations
of state described by Colella and Glaz (1985). For multidimensional problems, FLASH 1.x
uses second-order operator splitting (Strang 1968). FLASH also implements PPM on a
block-structured adaptive mesh, which is described in the following section.

3.2 Adaptive mesh refinement

We have used a package known as PARAMESH (MacNeice et al. 1999) for the parallelization
and adaptive mesh refinement (AMR) portion of FLASH. PARAMESH consists of a suite of
subroutines which handle refinement/derefinement, distribution of work to processors, guard
cell filling, and flux conservation. In this section we briefly describe this package and the
ways in which it has been modified for use with FLASH.

PARAMESH uses a block-structured adaptive mesh refinement scheme similar to others



in the literature (e.g., Parashar 1999; Berger & Oliger 1984; Berger & Colella 1989; DeZeeuw
& Powell 1993) as well as to schemes which refine on an individual cell basis (Khokhlov
1997). In block-structured AMR, the fundamental data structure is a block of uniform
cells arranged in a logically Cartesian fashion. Each cell can be specified using a block
identifier (processor number and local block number) and a coordinate triple (i, j, k), where
t=1...nxb, 5 =1...nyb, and k = 1...nzb. The complete computational grid consists of
a collection of blocks with different physical cell sizes, related to each other in a hierarchical
fashion using a tree data structure. The blocks at the root of the tree have the largest
cells, while their children have smaller cells and are said to be refined. Two rules govern
the establishment of refined child blocks in PARAMESH. First, the cells of a refined child
block must be one-half as large as those of its parent block. Second, a block’s children must
be nested; that is, the child blocks must fit within their parent block and cannot overlap
one another, and the complete set of children of a block must fill its volume. Thus, in d
dimensions a given block has either zero or 2¢ children.

Each block contains nxb x nyb x nzb interior cells and a set of guard cells. The guard cells
contain boundary information needed to update the interior cells. These can be obtained
from physically neighboring blocks, externally specified boundary conditions, or both. The
number of guard cells needed depends upon the interpolation scheme and differencing stencil
used for the hydrodynamics algorithm; for the explicit PPM algorithm distributed with
FLASH, four guard cells are needed in each direction. PARAMESH handles the filling
of guard cells with information from other blocks or a user-specified external boundary
routine. If a block’s neighbor has the same level of refinement, PARAMESH fills its guard
cells using a direct copy from the neighbor’s interior cells. If the neighbor has a different
level of refinement, the neighbor’s interior cells are used to interpolate guard cell values for
the block. If the block and its neighbor are stored in the memory of different processors,
PARAMESH handles the appropriate parallel communication (blocks are not split between
processors). PARAMESH supports only linear interpolation for guard cell filling at jumps
at refinement, but it is easily extended to allow other interpolation schemes; for example,
for FLASH we have added a quadratic interpolation scheme. Once each block’s guard cells
are filled, it can be updated independently of the other blocks.

PARAMESH also enforces flux conservation at jumps in refinement, as described by
Berger and Colella (1989). At jumps in refinement, the fluxes of mass, momentum, energy,
and nuclear abundances across boundary cell faces are averaged across the fine cells at that
face and provided to the corresponding coarse face on the neighboring block. These averaged
fluxes are then used to update the values of the coarse block’s local flow variables.

Each processor decides when to refine or derefine its blocks by computing a user-defined
error estimator for each block. Refinement involves creation of between one and 2¢ refined
child blocks, while derefinement involves deletion of a block. As child blocks are created,
they are temporarily placed at the end of the processor’s block list. After the refinements and
derefinements are complete, the blocks are redistributed among the processors using a work-
weighted Morton space-filling curve in a manner similar to that described by Warren and
Salmon (1987) for a parallel treecode. During the distribution step each block is assigned
a work value (an estimate of the relative amount of time required to update the block).
The Morton number of the block is then computed by interleaving the bits of its integer
coordinates as described by Warren and Salmon (1987); this determines its location along
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the space-filling curve. Finally, the list of all blocks is partitioned among the processors using
the block weights, equalizing the estimated workload of each processor. During the sorting
step, only Morton numbers and not block data are communicated between processors; blocks
are only moved (if necessary) after the sort. Changes in refinement are typically performed
every ten timesteps.

The refinement criterion used by PARAMESH is adapted from Lohner (1987). Lohner’s
error estimator was originally developed for finite element applications and has the advantage
that it uses an entirely local calculation. Furthermore, the estimator is dimensionless and
can be applied with complete generality to any of the field variables of the simulation or
any combination of them (by default, PARAMESH uses the density and pressure). Lohner’s
estimator is a modified second derivative, normalized by the average of the gradient over one
computational cell. In one dimension on a uniform mesh it is given by

| Uiy — 2u; + i |

E’i:
| wirr — wq |+ | —wiy | Fell wia | =2 [ui [+ [ iy |[]

, (7)

where u; is the refinement test variable’s value in the 7¢th cell. The last term in the denomi-
nator of this expression acts as a filter, preventing refinement of small ripples. The constant
€ is given a value of 107%. Although PPM is formally second-order and its leading error
terms scale as the third derivative, we have found the second derivative criterion to be very
good at detecting discontinuities in the flow variable u. When extending this criterion to
multidimensions, all cross derivatives are computed, and the following generalization of the
above expresion is used:

1/2

> 2
B[22 s + | 22 1)/ Amy + €| 525 ]

: (8)

where the sums are carried out over the coordinate directions. If the maximum value of E;
in a block is larger than an adjustable constant, CTORE, the block is marked for refinement.
If the maximum value of E; is less than a second constant (CTODE), the block is marked for
derefinement. PARAMESH uses the default values CTORE = 0.8 and CTODE = 0.2. For each
block, the error estimator is calculated for all interior cells plus two layers of guard cells,
helping to ensure that blocks refine in advance of discontinuities.

3.3 Equation of state

It is common to call an equation of state routine more than 10° times when calculating two-
and three-dimensional hydrodynamic models of stellar phenomena. Thus, it is very desirable
to have an equation of state that is as efficient as possible, yet accurately represents the
relevant physics. While FLASH is easily capable of including any equation of state, here we
discuss three equation of state (henceforth EOS) routines which are supplied with FLASH
1.x: the ideal-gas or gamma-law EOS, the Nadyozhin EOS, and the Helmholtz EOS. (The
Nadyozhin EOS is no longer supplied with FLASH versions 1.6 and later.)

Each EOS routine takes as input the temperature 7', density p, mean number of nucleons
per isotope A, and mean charge per isotope Z. Each routine then returns as output the scalar
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pressure (P, specific thermal energy €01, and entropy Siot. In addition to these quantities,
the EOS routines return partial derivatives of the pressure, specific thermal energy, and
entropy with respect to the density and temperature:

BP tot
oT

8Ptot
P 8,0

6Stot
’ oT

aStot
14 ’ 6’0

O€tot

Y 6[0

O€tot

’ or

(9)

T T T

p

Quantities such as the specific heats and the adiabatic indices can be determined once these
partial derivatives are known. When solving the energy equation, the temperature usually
is obtained by iteration, and the thermodynamic derivatives must be available in order to
implement efficient iteration schemes. Confirming that an EOS routine numerically satisfies
thermodynamic consistency also demands that the derivatives be available.

An EOS is thermodynamically consistent if its outputs satisfy the Maxwell relations:

Oe oP
P = 2= T = 1
"ol TTar (10)
Oe as
a7 T or (11)
p p
a8 1 0P
o0 _ -9 12
9p |r p* 0 (12)

Thermodynamic inconsistency can manifest itself in the unphysical buildup (or decay) of
the entropy (or temperature) during numerical simulations of what should be an adiabatic
flow. Entropy-sensitive models (e.g., core-collapse supernovae) may suffer inaccuracies if
thermodynamic consistency is significantly violated over sufficiently long time scales. The
equations of state supplied with FLASH satisfy the Maxwell relations to a good degree of
precision (in some cases to the limits of 64-bit arithmetic).

The gamma-law EOS provided with FLASH represents a simple ideal gas with constant
adiabatic index 7:

P/p+e
P=——pT = — =/ -
p € T ?

A vy—1 S

N, k 1 P
> (13)

where N, is the Avogadro number, and k is the Boltzmann constant. Because it requires no
iteration in order to obtain the temperature, this EOS is quite inexpensive to evaluate.
More complex equations of state are necessary for realistic models of X-ray bursts, Type Ia
supernovae, classical novae, and other stellar phenomena, where the electrons and positrons
may be relativistic and/or degenerate and where radiation contributes significantly to the
thermodynamic state. The Nadyozhin and Helmholtz EOS routines address this need. The
Nadyozhin EOS, summarized by Nadyozhin (1974) and explained in detail by Blinnikov
et al. (1996), was found by Timmes and Arnett (1999) in a comparison of five different
analytic EOS schemes to give the best tradeoff among accuracy, thermodynamic consistency,
and speed. The Helmholtz EOS (Timmes & Swesty 1999) uses interpolation from a two-
dimensional table of the Helmholtz free energy F(p,T), obtaining comparable accuracy,
better thermodynamic consistency, and about twice the speed of the Nadyozhin EOS.
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For stellar phenomena, the pressure, specific thermal energy, and entropy contain contri-
butions from several components:

Ptot = Prad + Pion + Pele + Ppos (14)
€tot = €rad T €ion T €ele T+ €pos (15)
Stot = Srad + Sion + Sele + Spos . (16)
Here the subscripts “rad,” “ion,” “ele,” and “pos” represent radiation, nuclei, electrons, and

positrons, respectively. The radiation portion is that of a blackbody in local thermodynamic
equilibrium:
aT* _ 3P (P/p+e)

Pra = rad — Sra = 17
d 3 €rad P d T ()

where a is the Stefan-Boltzmann energy constant, and c is the speed of light. The ion
contribution is that of an ideal gas with v = 5/3. The electrons and positrons are treated as
a non-interacting Fermi gas; the number densities of free electrons Nee and positrons Npes
are given by

872

Nege = 13 mi ¢ B [F1/2(77, B) + Fipa(n, 5)] (18)
Npos = 87;:3/5 m63 C3 63/2 [F1/2 (_77 - 2/5) ﬁ) + /B F3/2 (_77 - 2//Baﬁ)] ) (19)

where h is the Planck constant, m, is the electron rest mass, 8 = kT'/(m.c?) is the relativity
parameter, 7 = u/kT is the normalized chemical potential energy u for electrons, and
Fi(n, B) is the Fermi-Dirac integral

Tk (14058 )2 de

Because the electron rest mass is not included in the chemical potential, the positron chemical
potential must have the form 7,,s = —1 — 2/8. For complete ionization, the number density
of free electrons in the matter is

N, p=Z Nign , (21)

ANy

N, ele,matter

and charge neutrality requires
Nele,matter = LVele — Npos . (22)

Solving this equation with a standard one-dimensional root-finding algorithm determines 7.
Once 7 is known, the Fermi-Dirac integrals can be evaluated, giving the pressure, specific
thermal energy, and entropy due to the free electrons and positrons.

The Nadyozhin EOS routine uses polynomial or rational functions to evaluate the thermo-
dynamic quantities. The temperature-density plane is decomposed into 5 regions (see Figure
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12 of Blinnikov et al. 1996), with different expansions or fitting functions applied to each
region. The methods used in the 5 regions are (1) a perfect gas approximation with the first-
order corrections for degeneracy, (2) expansions of the half-integer Fermi-Dirac functions,
(3) Chandrasekhar’s (1939) expansion for a degenerate gas, (4) relativistic asymptotics, and
(5) Gaussian quadrature for the thermodynamic quantities. The perturbation expansions,
asymptotic relations, and fitting functions for the 5 regions are combined, with extraordinary
care given to making sure that transitions between the regions are continuous, smooth, and
thermodynamically consistent. All of the partial derivatives are obtained analytically.

The electron-positron Helmholtz free energy table used by the Helmholtz EOS was gener-
ated by using the Timmes EOS routine (Timmes & Arnett 1999). The Fermi-Dirac integrals,
along with their derivatives with respect to n and [, were calculated to at least 18 significant
figures using the quadrature schemes of Aparicio (1998). Newton-Raphson iteration was
used to solve for 7 to at least 15 significant figures. The thermodynamic derivatives were
computed analytically. Searches through the free energy table are avoided by computing
hash indices from the values of any given (T, pZ/A) pair. No computationally expensive di-
visions are required in interpolating from the table; all of them can be computed and stored
the first time the EOS routine is called.

3.4 Thermonuclear reactions

Modelling thermonuclear flashes typically requires the energy generation rate due to nuclear
burning over a large range of temperatures, densities and compositions. The average energy
generated or lost over a period of time is found by integrating a system of ordinary differential
equations (the nuclear reaction network) for the abundances of important nuclei and the
total energy release. In some contexts, such as Type II supernova models, the abundances
themselves are also of interest. In either case, the coefficients that appear in the equations
typically are extremely sensitive to temperature. The resulting stiffness of the system of
equations requires the use of an implicit time integration scheme.

Timmes (1999) has reviewed several methods for solving stiff nuclear reaction networks,
providing the basis for the reaction network solver included with FLASH. The scaling proper-
ties and behavior of three semi-implicit time integration algorithms (a traditional first-order
accurate Euler method, a fourth-order accurate Kaps-Rentrop method, and a variable order
Bader-Deuflhard method) and eight linear algebra packages (LAPACK, LUDCMP, LEQS,
GIFT, MA28, UMFPACK, and Y12M) were investigated by running each of these 24 combi-
nations on seven different nuclear reaction networks (hard-wired 13- and 19-isotope networks
and table-lookup networks using 47, 76, 127, 200, and 489 isotopes). Timmes’ analysis sug-
gested that the best balance of accuracy, overall efficiency, memory footprint, and ease-of-use
was provided by the choice of a 13- or 19-isotope reaction network, the variable order Bader-
Deuflhard time integration method, and the MA28 sparse matrix package. The default
FLASH distribution uses this combination of methods, which we describe in this section.

We begin by describing the equations solved by the nuclear burning module. We consider
material which may be described by a density p and a single temperature 7" and contains a
number of isotopes i, each of which has Z; protons and A; nucleons (protons + neutrons).
Let n; and p; denote the number and mass density, respectively, of the ¢th isotope, and let
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X; denote its mass fraction, so that

Xi=pi/p=miAi/(pNa) , (23)
where N4 is the Avogadro number. Let the molar abundance of the ith isotope be

Y: = Xi/Ai =n;/(pNa) . (24)

Mass conservation is then expressed by

> Xi=1 (25)

At the end of each timestep, FLASH checks that the stored abundances satisfy equation (25)
to machine precision in order to avoid the unphysical buildup (or decay) of the abundances
or energy generation rate. Roundoff errors in this equation can lead to significant problems
in some contexts (e.g., classical nova envelopes) where trace abundances are important.
The general continuity equation for the ith isotope is given in Lagrangian formulation by

Y; .
ddt YV (V) =R . (26)

In this equation R; is the total reaction rate due to all binary reactions of the form #(5,k)l,

B = S ViV (D) — V¥l 27
7.k

where Ay; and Aj; are the reverse (creation) and forward (destruction) nuclear reaction
rates, respectively. Contributions from three-body reactions, such as the triple-a reaction,
are easy to append to equation (27). The mass diffusion velocities V; in equation (26) are
obtained from the solution of a multicomponent diffusion equation (Chapman & Cowling
1970; Burgers 1969; Williams 1988) and reflect the fact that mass diffusion processes arise
from pressure, temperature, and/or abundance gradients as well as external gravitational or
electrical forces.

The case V; = 0 is important for two reasons. First, mass diffusion is often unimportant
when compared to other transport process such as thermal or viscous diffusion (i.e., large
Lewis numbers and/or small Prandtl numbers). Such a situation obtains, for example, in the
study of laminar flame fronts propagating through the quiescent interior of a white dwarf.
Second, this case permits the decoupling of the reaction network solver from the hydrody-
namical solver through the use of operator splitting, greatly simplifying the algorithm. This
is the method used by the default FLASH distribution. Setting V; = 0 transforms equation
(26) into

ay; .
=R;, 28
o (28)
which may be written in the more compact and standard form
y=1(y). (29)
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Stated another way, in the absence of mass diffusion or advection, any changes to the fluid
composition are due to local processes.

Because of the highly nonlinear temperature dependence of the nuclear reaction rates,
and because the abundances themselves often range over several orders of magnitude in
value, the values of the coefficients which appear in equations (28) and (29) can vary quite
significantly. As a result, the nuclear reaction network equations are “stiff.” A system of
equations is stiff when the ratio of the maximum to the minimum eigenvalue of the Jacobian
matrix J = of /0y is large and imaginary. This means that at least one of the isotopic
abundances changes on a much shorter timescale than another. Implicit or semi-implicit
time integration methods are generally necessary to avoid following this short-timescale
behavior, requiring the calculation of the Jacobian matrix.

It is instructive at this point to look at an example of how equation (28) and the associated
Jacobian matrix are formed. Consider the 2C(a,7)'O reaction, which competes with the
triple-a reaction during helium burning in stars. The rate R at which this reaction proceeds
is critical for evolutionary models of massive stars since it determines how much of the core
is carbon and how much of the core is oxygen after the initial helium fuel is exhausted. This
reaction sequence contributes to the right-hand side equation (29) through the terms

Y(*He) =-Y(*He) Y(*C)R+...
Y(2C) =-Y(*He) Y(®C)R +... (30)
Y(*0) =+Y(*He) Y(?C)R +...

where the ellipsis indicate additional terms coming from other reaction sequences. The minus
signs indicate that helium and carbon are being destroyed, while the plus sign indicates
that oxygen is being created. Each of these three expressions contributes two terms to the
Jacobian matrix J=0f/dy:

J(*He*He) = -Y(*C)R +... J(*He'?C) = -Y(*He) R +...
J*C*He)=-Y(*®C)R +... J2C2C)=-Y(*He) R +... . (31)
JMO *He)=+Y(*C) R +... J(*®02C)=+Y("He) R +...

Entries in the Jacobian matrix represent the flow, in number of nuclei s™!, into (positive)

or out of (negative) an isotope. All of the temperature and density dependence is included
in the reaction rate R. The Jacobian matrices that arise from nuclear reaction networks
are neither positive-definite nor symmetric since the forward and reverse reaction rates are
generally not equal. However, the magnitudes of the matrix entries change as the abundances,
temperature, or density change with time.

The default FLASH distribution includes two reaction networks. The 13-isotope a-chain
plus heavy-ion reaction network is suitable for most multi-dimensional simulations of stellar
phenomena where having a reasonably accurate energy generation rate is of primary concern.
The 19-isotope reaction network has the same a-chain and heavy-ion reactions as the 13-
isotope network, but it includes additional isotopes to accommodate some types of hydrogen
burning (PP and CNO chains), along with some aspects of photodisintegration into **Fe.
This reaction network is described in Weaver, Zimmerman, & Woosley (1978). Both the
networks supplied with FLASH are examples of “hard-wired” reaction networks, where each
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of the reaction sequences are carefully entered by hand. This approach is suitable for small
networks when minimizing the CPU time required to run the reaction network is a primary
concern, although it suffers the disadvantage of inflexibility.

The Jacobian matrices of nuclear reaction networks tend to be sparse, and they become
more sparse as the number of isotopes increases. Implicit time integration schemes require
the inverse of the Jacobian matrix, so we need to use a sparse linear algebra package to
compute this inverse. To control the iteration count for a prespecified accuracy, FLASH uses
a direct sparse matrix solver. Direct methods typically divide the solution of A - x = b into
a symbolic LU decomposition, numerical LU decomposition, and a backsubstitution phase.
In the symbolic LU decomposition phase the pivot order of a matrix is determined, and
a sequence of decomposition operations which minimize the amount of fill-in is recorded.
Fill-in refers to zero matrix elements which become nonzero (e.g., a sparse matrix times
a sparse matrix is generally a denser matrix). The matrix is not (usually) decomposed;
only the steps to do so are stored. Since the nonzero pattern of a chosen nuclear reaction
network does not change, the symbolic LU decomposition is a one-time initialization cost
for reaction networks. In the numerical LU decomposition phase, a matrix with the same
pivot order and nonzero pattern as a previously factorized matrix is numerically decomposed
into its lower-upper form. This phase must be done only once for each staged set of linear
equations. In the backsubstitution phase, a set of linear equations is solved with the factors
calculated from a previous numerical decomposition. The backsubstitution phase may be
performed with as many right-hand sides as needed, and not all of the right-hand sides need
to be known in advance.

The M A28 linear algebra package used by FLASH is described by Duff, Erisman, & Reid
(1986). It uses a combination of nested dissection and frontal envelope decomposition to
minimize fill-in during the factorization stage. An approximate degree update algorithm
that is much faster (asymptotically and in practice) than computing the exact degrees is
employed. One continuous real parameter sets the amount of searching done to locate the
pivot element. When this parameter is set to zero, no searching is done and the diagonal
element is the pivot, while when set to unity, complete partial pivoting is done. Since the
matrices generated by reaction networks are usually diagonally dominant, the routine is set
in FLASH to use the diagonal as the pivot element. Several test cases showed that using
partial pivoting did not make a significant accuracy difference, but were less efficient since
a search for an appropriate pivot element had to be performed. MA28 accepts the nonzero
entries of the matrix in the (i, j, a; ;) coordinate system, and typically uses uses 70—90% less
storage than storing the full dense matrix.

The time integration method used by FLASH for evolving the reaction networks is the
variable order Bader-Deuflhard method (e.g., Bader & Deuflhard 1983; Press et al. 1992).
The reaction network is advanced over a large time step H from y,, to y,.+1 by the following
sequence of matrix equations. First,

h  =H/m
A-J)-Ac  =hf(ya) (32)
Yi =Yn+4A0.
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Then from £k =1,2,...,m—1
(i — j) X = hf(yk) — Ak*l
Ak = Ak—l + 2x (33)
Yer1 =Ykt Ak,
and closure is obtained by the last stage
(1- j) ‘Ap = hlf(ym) — Am-1]

This staged sequence of matrix equations is executed at least twice with m=2 and m=6,
yielding a fifth-order method. The sequence may be executed a maximum of seven times,
which yields a fifteenth-order method. The exact number of times the staged sequence is
executed depends on the accuracy requirements (set to one part in 10 in FLASH) and the
smoothness of the solution. Estimates of the accuracy of an integration step are made by
comparing the solutions derived from different orders. The minimum cost of this method
— which applies for a single time step that met or exceeded the specified integration ac-
curacy — is one Jacobian evaluation, eight evaluations of the right-hand side, two matrix
decompositions, and ten backsubstitutions. This minimum cost can be increased at a rate
of one decomposition (the expensive part) and m backsubstitutions (the inexpensive part)
for every increase in the order 2k 4+ 1. The cost of increasing the order is compensated for,
hopefully, by taking a correspondingly larger (but accurate) time step. The controls for
order versus step size are a built-in part of the Bader-Deuflhard method. The cost per step
of this integration method is at least twice as large as the cost per step of either a traditional
first-order accurate Euler method or a fourth-order accurate Kaps-Rentrop (essentially an
implicit Runge-Kutta) method, However, if the Bader-Deuflhard method can take accurate
time steps that are at least twice as large, then this method will be more efficient globally.
Timmes (1999) shows that this is typically the case. Note that in equations (32) — (34)
not all of the right-hand sides are known in advance since the sequence of linear equations
is staged. This staging feature of the integration method will make some matrix packages,
such as MA28, a more efficient choice.
The energy generation rate is given by the sum

dy;
dt

€nuc = Na Z

i

(35)

Note that a nuclear reaction network does not need to be evolved in order to obtain the
instantaneous energy generation rate, since only the right hand sides of the ordinary differ-
ential equations need to be evaluated. It is more appropriate in the FLASH program to use
the average nuclear energy generated over a time step

AY;

6'nuc:-NvA Z At

i

(36)
In this case, the nuclear reaction network does need to be evolved. The energy generation
rate, after subtraction of any neutrino losses, is returned to the FLASH program for use with

the operator splitting technique.
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Finally, the tabulation of Caughlan & Fowler (1988) is used in FLASH for most of the
key nuclear reaction rates. Modern values for some of the reaction rates were taken from
the reaction rate library of Hoffman (1999, priv. comm.). Nuclear reaction rate screening
effects as implemented by Wallace, Woosley, & Weaver (1982), and decreases in the energy
generation rate €, due to neutrino losses as given by Itoh et al. (1985) are included in
calculations done with FLASH.

4 FLASH tools

In this section we describe several of the tools distributed with FLASH. The source code for
these programs (except for setup) can be found in the main FLASH source tree under the
tools/ directory.

4.1 The FLASH configuration script (setup)

The setup script, found in the FLASH root directory, provides the primary command-line
interface to the FLASH source code. It configures the source tree for a given problem and
target machine and creates files needed to parse the runtime parameter file and make the
FLASH executable. More description of what setup does may be found in Section 6.1. Here
we describe its basic usage.

Running setup without any options prints a message describing the available options:

[sphere 5:09pm] % ./setup
usage: setup <problem-name> [options]

problems: see ./setups
options: -verbose -portable -defaults -[123]d -maxblocks=<#>
[-site=<site> | -ostype=<ostype>]

For compatibility with older versions of setup, the syntax

setup <problem-name> <ostype> [options]
is also accepted, so long as <ostype> does not begin with a dash (-).
In this case the -site and -ostype options cannot be used.

Available values for the mandatory option (the name of the problem to configure) are deter-
mined by scanning the setups/ directory.

A “problem” consists of a set of initial and boundary conditions, possibly additional
physics (e.g., a subgrid model for star formation), and a set of adjustable parameters. The
directory associated with a problem contains source code files which implement the initial
and boundary conditions and extra physics, together with a configuration file, read by setup,
which contains information on required physics modules and adjustable parameters.

setup determines site-dependent configuration information by looking in source/sites/
for a directory with the same name as the output of the hostname command; failing this, it
looks in source/sites/Prototypes/ for a directory with the same name as the output of
the uname command. The site and operating system type can be overridden with the -site
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and -ostype command-line options. Only one of these options can be used. The directory
for each site or operating system type contains a makefile fragment (Makefile.h) that sets
command names, compiler flags, and library paths, and any replacement or additional source
files needed to compile FLASH for that machine type.

setup uses the problem and site/OS type, together with a user-supplied file called
Modules which lists the code modules to include, to generate a directory called object/
which contains links to the appropriate source files and makefile fragments. It also creates
the master makefile (object/Makefile) and several Fortran include files that are needed by
the code in order to parse the runtime parameter file. After running setup, the user can
make the FLASH executable by running gmake in the object/ directory (or from the FLASH
root directory, if the -portable option is not used with setup). The optional command-line
modifiers have the following interpretations:

-verbose Normally setup echoes to the standard output summary messages in-
dicating what it is doing. Including the -verbose option causes it to
also list the links it creates.

-portable This option creates a portable build directory. Instead of object/,
setup creates object_problem/, and it copies instead of linking to the
source files in source/ and setups/. The resulting build directory can
be placed into a tar archive and sent to another machine for building
(use the Makefile created by setup in the tar file).

-defaults Normally setup requires that the user supply a plain text file called
Modules (in the FLASH root directory) which specifies which code
modules to include. A sample Modules file appears in Figure 4. Each
line is either a comment (preceded by a hash mark (#)) or a module
include statement of the form INCLUDE module. Sub-modules are in-
dicated by specifying the path to the sub-module in question; in the
example, the sub-module gamma of the eos module is included. If a
module has a default sub-module, but no sub-module is specified, setup
automatically selects the default using the module’s configuration file.
The -defaults option enables setup to generate a “rough draft” of a
Modules file for the user. The configuration file for each problem setup
specifies a number of code module requirements; for example, a problem
may require the perfect-gas equation of state (materials/eos/gamma)
and an unspecified hydro solver (hydro). With -defaults, setup cre-
ates a Modules file by converting these requirements into module in-
clude statements. In addition, it checks the configuration files for the
required modules and includes any of their required modules, eliminat-
ing duplicates. Most users configuring a problem for the first time will
want to run setup with -defaults to generate a Modules file, then
edit Modules directly to specify different sub-modules. After editing
Modules in this way, re-run setup without -defaults to incorporate
the changes into the code configuration.
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# Modules file constructed for rt problem by setup -defaults

INCLUDE driver/time_dep
INCLUDE hydro

INCLUDE materials/eos/gamma
INCLUDE gravity/constant
INCLUDE mesh

INCLUDE io

Figure 4: Example of the Modules file used by setup to determine which code modules to
include.

-[123]d By default setup creates a makefile which produces a FLASH ex-
ecutable capable of solving two-dimensional problems (equivalent to
-2d). To generate a makefile with options appropriate to three-
dimensional problems, use -3d. To generate a one-dimensional code,
use -1d. These options are mutually exclusive and cause setup to add
the appropriate compilation option to the makefile it generates.

-maxblocks=# This option is also used by setup in constructing the makefile compiler
options. It determines the amount of memory allocated at runtime to
the adaptive mesh refinement (AMR) block data structure. For ex-
ample, to allocate enough memory on each processor for 500 blocks,
use —maxblocks=500. If the default block buffer size is too large for
your system, you may wish to try a smaller number here (the defaults
are currently defined in source/driver/physicaldata.fh). Alterna-
tively, you may wish to experiment with larger buffer sizes if your sys-
tem has enough memory.

After configuring the source tree with setup and using gmake to create an executable in
the build directory, look in the build directory for a file named rt_parms.txt. This contains
a complete list of all of the runtime parameters available to the executable, together with
their variable types, default values, and comments. To set runtime parameters to values
other than the defaults, create a runtime parameter file named flash.par in the directory
from which FLASH is to be run. The format of this file is described in Section 2.

4.2 FLASH output comparison utility (focu)

The FLASH output comparison utility, or focu (pronounced fauz-coup), is a command-line
utility which compares FLASH output files according to specified criteria (e.g., local or global
error criterion on any of the hydrodynamical variables) and reports whether they are the
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same or not. This is useful in determining whether a change to FLASH (or to the value of
a runtime parameter) has changed the results obtained with a given problem.

4.2.1 Building focu

The focu executable is configured and built in much the same way as is FLASH: obtain
source tree, run setup to configure the source tree for a given architecture, and run gmake
in the build directory. FLASH and focu are different in that focu is problem-independent,
so only a machine type needs to be specified, and in that (at least at the present time) all
of the modules included with focu are used, so setup is always run with the -defaults
option. (See Section 4.1 for details regarding the usage of setup.) To summarize the steps
in building focu:

1. Move to the focu root directory (tools/focu/ relative to the FLASH root directory).

2. Run ./setup -defaults. As with the FLASH setup script, the —-site and -ostype
options can be used to specify a site configuration or operating system prototype. Do
not use the setup script in the FLASH root directory.

3. Edit object/Makefile.h to set compiler flags and the locations of libraries. Since focu
contains routines to read HDF 4 output, you must have the HDF 4 library installed.

4. Run gmake. If compilation is successful, you should find an executable named focu in
the current directory.

Additional setup options are available and are interpreted as described in Section 4.1.

4.2.2 Using focu

Running focu is very similar to running FLASH itself. First prepare a runtime parameter
file, then run focu using

mpirun -np N focu parameter-file

(or use the command used by your system to start MPI programs). Here N is the number
of processors to use (which need not be the same as the number of processors used by the
FLASH job that produced the output files to be read). If the parameter-file argument is
not supplied, focu looks for a parameter file named focu.par in the current directory. The
format of this file is identical to that used by FLASH (see Section 2).

The runtime parameters understood by focu are as follows. Default values are listed in
brackets following each description.

filel Name of the first file to compare. [“filel”]

file2 Name of the second file to compare. [“file2”]
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variable  The name of the hydrodynamical variable to examine. Any variable
included in the output file can be examined; for these variables the
first four characters of the name are significant. Typical variables are
“dens,” “pres,” “velx,” “vely,” “velz,” “temp,” and “ener.” Computed
variables are also allowed: “kinetic energy,” “potential energy,” “in-
ternal energy,” “x momentum,” “y momentum,” and “z momentum.”
[“density” ]

PR3

criterion The error criterion to apply in comparing the files. This must be of
the form “A B”, where A is either “local” or “global,” and B is either
“sum,” “min,” or “max.” For the global criteria, focu first computes
the volume-weighted average, minimum value, or maximum value of
variable for each file, then computes the L1 deviation between the
two global quantities. For the local criteria, the files are compared on
a zone-by-zone basis. Consequently the AMR block structures of the
two files must be the same in order for the comparison to succeed. If
criterion is “local sum,” the volume-weighted average of the local L1
deviations is compared to threshold to determine success or failure.
If criterion is “local min” or “local max,” the minimum or maximum
L1 deviation is compared. The L1 deviation for two quantities X; and
X, is defined as | X, — X;|/ max{| X1 + X|,107%}. [“global sum”]

threshold The error threshold to use in deciding success or failure. [1079]

outfile The name of the output file to create when generating the compari-
son report. Setting this to “stdout” causes focu to write to standard
output. [“stdout”]

The output of focu is a short report listing the volume-averaged sum, minimum, and
maximum deviations (local or global, depending on the setting of criterion) and reporting
SUCCESS or FAILURE according to the supplied threshold. An example report generated
by focu is shown in Figure 5. Note that the last line of the report begins with SUCCESS or
FAILURE, making it easy for a script to test the results. For example, with csh one might
use

set result = ‘mpirun -np 2 focu focu._sedov.par | grep SUCCESS®
if ("result" == "SUCCESS") then

endif
focu is used by the automated FLASH test script (Section 5.1) to compare FLASH
outputs to the reference results supplied as part of the test suite.
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FOCU: Flash Output Comparison Utility

Comparing: sedov_4_hdf _chk 0003 ( 69 blocks)
sedov_4_hdf _chk 0003 ( 69 blocks)

Variable: density
Criterion: 1local sum
Threshold: 1.0000000000000E-09

Result:
Error: 0.0000000000000E+00
Minimum: 0.0000000000000E+00
Maximum: 0.0000000000000E+00
SUCCESS

Figure 5: Example of focu output format.

4.3 IDL routines for the analysis of FLASH output (fidlr)

fidlr is a set of routines, written in the IDL language, that can plot or read data files pro-
duced by FLASH. The routines include programs which can be run from the IDL command
line to read 1D, 2D, or 3D FLASH datasets and interpolate them onto uniform grids. Other
IDL programs (xflash and cousins) provide a graphical interface to these routines, enabling
users to read and plot AMR datasets without interpolating onto a uniform mesh.

Currently, the fidlr routines support 1, 2, and 3-dimensional datasets in the FLASH
HDF 4 or HDF 5 formats. Both plotfiles and checkpoint files are supported, as they differ
only in the number of variables stored, and possibly the numerical precision. Since IDL does
not directly support HDF 5, the call_external function is used to interface with a set of C
routines that read in the HDF 5 data. Using these routines requires that the HDF 5 library
be installed on your system and that the shared-object library be compiled before reading
in data. Since the call_external function is used, the demo version of IDL will not run the
routines.

For basic plotting operations, the easiest way to generate plots of FLASH data is to use
one of the widget interfaces: xflash for 2d data, xflashid for 1d data, and xflash3d for
3d data. For more advanced analysis, the read routines can be used to read the data into
IDL, and it can then be accessed through the common blocks. Examples of using the fidlr
routines from the command line are provided in Section 4.3.5. Additionally, some scripts
demonstrating how to analyze FLASH data using the fid1lr routines are described in Section
4.3.5 (see for example radial.pro).

The driver routines provided with fidlr visualize the AMR data by first converting it
to a uniform mesh. This allows for ease of plotting and manipulation, but it is less efficient
than plotting the native AMR structure. Analysis can still be performed directly on the
native data through the command line.
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4.3.1 Installing and running fidlr

fidlr is distributed with FLASH and contained in the tools/fidlr/ directory. In addition
to the IDL procedures, a README file is present which will contain up-to-date information on
changes and installation requirements.

These routines were written and tested using IDL v5.3 for IRIX. They should work with-
out difficulty on any UNIX machine with IDL installed. Any functionality of £idlr under
Windows is purely coincidental. Later versions of IDL are rumored to no longer support GIF
files due to copyright difficulties, so outputting to a image file may not work. It is possible
to run IDL in a ‘demo’ mode if there are not enough licenses available. Unfortunately, some
parts of £idlr will not function in this mode, as certain features of IDL are disabled. This
guide assumes that you are running the full version of IDL.

Installation of fidlr requires defining some environment variables, and compiling the
support for HDF 5 files. These procedures are described below.

Setting up £idlr environment variables

The FLASH IDL routines are located in the tools/fidlr/ subdirectory of the FLASH
root directory. To use them you must set two environment variables. First set the value of
XFLASH_DIR to the location of the FLASH IDL routines; for example, under csh, use

setenv XFLASH DIR flash-root-path/tools/fidlr

where flash-root-path is the absolute path of the FLASH root directory. This variable is used
in the plotting routines to find the customized color table for xflash, as well as to identify
the location of the shared-object libraries compiled for HDF 5 support.

Next add this directory to your IDL_PATH variable:

setenv IDL_PATH "${XFLASH DIR}:$IDL_PATH"

If you have not previously defined IDL_PATH, omit :$IDL_PATH from the above command.
You may wish to include these commands in your .cshrc file (or profile if you use another
shell) to avoid having to reissue them every time you log in.

Setting up the HDF 5 routines

For fidlr to read HDF 5 files, you need to install the HDF 5 library on your machine
and compile the wrapper routines. The HDF 5 libraries can be obtained in either source
or binary form for most Unix platforms from http://hdf .ncsa.uiuc.edu. The Makefile
supplied will create the shared-object library on an SGI, but will need to be edited for other
platforms. The compiler flags for a shared-object library for different versions of Unix can
be found in

$IDL DIR/external/call _external/C/callext_unix.txt

where $IDL_DIR points to the location of IDL. The Makefile should be modified according to
the instructions in that file. The Makefile needs to know where the HDF 5 library is installed
as well. This is set through the HDF5path definition in the Makefile.
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It is important that you compile the shared-object to conform to the same application
binary interface (ABI) that IDL was compiled with. On an SGI, IDL version 5.2.1 and later
use the n32 ABI, while versions before this are 032. The HDF library will also need to be
compiled in the same format.

IDL interacts with external programs through the call _external function. Any argu-
ments are passed by reference through argc and argv. These are recast into pointers of the
proper type in the C routines. The C wrappers call the appropriate HDF functions to read
the data and return it through the argc pointers.

Running IDL

fidlr uses 8-bit color tables for all of its plotting. On displays with higher colordepths,
it may be necessary to use color overlays to get the proper colors on your display. For SGI
machines, launching IDL with the start.pro script with enable 8-bit pseudocolor overlays.

4.3.2 fidlr data structures

The fidlr routines access the data contained in the FLASH output files through a series of
common blocks. For the most part, the variable names are consistent with the names used
in FLASH. It is assumed that the user is familiar with the block structured AMR format
employed by FLASH. All of the unknowns are stored together in the unk data-structure,
which mirrors that contained in FLASH itself. The list of variable names is contained in
the string array unk names. A utility function var_index is provided to convert between a
4-character string name and the index into unk. For example,

unk [var_index(’dens’) ,*,*, %, %]

selects the density from the unk array. Recall that IDL uses zero-based indexing for arrays.
fidlr will attempt to create derived variables from the variables stored in the output file
if it can. For example, the total velocity can be created from the components of the velocity,
if they are all present. A separate data structure varnames contains the list of variables in
the output file plus any additional variables fidlr knows how to derive.
At present, the global common blocks defined by fidlr are:

common size, tot_blocks, nvar, nxb, nyb, nzb, ntopx, ntopy, ntopz
common time, time, dt

common tree, lrefine, nodetype, gid, coord, size, bnd_box

common vars, unk, unk names

These can be defined on the command line by executing the def_common script provided in
the £idlr directory. This allows for analysis of the FLASH data through the command line
with any of IDLs built in functions. For example, to find the minimum density in the leaf
blocks of the file filename_hdf_chk_0000, you could execute:

IDL> .run def_common

IDL> read_amr, ’filename_hdf_chk 0000’

IDL> leaf blocks = where(nodetype EQ 1)

IDL> print, min(unk[var_index(’dens’),*,*,*,leaf blocks])
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Figure 6: The main xflash widget (a) and the widget showing the variable list dropbox (b).

Here, in addition to the unk data-structure, we used the nodetype array, which carries the
same meaning as it does in FLASH.

4.3.3 xflash: plotting two-dimensional datasets

The main interface to the fidlr routines for plotting 2-dimensional data sets is xflash.
xflash produces colormap plots of FLASH data with optional velocity vectors, contours,
and the AMR block structure overlaid. The basic operation of xflash is to specify a file or
range of files, probe the file for the list of variables it contains (through the discover variables
button described below), and then specify the remaining plot options.

xflash can output to the screen, postscript, or an image file (GIF). If the data is signifi-
cantly higher resolution than the output device, then xflash (through xplot_amr.pro) will
sub-sample the image by one or more levels of refinement before plotting.

Once the image is plotted, the query button will become active. Pressing query and
then clicking anywhere in the domain will pop up a window containing the values of all the
FLASH variables in the zone nearest the cursor.

Typing xflash at the IDL command prompt will launch the main xflash widget, shown
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in Figure 6(a). The widget is broken into several sections, with some features initially
disabled. These sections are explained below.

File Options

The file to be visualized is composed of the path, the basename (the same base name
used in the flash.par) plus any file type information appended to it (ex. hdf_chk_’) and the
range of suffices to loop through. An optional parameter, step, controls how many files to
skip when looping over the files. By default, xflash sets the path to the working directory
that IDL was started from. xflash will spawn gzip if the file is stored on disk compressed
and the file is gzipped box is checked. After the file is read, it will be compressed again.

Once the file options are set, clicking on discover variables will read the variable list from
the first file specified, and use the variable names to populate the variable selection box.
xflash will automatically determine if the file is an HDF 4 or 5 file, and read the ‘unknown
names’ record to get the variable list. This will work for both plotfiles and checkpoint files
generated by FLASH.

Output Options

A plot can be output to the screen (default), a Postscript file, or a GIF file. The output
filenames are composed from the basename + variable name + suffix. For outputs to the
screen or GIF, the plot size options allow you to specify the image size in pixels. For
Postscript output, xflash chooses portrait or landscape orientation depending on the aspect
ratio of the domain.

Problem

The problem dropbox allows you to select one of the predefined problem defaults. This
will load the options (data ranges, velocity parameters, and contour options) for the problem
as specified in the xflash defaults procedure. When xflash is started, xflash defaults
is executed to read in the known problem names. To add a problem to xflash, only the
xflash_defaults procedure needs to be modified. The details of this procedure are provided
in the comment header in xflash_defaults. It is not necessary to add a problem in order
to plot a dataset, as all default values can be overridden through the widget.

Variables

The variables dropbox lists the variables stored in the ‘unknown names’ record in the data
file, and any derived variables that xflash knows how to construct from these variables (ex:
sound speed). This allows you to choose the variable to be plotted. By default, xflash reads
all the variables in a file, so switching the variable to plot can be done without rereading.

Colormap

The colormap dropbox lists the available colormaps to xflash. These colormaps are
stored in flash colors.tbl in the fidlr directory, and differ from the standard IDL col-

27



Table 3: xflash options

log plot the log of the variable

max when looping over a sequence of files, plot the max
of the variable in each zone over all the files.

annotate toggle the title and time information.

abs value plot the absolute value of the dataset. This oper-
ation is performed before taking the log.

show blocks draw the block boundaries on the plot.

colorbar plot the colorbar legend for the data range.

ormaps. The first 12 colors in the colormaps are reserved by xflash to hold the primary
colors used for different aspects of the plotting. Additional colormaps can be created by
using the xpalette function in IDL.

Options

The options block allows you to toggle various options on/off (Table 3).

Data Range

These fields allow you to specify the range of the variable to plot. Data outside of the
range will be scaled to the minimum and maximum values of the colormap respectively.

Contour Options

This launches a dialog box that allows you to select up to 4 contour lines to overplot of
the data (see figure 7). The variable, value, and color are specified for each reference contour.
To plot a contour, select the check box next to the contour number. This will allow you to
set the variable to make the contour from, the value of the contour, and the color.

Velocity Options

This launches a dialog box that allows you to set the velocity options used to plot
velocity vectors on the plot (see figure 8). The plotting of velocity vectors is controlled
by the partvelvec.pro procedure. zskip and yskip allow you to thin out the arrows. typical
velocity sets the velocity to scale the vectors to, and minimum velocity and mazimum velocity
specify the range of velocities to plot vectors for.

28



Figure 7: The xflash contour option subwidget.

Figure 8: The xflash velocity option subwidget.
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Figure 9: The xflash query widget, displaying information for a zone.

Zoom

The zoom options allow you to set the domain limits for the plot. A value of -1 uses the
actual limit of the domain.

Plot

Create the plot. The status of the plot will appear on the status bar at the bottom.

Query

The query button becomes active once the plot is created. Clicking on query and then
clicking somewhere in the domain lists the data values at the cursor location (see Figure 9).

4.3.4 xflash3d: plotting slices of three-dimensional datasets

xflash3d provides an interface for plotting slices of 3-dimension FLASH datasets. It is
written to conserve memory—only a single variable is read in at a time, and only the slice
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Figure 10: The xflash3d widget.

to be plotted is put on a uniform grid. The merging of the AMR data to a uniform grid
is accomplished by merge3d_amr.pro which can take a variety of arguments which control
what volume of the domain is to be put onto a uniform grid.

Figure 10 shows the main xflash3d widget. The interface is similar to that of xflash,
so the above description from that section still applies. The major difference is in the zoom
section, which controls the slice plane.

The slice plane button group controls the plane to plot the data in. For a given plane,
the direction orthogonal will have only on active text box to enter zoom information—this
controls the position of the slice plane in the normal direction. For the directions in the slice
plane, the zoom boxes allow you to select a sub-domain in that plane to plot.

4.3.5 The fidlr command-line routines

Table 4 lists all of the £fidlr routines, grouped by function. Most of these routines rely
on the common blocks to get the tree structure necessary to interpret a FLASH dataset.
Command line analysis of FLASH data requires that the common blocks be defined, usually
by executing def_common.pro.
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Table 4: Description of the £idlr routines

FLASH data readers

read_amr.pro

read_amr_hdf5.pro

Read in FLASH data in HDF 4 format. This routine
takes the filename and an optional variable argument and
returns then tree, grid, and unknown information in the
fidlr common blocks.

The HDF 5 version of read_amr.pro. This routine uses
the call_external function to access C wrappers of the
HDF functions stored in h5_wrappers.so. The shared li-
brary must be compiled before using this routine.

Driver routines

xflash.pro

xflashld.pro

xflash3d.pro

xflash_defaults.pro

xcontour.pro

batch.pro

The main driver for 2d datasets. xflash provides
a widget interface to select the variable, data range,
contour options, output type, etc. This routine uses
xflash defaults.pro to define some default problem
types and their options. Once the options are selected,
xplot_amr.pro is used to create the plot.

The main driver for 1d datasets. This widget accepts
options and passes them onto xplotid_amr.pro.

The main driver for 3d datasets. This widget allows you
to select the cut plane (x-y, x-z, y-z) and set the data
options. xplot3d_amr.pro is used to create the plots.

The problem default initialization file. Standard prob-
lems are given an entry in this file, defining the de-
fault values for the plot options. This file is read in
by xflash, xflashid, and xflash3d when the problem
name is changed.

The contour options widget. This allows you to select up
to 4 reference contours to be overplotted on a 2d plot.
This widget is launched by xflash.pro.

An example script showing how to convert a 3d FLASH
dataset to a uniformly gridded single byte block of data
suitable for 3d visualization packages. The block of data
is written in FORTRAN binary format.
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Table 4: fidlr routines—continued

radial.pro

compare.pro

flame_profile.pro

flame_speed.pro

An example script showing how to read in 2d data and
plot a variable as a function of radius from a given point.

A script showing how to loop over a set of files and plot
a series of 1d slices of a variable vs distance.

A script that reads in a FLASH dataset and writes out
a 1d slice of data to an ASCII file.

Read in two FLASH files and compute the speed of a
planar front by differencing.

HDF routines

hdf _read.pro

determine_file_type.pro

Makefile

h5 file_interface.c

h5_read.c

hb5_wrappers.c

h5_wrappers.so

hdf5_idl_interface.h

Wrapper around IDL HDF 4 routines to read in a dataset
given the file handle and dataset name.

IDL procedure to determine if a file is in HDF 4 format
(return 1), HDF 5 format (return 2), or neither (return -
1). This routine uses the built in IDL HDF 4 implementa-
tion and some of the HDF 5 wrappers in h5_wrappers.so.

Makefile for compiling the HDF 5 support on an SGI
IRIX. Other machines should behave similarly, but some
of the compilation flags may differ.

HDF 5 file open and close routines from the FLASH serial
HDF 5 implementation.

Part of the serial HDF 5 FLASH routines, used to read
in the header information from the data file.

Wrappers around the HDF 5 library to read in the dif-
ferent records from the FLASH HDF 5 file.

Shared-object library produced from the above routines.
The IDL routines interface with this object through the

call external function.

Header file for the C wrappers.

Merging routines
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Table 4: fidlr routines—continued

merge3d_amr.pro

merge3d_amr_crn.pro

merge_amr.pro

Merge routine for 3d block structured AMR data. This
routine will resample the FLASH data to put it on a
uniform resolution. If the range keywords are used, a
uniform slice can be created.

As above, but operates on data stored at the zone corners.
This simply averages the data to the zone centers before

proceeding.

2d merging routine, put a dataset onto a uniform grid.

Plotting routines

draw_blocks.pro

vcolorbar.pro

colorbar2.pro

partvelvec.pro

xplotid_amr.pro

xplot3d_amr.pro

xplot_amr.pro

Draw the AMR block boundaries on the plot. This rou-
tine is called from xflash.

Create a vertical colorbar given the data range and color
bounds.

Create a horizontal colorbar.

Overplot the velocity vectors, for velocities that fall
within a specified minimum and maximum velocity. The
vectors are scaled to a typical velocity.

Back end to xflashid—create a plot of a 1d FLASH
dataset, using the options selected in the widget.

Back end to xflash3d—plot a slice through a 3d FLASH
dataset.

Back end to xflash—plot a 2d dataset.

Utility routines

add_var.pro

color.pro

color_gif.pro

add_var is used to add a derived variable to the list of
variables recognized by the xflash routines.

color returns the index into the color table of a color
specified by a string name.

Create a gif of the current plot window.
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Table 4: fidlr routines—continued

courant.pro

def_common.pro

flash_colors.tbl

nolabel.pro

query.pro

queryld.pro
scale3d_amr.pro
scale_color.pro
sci_notat.pro
start.pro

tvimage.pro

undefine.pro

var_index.pro

Loop over the blocks and return the block number where
the Courant condition is set.

Define the common blocks that hold the variables read in
from the read routines. This routine can be used on the
IDL command line so the FLASH data can be analyzed

interactively.

Replacement color table with the standard FLASH col-
ormaps.

A hack used to plot an axis w/o numbers.

A widget routine called by xflash that displays the data
in a cell of the current plot.

Query routine for the 1d data, called from xflashid.
Scale a uniformly gridded 3d dataset into a single byte.
Scale a dataset into a single byte.

Print a number out in scientific notation.

A script used to initialize IDL on the SGIs.

Replacement for tv that will write to postscript or the
screen in device independent manner.

Free up the memory used by a variable.

Return the index into the unk array of the variable label
passed as an argument.

write_brick_f77.pro Write a block of data out to a file in {77 binary format.

IDL command-line example

Most of the fidlr routines can be used directly from the command line to perform
analysis not offered by the different widget interfaces. This section provides an example of
using the fidlr routines.
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Example. Generate a contour plot of density from a 3-d dataset in the z-z plane at the y
midpoint.

IDL> .run def_common

IDL> read_amr, ’filename_hdf_chk 0000’

IDL> sdens = merge3d_amr(unk[var_index(’dens’),*,x,x x], §
IDL> xmerge=x, ymerge=y, zmerge=z)

IDL> help, sdens

sdens FLOAT = Array[256, 256, 256]

IDL> contour, reform(sdens[*,128,%]), x, =z

5 The supplied problems

5.1 Running the FLASH test suite

To verify that FLASH works as expected, and to debug changes in the code, we have cre-
ated a suite of standard test problems. Most of these problems have analytical solutions
which can be used to test the accuracy of the code. The remaining problems do not have
analytical solutions, but they produce well-defined flow features which have been verified by
experiments and are stringent tests of the code. The test suite configuration code is included
with the FLASH source tree (in the setups/ directory), so it is easy to configure and run
FLASH with any of these problems ‘out of the box.” Sample runtime parameter files are also
included. Files containing reference results for the test suite tend to be large and so are dis-
tributed separately (via the FLASH_TEST CVS tree or in archive form as FLASH TEST.tar).
The FLASH_TEST tree also contains the runtime parameter files needed to reproduce the
reference results.

Included with the test suite results is a script named flash_test which automates the
process of comparing test suite results with the reference results. flash test takes one
argument, the machine type (run flash test with no arguments for a list of available
types). It automatically configures and builds FLASH for each of the test problems, builds
the focu output comparison utility (Section 4.2), runs FLASH with each test problem, and
uses focu to compare the results. It prepares a report for the entire suite of problems,
flagging compilation problems, catastrophic runtime errors, and erroneous results. Since
flash test can be quite time-consuming to execute for the full test suite, it is generally a
good idea to execute it as a batch job on the target system. Note that the tests may be run
individually using the runtime parameter files provided with the FLASH test suite. Plots
similar to those in this section can be produced using IDL routines provided with the test
suite; these make use of the FLASH IDL tools (Section 4.3).
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Table 5: Runtime parameters used with the sod test problem.

Variable Type Default Description
rho left real 1 Initial density to the left of the interface

(pL)

rho_right real 0.125 Initial density to the right (pg)

p-left real 1 Initial pressure to the left (pr)

p-right real 0.1 Initial pressure to the right (pgr)

u_left real 0 Initial velocity (perpendicular to interface)
to the left (uy)

u right real 0 Initial velocity (perpendicular to interface)
to the right (ug)

xangle real 0 Angle made by interface normal with the
z-axis (degrees)

yangle real 90 Angle made by interface normal with the
y-axis (degrees)

posn real 0.5 Point of intersection between the interface

plane and the z-axis

5.2 The Sod shock-tube problem

The Sod problem (Sod 1978) is an essentially one-dimensional flow discontinuity problem
which provides a good test of a compressible code’s ability to capture shocks and contact
discontinuities with a small number of zones and to produce the correct density profile in
a rarefaction. It also tests a code’s ability to correctly satisfy the Rankine-Hugoniot shock
jump conditions. When implemented at an angle to a multidimensional grid, it can also be
used to detect irregularities in planar discontinuities produced by grid geometry or operator
splitting effects.

We construct the initial conditions for the Sod problem by establishing a planar interface
at some angle to the x and y axes. The fluid is initially at rest on either side of the interface,
and the density and pressure jumps are chosen so that all three types of flow discontinuity
(shock, contact, and rarefaction) develop. To the “left” and “right” of the interface we have

37
po = 1 pr = 0.1 (37)

The ratio of specific heats v is chosen to be 1.4 on both sides of the interface.

In FLASH, the Sod problem (sod) uses the runtime parameters listed in Table 5 in
addition to the regular ones supplied with the code. For this problem we use the gamma
equation of state module and set the value of the parameter gamma supplied by this module
to 1.4. The default values listed in Table 5 are appropriate to a shock with normal parallel
to the z-axis which initially intersects that axis at = 0.5 (halfway across a box with unit
dimensions).

Figure 11 shows the result of running the Sod problem with FLASH on a two-dimensional
grid, with the analytical solution shown for comparison. The hydrodynamical algorithm used
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Figure 11: Comparison of numerical and analytical solutions to the Sod problem. A 2D grid
with six levels of refinement is used. The shock normal is parallel to the z-axis.
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Figure 13: Density in the diagonal 2D Sod problem with six levels of refinement at t = 0.2.
The outlines of AMR blocks are shown (each block contains 8 x 8 zones).

here is the directionally split piecewise-parabolic method (PPM) included with FLASH. In
this run the shock normal is chosen to be parallel to the z-axis. With six levels of refinement,
the effective grid size at the finest level is 2562, so the finest zones have width 0.00390625.
At t = 0.2 three different nonlinear waves are present: a rarefaction between z = 0.25
and z =~ 0.5, a contact discontinuity at  ~ 0.68, and a shock at x ~ 0.85. The two
sharp discontinuities are each resolved with approximately three zones at the highest level
of refinement, demonstrating the ability of PPM to handle sharp flow features well. Near
the contact discontinuity and in the rarefaction we find small errors of about 1 — 2% in the
density and specific internal energy, with similar errors in the velocity inside the rarefaction.
Elsewhere the numerical solution is exact; no oscillation is present.

Figure 12 shows the result of running the Sod problem on the same two-dimensional grid
with different shock normals: parallel to the z-axis (§ = 0°) and along the box diagonal
(8 = 45°). For the diagonal solution we have interpolated values of density, specific internal
energy, and velocity to a set of 256 points spaced exactly as in the z-axis solution. This
comparison shows the effects of the second-order directional splitting used with FLASH on
the resolution of shocks. At the right side of the rarefaction and at the contact discontinuity
the diagonal solution undergoes slightly larger oscillations (on the order of a few percent)
than the z-axis solution. Also, the value of each variable inside the discontinuity regions
differs between the two solutions by up to 10% in most cases. However, the location and
thickness of the discontinuities is the same between the two solutions. In general shocks at
an angle to the grid are resolved with approximately the same number of zones as shocks
parallel to a coordinate axis.

Figure 13 presents a grayscale map of the density at ¢ = 0.2 in the diagonal solution
together with the block structure of the AMR grid in this case. Note that regions surrounding
the discontinuities are maximally refined, while behind the shock and discontinuity the grid
has de-refined as the second derivative of the density has decreased in magnitude. Because
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zero-gradient outflow boundaries were used for this test, some reflections are present at the
upper left and lower right corners, but at ¢ = 0.2 these have not yet propagated to the center
of the grid.

5.3 The Woodward-Colella interacting blast-wave problem

This problem was originally used by Woodward and Colella (1984) to compare the perfor-
mance of several different hydrodynamical methods on problems involving strong, thin shock
structures. It has no analytical solution, but since it is one-dimensional, it is easy to produce
a converged solution by running the code with a very large number of zones, permitting an
estimate of the self-convergence rate when narrow, interacting discontinuities are present.
For FLASH it also provides a good test of the adaptive mesh refinement scheme.

The initial conditions consist of two parallel, planar flow discontinuities. Reflecting
boundary conditions are used. The density in the left, middle, and right portions of the
grid (pr, pm, and pr, respectively) is unity; everywhere the velocity is zero. The pressure is
large to the left and right and small in the center:

po = 1000 py = 001 pg = 100. (38)

The equation of state is that of a perfect gas with v = 1.4.

Figure 14 shows the density and velocity profiles at several different times in the con-
verged solution, demonstrating the complexity inherent in this problem. The initial pressure
discontinuities drive shocks into the middle part of the grid; behind them, rarefactions form
and propagate toward the outer boundaries, where they are reflected back onto the grid
and interact with themselves. By the time the shocks collide at ¢ = 0.028, the reflected
rarefactions have caught up to them, weakening them and making their post-shock structure
more complex. Because the right-hand shock is initially weaker, the rarefaction on that side
reflects from the wall later, so the resulting shock structures going into the collision from the
left and right are quite different. Behind each shock is a contact discontinuity left over from
the initial conditions (at & 0.50 and 0.73). The shock collision produces an extremely
high and narrow density peak; in the Woodward and Colella calculation the peak density
is slightly less than 30. Even with ten levels of refinement, FLASH obtains a value of only
18 for this peak. Reflected shocks travel back into the colliding material, leaving a complex
series of contact discontinuities and rarefactions between them. A new contact discontinuity
has formed at the point of the collision (z =~ 0.69). By t = 0.032 the right-hand reflected
shock has met the original right-hand contact discontinuity, producing a strong rarefaction
which meets the central contact discontinuity at ¢t = 0.034. Between £ = 0.034 and ¢ = 0.038
the slope of the density behind the left-hand shock changes as the shock moves into a region
of constant entropy near the left-hand contact discontinuity.

Figure 15 shows the self-convergence of density and pressure when FLASH is run on this
problem. For several runs with different maximum refinement levels, we compare the density,
pressure, and total specific energy at t = 0.038 to the solution obtained using FLASH with
ten levels of refinement. This figure plots the L1 error norm for each variable u, defined
using

1 V| g (Nier) — ui(10)
Noetj ) =~ i Ved) — WA
Vi) = g | | (39)
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Figure 14: Density and velocity profiles in the Woodward-Colella interacting blast-wave
problem, as computed by FLASH using ten levels of refinement.
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Figure 15: Self-convergence of the density, pressure, and total specific energy in the 2blast
test problem.

against the effective number of zones (N(NV)) at the highest level of refinement N¢. In
computing this norm, both the ‘converged’ solution u(10) and the test solution u(Ny) are
interpolated onto a uniform mesh having N(N.s) zones. Values of N, between 2 (cor-
responding to cell size Az = 1/16) and 9 (Az = 1/2048) are shown. Although PPM is
formally a second-order method, one sees from this plot that, for the interacting blast-wave
problem, the convergence rate is only linear. Indeed, in their comparison of the performance
of seven nominally second-order hydrodynamic methods on this problem, Woodward and
Colella found that only PPM achieved even linear convergence; the other methods were
worse. The error norm is very sensitive to the correct position and shape of the strong,
narrow shocks generated in this problem.

The additional runtime parameters supplied with the 2blast problem are listed in Table
6. This problem is configured to use the perfect-gas equation of state (gamma), and it is run
in a two-dimensional unit box with gamma set to 1.4. Boundary conditions in the y direction
(transverse to the shock normals) are taken to be periodic.

5.4 The Sedov explosion problem

The Sedov explosion problem (Sedov 1959) is another purely hydrodynamical test in which
we check the code’s ability to deal with strong shocks and non-planar symmetry. The problem
involves the self-similar evolution of a cylindrical or spherical blast wave from a delta-function
initial pressure perturbation in an otherwise homogeneous medium. To initialize the code,
we deposit a quantity of energy £ = 1 into a small region of radius ér at the center of the
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Table 6: Runtime parameters used with the 2blast test problem.

Variable Type Default Description

rho_left real 1 Initial density to the left of the left inter-
face (pL)

rho_mid real 1 Initial density between the interfaces (py)

rho_right real 1 Initial density to the right of the right in-
terface (pr)

p-left real 1000 Initial pressure to the left (py,)

p-mid real  0.01 Initial pressure in the middle (py)

p_right real 100 Initial pressure to the right (pgr)

u_left real 0 Initial velocity (perpendicular to interface)
to the left (ug)

u_mid real 0 Initial velocity (perpendicular to interface)
in the middle (uy,)

u right real 0 Initial velocity (perpendicular to interface)
to the right (ug)

xangle real 0 Angle made by interface normal with the
z-axis (degrees)

yangle real 90 Angle made by interface normal with the
y-axis (degrees)

posnL real 0.1 Point of intersection between the left inter-
face plane and the z-axis

posnR real 0.9 Point of intersection between the right in-

terface plane and the x-axis
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grid. The pressure inside this volume, pj, is given by

;o 3(7_ I)E

_ 20— )r 4
Po (v+1D)mor’ (40)

where v = 2 for cylindrical geometry and v = 3 for spherical geometry. We set v =
1.4. (In running this problem we choose §r to be 3.5 times as large as the finest adaptive
mesh resolution in order to minimize effects due to the Cartesian geometry of our grid.)
Everywhere the density is set equal to pg = 1, and everywhere but the center of the grid
the pressure is set to a small value, po = 1075. The fluid is initially at rest. In the self-
similar blast wave which develops for ¢t > 0, the density, pressure, and radial velocity are all
functions of £ = r/R(t), where

B2 1/(v+2)
—t> . (41)

Po

Rt = 6o

Here C, is a dimensionless constant depending only on v and «v; for y =14, Cy, =~ (3 =~ 1
to within a few percent. Just behind the shock front at £ = 1 we have

_ y+1
pP= p = Po
v—1
== s (42)
b= p1 = fy—i-lpou
2
V= U = ——U,
v+1

where u = dR/dt is the speed of the shock wave. Near the center of the grid,

p(&)/p o g0
p(€)/p1 = constant . (43)
v()/v1 ox €

Figure 16 shows density, pressure, and velocity profiles in the two-dimensional Sedov
problem at ¢ = 0.05. Solutions obtained with FLASH on grids with 2, 4, 6, and 8 levels
of refinement are shown in comparison with the analytical solution. In this figure we have
computed average radial profiles in the following way. We interpolated solution values from
the adaptively gridded mesh used by FLASH onto a uniform mesh having the same reso-
lution as the finest AMR blocks in each run. Then, using radial bins with the same width
as the zones in the uniform mesh, we binned the interpolated solution values, computing
the average value in each bin. At low resolutions, errors show up as density and velocity
overestimates behind the shock, underestimates of each variable within the shock, and a
numerical precursor spanning 1-2 zones in front of the shock. However, the central pressure
is accurately determined, even for two levels of refinement; because the density goes to a
finite value rather than its correct limit of zero, this corresponds to a finite truncation of the
temperature (which should go to infinity as » — 0). As resolution improves, the artificial
finite density limit decreases; by N, = 6 it is less than 0.2% of the peak density. Except
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Figure 16: Comparison of numerical and analytical solutions to the Sedov problem in two
dimensions. Numerical solution values are averages in radial bins at the finest AMR grid
resolution in each run.
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Figure 17: Pressure field in the 2D Sedov explosion problem with 8 levels of refinement at
t = 0.05. Overlaid on the pressure colormap are the outlines of the AMR blocks.

for the Ny = 2 case, which does not show a well-defined peak in any variable, the shock
itself is always captured with about two zones. The region behind the shock containing 90%
of the swept-up material is represented by four zones in the N, = 4 case, 17 zones in the
N, = 6 case, and 69 zones for N, = 8. However, because the solution is self-similar, for
any given maximum refinement level the shock will be four zones wide at a sufficiently early
time. The behavior when the shock is underresolved is to underestimate the peak value of
each variable, particularly the density and pressure.

Figure 17 shows the pressure field in the 8-level calculation at ¢t = 0.05 together with
the block refinement pattern. Note that a relatively small fraction of the grid is maximally
refined in this problem. Although the pressure gradient at the center of the grid is small,
this region is refined because of the large temperature gradient there. This illustrates the
ability of PARAMESH to refine grids using several different variables at once.

We have also run FLASH on the spherically symmetric Sedov problem in order to verify
the code’s performance in three dimensions. The results at ¢ = 0.05 using five levels of
grid refinement are shown in Figure 18. In this figure we have plotted the root-mean-square
(RMS) numerical solution values in addition to the average values. As in the two-dimensional
runs, the shock is spread over about two zones at the finest AMR resolution in this run. The
width of the pressure peak in the analytical solution is about 1 1/2 zones at this time, so
the maximum pressure is not captured in the numerical solution. Behind the shock the
numerical solution average tracks the analytical solution quite well, although the Cartesian
grid geometry produces RMS deviations of up to 40% in the density and velocity in the
derefined region well behind the shock. This behavior is similar to that exhibited in the
two-dimensional problem at comparable resolution.

The additional runtime parameters supplied with the sedov problem are listed in Table
7. This problem is configured to use the perfect-gas equation of state (gamma), and it is run
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Sedov problem. A 3D grid with five levels of refinement is used.
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Table 7: Runtime parameters used with the sedov test problem.

Variable Type Default Description

p_-ambient real 107° Initial ambient pressure (py)

rho_ambient real 1 Initial ambient density (po)

exp_energy real 1 Explosion energy (E)

r_init real  0.05 Radius of initial pressure perturbation (4r)
Xctr real 0.5 z-coordinate of explosion center

yctr real 0.5 y-coordinate of explosion center

zctr real 0.5 z-coordinate of explosion center

in a unit box with gamma set to 1.4.

5.5 The advection problem

In this problem we create a planar density pulse in a region of uniform pressure p, and
velocity ug, with the velocity normal to the pulse plane. The density pulse is defined via

p(s) = prd(s/w) + po[1 — ¢(s/w)] , (44)

where s is the distance of a point from the pulse midplane, w is the characteristic width of
the pulse, and the pulse shape function ¢ is, for a square pulse,

sw@={ o 51 (45)

and for a Gaussian pulse,

dap(€) = ¢ . (46)
For these initial conditions the Euler equations reduce to a single wave equation with wave
speed ug; hence the density pulse should move across the computational volume at this speed
without changing shape. Advection problems similar to this were first proposed by Boris
and Book (1973) and Forester (1977).

The advection problem tests the ability of the code to handle planar geometry, as does
the Sod problem. It is also like the Sod problem in that it tests the code’s treatment of
flow discontinuities which move at one of the characteristic speeds of the hydrodynamical
equations. (This is difficult because noise generated at a sharp interface, such as the contact
discontinuity in the Sod problem, tends to move with the interface, accumulating there as the
calculation advances.) However, unlike the Sod problem it compares the code’s treatment of
leading and trailing contact discontinuities (for the square pulse), and it tests the treatment of
narrow flow features (for both the square and Gaussian pulse shapes). Many hydrodynamical
methods have a tendency to clip narrow features or to distort pulse shapes by introducing
artificial dispersion and dissipation (Zalesak 1987).

The additional runtime parameters supplied with the advect problem are listed in Table
8. This problem is configured to use the perfect-gas equation of state (gamma), and it is run
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Table 8: Runtime parameters used with the advect test problem.

Variable Type Default Description

rhoin real 1 Characteristic density inside the advected
pulse (p1)

rhoout real 1075 Ambient density (po)

pressure  real 1 Ambient pressure (pg)

velocity  real 10 Ambient velocity (ug)

width real 0.1 Characteristic width of advected pulse (w)

pulse fctn integer 1 Pulse shape function to use: 1=square
wave, 2=Gaussian

xangle real 0 Angle made by pulse plane with z-axis (de-
grees)

yangle real 90 Angle made by pulse plane with y-axis (de-
grees)

posn real 0.25 Point of intersection between pulse mid-

plane and z-axis

in a unit box with gamma set to 1.4. (The value of v does not affect the analytical solution,
but it does affect the timestep.)

To demonstrate the performance of FLASH on the advection problem, we have performed
tests of both the square and Gaussian pulse profiles with the pulse normal parallel to the
z-axis (f = 0°) and at an angle to the z-axis (6 = 45°) in two dimensions. The square pulse
used p; = 1, pp = 1073, pop = 1075 wy = 1, and w = 0.1. With six levels of refinement
in the domain [0, 1] x [0, 1], this value of w corresponds to having about 52 zones across
the pulse width. The Gaussian pulse tests used the same values of p;, po, po, and ug, but
with w = 0.015625. This value of w corresponds to about 8 zones across the pulse width
at six levels of refinement. For each test we performed runs at two, four, and six levels of
refinement to examine the quality of the numerical solution as the resolution of the advected
pulse improves. The runs with § = 0° used zero-gradient (outflow) boundary conditions,
while the runs performed at an angle to the z-axis used periodic boundaries.

Figure 19 shows, for each test, the advected density profile at ¢ = 0.4 in comparison
with the analytical solution. The upper two frames of this figure depict the square pulse
with 8 = 0° and 8 = 45°, while the lower two frames depict the Gaussian pulse results. In
each case the analytical density pulse has been advected a distance ugt = 0.4, and in the
figure the axis parallel to the pulse normal has been translated by this amount, permitting
comparison of the pulse displacement in the numerical solutions with that of the analytical
solution.

The advection results show the expected improvement with increasing AMR refinement
level N,er. Inaccuracies appear as diffusive spreading, rounding of sharp corners, and clipping.
In both the square pulse and Gaussian pulse tests, diffusive spreading is limited to about
one zone on either side of the pulse. For N, = 2 the rounding of the square pulse and the
clipping of the Gaussian pulse are quite severe; in the latter case the pulse itself spans about
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Figure 19: Density pulse in the advection tests for 2D grids at ¢ = 0.4. Symbols represent
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two zones, which is the approximate smoothing length in PPM for a single discontinuity.
For N, = 4 the treatment of the square pulse is significantly better, but the amplitude of
the Gaussian is still reduced by about 50%. In this case the square pulse discontinuities
are still being resolved with 2—-3 zones, but the zones are now a factor of 25 smaller than
the pulse width. With six levels of refinement the same behavior is observed for the square
pulse, while the amplitude of the Gaussian pulse is now 93% of its initial value. The absence
of dispersive effects (ie. oscillation) despite the high order of the PPM interpolants is due to
the enforcement of monotonicity in the PPM algorithm.

The diagonal runs are consistent with the runs which were parallel to the z-axis, with
the possibility of a slight amount of extra spreading behind the pulse. However, note that
we have determined density values for the diagonal runs by interpolation along the grid
diagonal. The interpolation points are not centered on the pulses, so the density does not
always take on its maximum value (particularly in the lowest-resolution case).

These results are consistent with earlier studies of linear advection with PPM (e.g.,
Zalesak 1987). They suggest that, in order to preserve narrow flow features in FLASH, the
maximum AMR refinement level should be chosen so that zones in refined regions are at least
a factor 5-10 smaller than the narrowest features of interest. In cases in which the features
are generated by shocks (rather than moving with the fluid), the resolution requirement is
not as severe, as errors generated in the preshock region are driven into the shock rather
than accumulating as it propagates.

5.6 The problem of a wind tunnel with a step

The problem of a wind tunnel containing a step was first described by Emery (1968), who
used it to compare several hydrodynamical methods which are only of historical interest now.
Woodward and Colella (1984) later used it to compare several more advanced methods,
including PPM. Although it has no analytical solution, this problem is useful because it
exercises a code’s ability to handle unsteady shock interactions in multiple dimensions. It
also provides an example of the use of FLASH to solve problems with irregular boundaries.
The problem uses a two-dimensional rectangular domain three units wide and one unit
high. Between x = 0.6 and z = 3 along the z-axis is a step 0.2 units high. The step is
treated as a reflecting boundary, as are the lower and upper boundaries in the y direction.
For the right-hand z boundary we use an outflow (zero gradient) boundary condition, while
on the left-hand side we use an inflow boundary. In the inflow boundary zones we set the
density to pg, the pressure to py, and the velocity to ug, with the latter directed parallel to
the z-axis. The domain itself is also initialized with these values. For the Emery problem

we use
po=14 p =1 y=14 uy=3, (47)

which corresponds to a Mach 3 flow. Because the outflow is supersonic throughout the
calculation, we do not expect reflections from the right-hand boundary.

The additional runtime parameters supplied with the windtunnel problem are listed in
Table 9. This problem is configured to use the perfect-gas equation of state (gamma) with
gamma set to 1.4. We also set xmax = 3, ymax = 1, Nblockx = 15, and Nblocky = 4 in order
to create a grid with the correct dimensions. The version of divide_domain supplied with
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Figure 20: Density and velocity in the Emery wind tunnel test problem, as computed with
FLASH. A 2D grid with five levels of refinement is used.
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Figure 20: Density and velocity in the Emery wind tunnel test problem (continued).
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this problem adds three top-level blocks along the lower left-hand corner of the grid to cover
the region in front of the step. Finally, we use x1boundary = —23 (user boundary condition)
and xrboundary = —21 (outflow boundary) to instruct FLASH to use the correct boundary
conditions in the z direction. Boundaries in the y direction are reflecting (—20).

Until ¢ = 12 the flow is unsteady, exhibiting multiple shock reflections and interactions
between different types of discontinuity. Figure 20 shows the evolution of density and veloc-
ity between ¢t = 0 and ¢ = 4 (the period considered by Woodward and Colella). Immediately
a shock forms directly in front of the step and begins to move slowly away from it. Simulta-
neously the shock curves around the corner of the step, extending farther downstream and
growing in size until it strikes the upper boundary just after ¢ = 0.5. The corner of the step
becomes a singular point, with a rarefaction fan connecting the still gas just above the step
to the shocked gas in front of it. Entropy errors generated in the vicinity of this singular
point produce a numerical boundary layer about one zone thick along the surface of the
step. Woodward and Colella reduce this effect by resetting the zones immediately behind
the corner to conserve entropy and the sum of enthalpy and specific kinetic energy through
the rarefaction. However, we are less interested here in reproducing the exact solution than
in verifying the code and examining the behavior of such numerical effects as resolution is
increased, so we do not apply this additional boundary condition. The errors near the corner
result in a slight overexpansion of the gas there and a weak oblique shock where this gas
flows back toward the step. At all resolutions we also see interactions between the numerical
boundary layer and the reflected shocks which appear later in the calculation.

By t = 1 the shock reflected from the upper wall has moved downward and has almost
struck the top of the step. The intersection between the primary and reflected shocks begins
at x ~ 1.45 when the reflection first forms at ¢ ~ 0.65, then moves to the left, reaching
x =~ 0.95 at t = 1. As it moves, the angle between the incident shock and the wall increases
until ¢ = 1.5, at which point it exceeds the maximum angle for regular reflection (40° for
v = 1.4) and begins to form a Mach stem. Meanwhile the reflected shock has itself reflected
from the top of the step, and here too the point of intersection moves leftward, reaching
x ~ 1.65 by t = 2. The second reflection propagates back toward the top of the grid,
reaching it at t = 2.5 and forming a third reflection. By this time in low-resolution runs
we see a second Mach stem forming at the shock reflection from the top of the step; this
results from the interaction of the shock with the numerical boundary layer, which causes
the angle of incidence to increase faster than in the converged solution. Figure 21 compares
the density field at ¢t = 4 as computed by FLASH using several different maximum levels
of refinement. Note that the size of the artificial Mach reflection diminishes as resolution
improves.

The shear zone behind the first (“real”) Mach stem produces another interesting numer-
ical effect, visible at t = 3 and ¢ = 4: Kelvin-Helmholtz amplification of numerical errors
generated at the shock intersection. The wave thus generated propagates downstream and is
refracted by the second and third reflected shocks. This effect is also seen in the calculations
of Woodward and Colella, although their resolution was too low to capture the detailed eddy
structure we see. Figure 22 shows the detail of this structure at ¢t = 3 on grids with several
different levels of refinement. The effect does not disappear with increasing resolution, for
two reasons. First, the instability amplifies numerical errors generated at the shock inter-
section, no matter how small. Second, PPM captures the slowly moving, nearly vertical
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Figure 21: Density at ¢ = 4 in the Emery wind tunnel test problem, as computed with
FLASH using several different levels of refinement.
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Figure 22: Detail of the Kelvin-Helmholtz instability seen at ¢ = 3 in the Emery wind tunnel
test problem for several different levels of refinement.
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Table 9: Runtime parameters used with the windtunnel test problem.

Variable Type Default Description
p-ambient real 1 Ambient pressure (pg)
rho_ambient real 14 Ambient density (po)
wind vel real 3 Inflow velocity (uo)

Mach stem with only 1-2 zones on any grid, so as it moves from one column of zones to
the next, artificial kinks form near the intersection, providing the seed perturbation for the
instability. This effect can be reduced by using a small amount of extra dissipation to smear
out the shock, as discussed by Colella and Woodward (1984). This tendency of physical
instabilities to amplify numerical noise vividly demonstrates the need to exercise caution
when interpreting features in supposedly converged calculations.

Finally, we note that in high-resolution runs with FLASH we also see some Kelvin-
Helmholtz rollup at the numerical boundary layer along the top of the step. This is not
present in Woodward and Colella’s calculation, presumably because their grid resolution is
lower (corresponding to two levels of refinement for us) and because of their special treatment
of the singular point.

6 Going further with FLASH

FLASH is designed to be easy to configure, use, and extend. Configuration and use involve
selecting particular sets of initial and boundary conditions, physics modules, and solution
algorithms, as well as setting the values of parameters which control the simulation. Ex-
tension involves the addition of new problems, physics, and algorithms to suit the user’s
requirements. In this section we describe in some detail the structure of the FLASH source
code, the format of the configuration files, and the runtime parameters and output formats
available. We also discuss the steps a user needs to take in order to customize the code.

6.1 The FLASH code architecture

An abstract representation of the first-generation FLASH code architecture appears in Fig-
ure 23. In this figure, solid lines with triangles denote inheritance relationships, while dashed
lines indicate instantiation relationships. Each box represents a class, which supplies data
structures to its subclasses and methods to its calling classes. Italicized method names
represent virtual functions, which are satisfied by subclasses. As this figure shows, the
driver module controls the principal data structures used by the code, making them avail-
able to solver objects that it instantiates from the various classes of physics solvers. For
time-dependent problems, the driver uses time-splitting techniques to compose the differ-
ent solvers. The solvers are divided into different classes on the basis of their ability to be
composed in this fashion and upon natural differences in solution method (e.g., hyperbolic
solvers for hydrodynamics, elliptic solvers for radiation and gravity, ODE solvers for source

98



Mesh
Init()
fill_guardcells()

test_refinement()

refine_derefine()

A A

|Paramesh] | Uniform |

Materials

eos_3d()
eos()
abund_renorm()
query_iso_db()

Gravity

Init()

tstep()
set_ext_guardcell()

gravity 3d()
J

Source_terms

Init()

tstep()
src_terms()

constant |

point_mass

| EOS | kcompositior
/\

—
oisson_|

A [Multigammal
|_Multigrid || Muttipole | | Helmholiz |

Figure 23: Architecture of the FLASH code.

terms, etc.). The adaptive mesh refinement library is treated in the same way as the solvers.
The means by which the driver shares data with the solver objects is the primary way in
which the architecture affects the overall performance of the code. Choices here, in order of
decreasing performance and increasing flexibility, include global memory, argument-passing,
and messaging. For historical reasons, and for the sake of performance, FLASH 1.x uses
global memory to manage many of these interfaces.

The codes we have brought together in FLASH — including the PROMETHEUS hydrody-
namical solver, specialized equation-of-state and nuclear burning codes, and the PARAMESH
adaptive mesh refinement library — were written primarily in FORTRAN 77. This language,
while efficient, does not by itself support objects or many of the other features needed to
construct a modular architecture. However, Fortran 90 does offer some object capability,
and it provides a straightforward migration path from FORTRAN 77, since the latter is a
subset of the former. Thus we chose Fortran 90 as the integration language for FLASH 1.x.
Using the module capability of Fortran 90, we have replaced many of the formerly global
data structures in FLASH (e.g., runtime parameters) with container classes that provide
externally visible accessor methods. This allows solvers to access global information on their
own terms without having to declare common variables. The global memory associated with
the mesh data structure has been retained in FLASH 1.x, but FLASH 2.0, currently being
tested, replaces this too with an appropriate container class.

While Fortran 90 provides some object-oriented features (Decyk, Norton, & Szymanski
1997), it does not support true inheritance or polymorphism. This limits its runtime flex-
ibility and requires us to set class relationships at compilation instead — a procedure that
is feasible only if compilation is relatively fast, as it is for FLASH. In any case, configuring
FLASH at compilation time makes it much easier for the compiler to produce aggressively
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Figure 24: Setup process for FLASH 1.x.

optimized code, since it does not have to anticipate all possible class interactions.

To provide inheritance and polymorphism at compilation we have created a configuration
system consisting of a configuration script and several plaintext configuration files (one for
each class) that describe the relationships between classes and subclasses — for example,
which of the other classes a given class requires in order to function. The source code
and configuration files for the classes are stored in a directory structure that corresponds
directly to the class structure. The user specifies the classes to include in the code via a
plaintext file that is taken as input by the configuration script. The script then parses the
appropriate configuration files, constructing a build directory containing the requested source
code, checking along the way for illegal combinations or missing requirements. The setup
script also constructs makefiles for the different classes by concatenating makefile fragments
supplied by each subclass. It then generates a master makefile that calls the various class
makefiles. After running the setup script, the user builds the code by invoking gmake. A
schematic representation of this procedure appears in Figure 24.

6.1.1 Code infrastructure

The structure of the FLASH source tree reflects the class structure of the code, as shown
in Figure 25. The general plan is that source code is organized into one set of directories,
while the code is built in a separate directory using links to the appropriate source files. The
links are created by a source configuration script called setup, which makes the links using
options selected by the user and then creates an appropriate makefile in the build directory.
The user then builds the executable with a single invocation of gmake.

Source code for each of the different code modules is stored in subdirectories under
source/. The code modules implement different physics, such as hydrodynamics, nuclear
burning, and gravity, or different major program components, such as the main driver code
and the input/output code. Each module directory contains source code files, makefile
fragments indicating how to build the module, and a configuration file (see Section 6.1.2).
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Each module subdirectory may also have additional sub-module directories underneath
it. These contain code, makefiles, and configuration files specific to different variants of the
module. For example, the hydro/ module directory can contain files which are generic to
hydrodynamical solvers, while its explicit/ subdirectory contains files specific to explicit
hydro schemes and its implicit/ subdirectory contains files specific to implicit solvers.
Configuration files for other modules which need hydrodynamics can specify hydro as a
requirement without mentioning a specific solver; the user can then choose one solver or the
other when building the code (via the Modules file; Section 6.1.3). When setup configures
the source tree it treats each sub-module as inheriting all of the source code, configuration
files, and makefiles in its parent module’s directory, so generic code does not have to be
duplicated. Sub-modules can themselves have sub-modules, so for example one might have
hydro/explicit/split/ppm and hydro/implicit/ppm. Source files at a given level of the
directory hierarchy override files with the same name at higher levels, whereas makefiles
and configuration files are cumulative. This permits modules to supply stub routines that
are treated as ‘virtual functions’ to be overridden by specific sub-modules, and it permits
sub-module directories to be self-contained.

When a module is not explicitly included by Modules, only one thing is done differently
by setup: sub-modules are not included, except for a null sub-module, if it is present. Most
top-level modules should contain only stub files to be overridden by sub-modules, so this
behavior allows the module to be ‘not included’ without extra machinery (such as the special
stub files and makefiles required by earlier versions of FLASH). In those cases in which the
module’s files are not appropriate for the ‘not included’ case, the null sub-module allows
one to override them with appropriate versions.

New solvers and new physics can be added. At the current stage of development of
FLASH it is probably best to consult the authors of FLASH (see Section 7) for assistance
in this. Some general guidelines for adding solvers to FLASH 1.6 may be found in Section
6.1.5 and Section 6.4.

An additional subdirectory of source/ called sites/ contains code specific to different
installations (eg., sphere.uchicago.edu), each of which has its own directory. Each of
these directories contains a makefile fragment called Makefile.h that is used to set machine-
dependent compilation flags and so forth. In addition, special versions of any routines which
are needed for each architecture are included in these directories. In future versions of FLASH
we expect to generate site-dependent directories using the GNU configure command.

The setups/ directory has a structure similar to that of source/. In this case, however,
each of the “modules” represents a different initial model or problem, and the problems are
mutually exclusive; only one is included in the code at a time. Also, the problem directories
have no equivalent of sub-modules. A makefile fragment specific to a problem need not be
present, but if it is, it is called Makefile. Section 6.3 describes how to add new problem
directories.

The setup script creates a directory called object/ in which the executable is built.
In this directory setup creates links to all of the source code files found in the specified
module and sub-module directories as well as the specified problem directory. (A source
code file has the extension .c, .C, .£90, .F90, .f, .F, .fh or .h.) Because the problem
setup directory and the machine-dependent directory are scanned last, links to files in these
directories override the “defaults” taken from the source/ tree. Hence special variants of
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routines needed for a particular problem can be used in place of the standard versions by
simply giving the files containing them the same names.

Using information from the configuration files in the specified module and problem direc-
tories, setup creates a file named init_global_parms.f90 to parse the runtime parameter
file and initialize the runtime parameter database. It also creates a file named rt_parms.txt,
which concatenates all of the PARAMETER statements found in the appropriate configu-
ration files and so can be used as a “master list” of all of the runtime parameters available
to the executable.

setup also creates makefiles in object/ for each of the included modules. Each copy is
named Makefile.module, where module is driver, hydro, gravity, and so forth. Each of
these files is constructed by concatenating the makefiles found in each included module path.
So, for example, including hydro/explicit/split/ppm causes Makefile.hydro to be gen-
erated from files named Makefile in hydro/, hydro/explicit/, hydro/explicit/split/,
and hydro/explicit/split/ppm/. If the module is not explicitly included, then only
hydro/Makefile is used, under the assumption that the subroutines at this level are to be
used when the module is not included. The setup script creates a master makefile (Makefile)
in object/ which includes all of the different modules’ makefile fragments together with the
site- or operating system-dependent Makefile.h.

The master makefile created by setup creates a temporary subroutine, buildstamp.f,
which echoes the date, time, and location of the build to the FLASH log file when FLASH
is run. To ensure that this subroutine is regenerated each time the executable is linked, the
makefile deletes buildstamp.f immediately after compiling it.

The setup script can be run with the -portable option to create a directory with real
files which can be collected together with tar and moved elsewhere for building. In this
case the build directory is assigned the name object_problem/. Further information on the
options available with setup may be found in Section 4.1.

Additional directories included with FLASH are tools/, which contains tools for working
with FLASH and its output (Section 4), and docs/, which contains documentation for
FLASH (including this user’s guide) and the PARAMESH library.

6.1.2 Configuration files

Information about module dependencies, default sub-modules, runtime parameter defini-
tions, and so on is stored in plain text files named Config in the different module directo-
ries. These are parsed by setup when configuring the source tree and are used to create the
Fortran code needed to implement the runtime parameters, choose sub-modules when only a
generic module has been specified, prevent mutually exclusive modules from being included
together, and to flag problems when dependencies are not resolved by some included module.
In the future they may contain additional information about module interrelationships. An
example Config file appears in Figure 26.

The syntax of the configuration files is as follows. Arbitrarily many spaces and/or tabs
may be used, but all keywords must be in uppercase. Lines not matching an admissible
pattern are ignored. (Someday soon they will generate a syntax error.)

# comment A comment. Can appear at the end of a line.
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DEFAULT sub-module
Specify which sub-module of the current module is to be used as a de-
fault if a specific sub-module has not been indicated in the Modules file
(Section 6.1.3). For example, the Config file for the materials/eos
module specifies gamma as the default sub-module. If no sub-module is
explicitly included (ie. INCLUDE materials/eos is placed in Modules),
then this command instructs setup to assume that the gamma sub-
module was meant (as though INCLUDE materials/eos/gamma had
been placed in Modules).

EXCLUSIVE sub-module...
Specify a list of sub-modules that cannot be included together. If no
EXCLUSIVE instruction is given, it is perfectly legal to simultaneously
include more than one sub-module in the code.

REQUIRES module//sub-module[/sub-module...]]
Specify a module requirement. Module requirements can be general,
not specifying sub-modules, so that module dependencies can be inde-
pendent of particular algorithms. For example, the statement REQUIRES
eos in a module’s Config file indicates to setup that the eos module
is needed by this module. No particular equation of state is specified,
but some EOS is needed, and as long as one is included by Modules,
the dependency will be satisfied. More specific dependencies can be in-
dicated by specifying sub-modules. For example, materials/eos is
a module with several possible sub-modules, each corresponding to
a different equation of state. To specify a requirement for, eg., the
Helmholtz EOS, use REQUIRES materials/eos/helmholtz. Giving a
complete set of module requirements is helpful to the end user, because
setup uses them to generate the Modules file when invoked with the
-defaults option.

PARAMETER name type default
Specify a runtime parameter. Parameter names are unique up to 20
characters and may not contain spaces. Admissible types are REAL
(or DOUBLE), INTEGER, STRING, and BOOLEAN (or LOGICAL).
Default values for REAL and INTEGER parameters must be valid
numbers, or compilation will fail. Default STRING values can be un-
quoted (in which case only the first word is recognized) or enclosed
in double quotes ("). Default BOOLEAN values must be TRUE or
FALSE to avoid compilation errors. Once defined, runtime parameters
are available to the entire code.

6.1.3 Module files

The Modules file, which is created in the FLASH root directory either by the user or by setup
-defaults, is used by setup to specify the particular code modules (and sub-modules) to
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# Configuration file for hydro module
DEFAULT explicit

EXCLUSIVE explicit implicit

REQUIRES driver/time_dep

REQUIRES materials/eos

REQUIRES mesh

PARAMETER eint_switch REAL 1.e-4
# below this cutoff, use internal energy from evolution equation

Figure 26: Example of a Config file used by setup to configure a hydro solver module.

include. It allows the user to combine desired variants of the different code modules or
to use different solution algorithms while still satisfying the dependencies of the different
modules. The setup script terminates with an error if all of the dependencies of the different
included modules are not satisfied by some other included module. The format of this file
is similar to that of the configuration files (Section 6.1.2), but only two types of instruction
are recognized:

# comment A comment. Can appear at the end of a line.

INCLUDE rmodule//sub-module[/sub-module...]]
Specify a module (and optionally a sub-module) to include in the
source configuration. If no sub-module is specified, and the config-
uration file for the specified module has a default sub-module, then
that default will be used. For example, if the materials/eos mod-
ule is specified, then its default sub-module gamma will be used;
if materials/eos/helmholtz is specified, then the helmholtz sub-
module will be used.

An example Modules file appears in Figure 4.

6.1.4 Runtime parameters

Runtime parameters are used to control the initial model, the various physics modules,
and the behavior of the simulation. They are made available to FLASH via the setup
configuration files described in Section 6.1.2. Their values can be set at runtime through
the runtime parameter file and can be changed without requiring the user to rebuild the
executable.

The runtime parameter file is a plain text file with the following format. Each line is
either a comment (denoted by a hash mark, #), blank, or of the form variable = value. String
values are enclosed in double quotes ("). Boolean values are indicated in the Fortran style,
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.true. or .false. Comments may appear at the end of a variable assignment line. An
example parameter file may be found in Figure 1.

By default FLASH looks for a parameter file named flash.par in the directory from
which it is run. An alternative file name can be specified as a command-line argument when
FLASH is run.

In Section 6.1.5, Tables 11-16 list the runtime parameters made available by the different
code modules included with FLASH. Please see Section 5 for more information on runtime
parameters specific to each of the test problems supplied with FLASH.

6.1.5 Code modules

Currently this section is out-of-date. It refers to FLASH 1.0. However, it should
still be helpful in understanding FLASH 1.6.

In this section we describe in turn each of the code modules included with FLASH, to-
gether with its available sub-modules and runtime parameters. We also discuss the ways in
which new solvers or new physics modules must interact with each module in order to work
with FLASH 1.0. Tables 11-16 list the runtime parameters for each module. More detailed
descriptions of the algorithms included with FLASH may be found in Section 3.

Driver module (driver)

This module contains the main program and administrative subroutines which are not
tied to any specific physics module. The driver module in FLASH 1.0 is oriented toward
hyperbolic problems. Hence its major functions include setting initial conditions, calling
output routines (which are handled by the io module) periodically, and managing the forward
time advance of the simulation (including the calculation of the timestep).

The driver module also provides the global data context for FLASH. Most physics mod-
ules access this context by including the file common.fh, which itself includes the other
include files needed by the driver (hence these other files need not be explicitly included).
Since common.fh and its brethren use preprocessor statements, subroutines which include it
have

#include "common.fh"
as their first statement. The include files included by common.fh are:

readparm.fh, which contains declarations needed by the runtime parameter
parser, including the runtime parameter buffers;

rt_vars.fh, which is generated by setup and includes all runtime parameter
declarations, their default settings, and their equivalences to the runtime param-

eter buffers;

constants.fh, which contains declarations and settings for physical constants;
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definitions.fh, which contains code constant declarations;

physicaldata.fh, tree.fh, workspace.fh, and block_boundary_data.fh, which
contain constant and array declarations for the block-structured mesh data struc-
ture used by the code; and

mpif.h, which contains Fortran constant declarations for use with the Message-
Passing Interface library. This file is provided as part of the MPI distribution,
not with FLASH.

Users wishing to use or extend FLASH need not edit any of these files. However, the file
physicaldata.fh sets two constants, maxblocks and nuc2, which are important. maxblocks
sets the maximum number of AMR blocks which may be allocated to a given processor.
Normally this may be set at compile time using setup -maxblocks. The second constant,
nuc?2, determines the number of nuclear abundances to track. The default value is 13. For
problems not requiring nuclear burning, it may be desirable to set this to a smaller value
in order to reduce memory usage; however, this is not required. At present nuc2 can only
be changed by editing physicaldata.fh. (Note that if you wish to increase nuc2 and
turn nuclear burning on, you should also increase the ionmax parameter, which is set in
iso13.fh.)

Table 11: Runtime parameters used with the driver

module.

Variable Type Default Description

basenm string chkpnt_ File name prefix for checkpoint files (in-
cluding the file to start from, if restart =
.true.)

nend integer 100 Maximum number of timesteps to take be-
fore halting the simulation

nrstrt integer 10000 Maximum number of steps to take before
creating a checkpoint file

restart boolean .false. Set to .true. to restart the simulation from
a checkpoint file

tmax real 1 Maximum simulation time to advance be-
fore halting the simulation

trstrt real 1 Maximum simulation time to advance be-
fore creating a checkpoint file

dtini real 10710 Initial timestep

small real 1010 Generic small cutoff value for positive def-
inite quantities

smlrho real 10710 Cutoff value for density

smallp/e/t/u/x real 10710 Cutoff values for pressure, energy, temper-
ature, velocity, and nuclear abundances

nsdim integer 2 Grid dimensionality

67



Table 11: Runtime parameters used with the driver
module (continued)

x/y/zmin real 0 Minimum z, y, and z coordinates for grid
x/y/zmax real 1 Maximum z, y, and z coordinates for grid
igeomx/y/z integer O Grid geometry in z, y, and z directions:

0=Cartesian

nuc integer 0 Number of nuclear species to track

igrav integer 0 If set to 1, use gravity

iburn integer 0 If set to 1, use nuclear burning

CPNumber integer 0 Initial checkpoint file number. If restarting

from a checkpoint, set this to the number
of the file to restart from
x/y/zlboundary integer -20 Type of external boundary in the —uz,
—y, and —z directions: -20=reflecting,
-21=outflow, -22=periodic, -23=user-

defined

x/y/zrboundary integer -20 Type of external boundary in the 4z, +y,
and +z directions

iref1 integer 5 Variable to use for the first AMR refine-

ment pass. The second spatial deriva-
tive is used to select blocks for refinement.
O=none, 1=density, 2=x-velocity, 5=pres-
sure, 6=energy, 7=temperature, 11=He
abundance, 13=Ni abundance

iref2 integer 1 Variable for the second AMR pass

iref3/4 integer 0 Variables for the third and fourth AMR
passes

Nblockx/y/z integer 1 Number of top-level blocks in the z, y, and

z directions

The main program is contained in the file flash.F. It first reads the runtime param-
eter file and initializes the AMR library and physics modules. Then, depending upon the
setting of the restart parameter, it calls init_from scratch() to initialize the grid using the
specified initial conditions or init from checkpoint() to read the initial conditions from a
checkpoint file. The most important functions carried out by init_from scratch() are the call
to divide_domain(), which allocates top-level AMR blocks, and the call to init_block(), which
initializes a single block (and is part of the hydro module). All problem setups must provide
a version of init_block(). On the other hand, the divide_domain() subroutine provided with
FLASH is fairly general and can set up a top-level mesh with NblockxxNblockyxNblockz
blocks. For irregular domains (such as in the windtunnel test problem), a special version
of divide_domain() should be provided as part of the problem setup. (See Section 6.3 for
a discussion of creating new problem setups. The files containing the replacement routines
should be given the same names as the originals.)
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After initialization the main program calls output_initial() (part of the io module) to
write a checkpoint file containing the initial conditions and to create the scalar/global file,
to which FLASH writes the total energy and other quantities at the end of each timestep.

Following the initial output in flash.F is the main evolution loop, consisting of a call to
hydro_3d() (which advances the system one timestep), a call to timestep() (which determines
the size of the next timestep according to constraints provided by each of the solver modules),
and a call to output() (which writes to the scalar/global file and produces checkpoint files
at specified intervals). In FLASH 1.0 the evolution routine hydro_3d() is part of the hydro
module, which is essentially the evolution part of the PROMETHEUS code (Section 3.1).
The loop terminates either when nend timesteps have been taken or when the simulation time
exceeds tmax. The last things the main program does are to checkpoint the final timestep
and print CPU timing information.

Currently the hydrodynamics, equation of state, gravity, and nuclear burning routines
are all called from within hydro_3d(). In FLASH 1.5 the evolution function is taken over
from hydro_3d() by a routine called evolve() which is part of the driver module. However,
since evolution in FLASH 1.0 is handled by a routine which is properly part of the hydro
module, FLASH 1.0 should always be built with hydrodynamics included. (Alternatively,
a new non-hydro physics module might supply a replacement for hydro_3d().) Users wish-
ing to implement new physics modules within FLASH 1.0 should insert calls to their solver
routines in hydro_3d(). In order to access the block-structured mesh data, global variables
(such as the simulation time and the number of processors), and runtime parameters, new
module routines should include common.fh as discussed above. With the data structure and
modularity enhancements coming in FLASH 1.5 we expect the process of adding a new solver

to become much simpler. See Section 6.4 for further general guidelines on adding solvers to
FLASH.

Hydrodynamics module (hydro)

The hydro module solves the Euler equations of hydrodynamics (see Section 3.1). The
solver included with FLASH 1.0 is directionally split and is based on the piecewise-parabolic
method (PPM; Colella & Woodward 1984). Future versions will include sub-modules to
handle unsplit PPM and perhaps other hydro algorithms.

As discussed in the previous section, in its current form the hydro module handles the
evolution function of the driver module through the routine hydro_3d(). This routine per-
forms one-dimensional sweeps in the z, y, and z directions, calls the nuclear burning routine
(burn()), and then applies these operators in reverse order. Hydrodynamical boundary con-
ditions are set before each 1D sweep by a call to the PARAMESH routine amr_guardcell().
For each sweep, the code cycles through the leaf-node blocks, applying the 1D hydro oper-
ator to each in turn. For a single block, hydro_3d() loops over the coordinates transverse
to the sweep direction, copying rows of data from the block array to a 1D sweep array
(via getrwx(), getrwy(), and getrwz()). For each row, hydrodynamical fluxes are com-
puted with a call to hydrow(); these fluxes are then used to update zones in the interior
of the block with update soln() and in the guard cells with update_soln_boun(). Following
the application of each 1D hydrodynamical operator, the hydrodynamical fluxes are cor-
rected to ensure conservation at jumps in refinement with a call to the PARAMESH routine
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Table 12: Runtime parameters used with the hydro module.

Variable Type Default Description

cfl real 0.8 Courant-Friedrichs-Lewy (CFL) factor;
must be < 1 for stability in explicit
schemes

PPM-specific parameters

epsiln  real 0.33 PPM shock detection parameter €

omgl real 0.75 PPM dissipation parameter w;

omg2 real 10 PPM dissipation parameter ws

igodu integer 0 If set to 1, use the Godunov method (com-
pletely flatten all interpolants)

vgrid real 0 Scale factor for dissipative grid velocity

nriem integer 10 Number of iterations to use in Riemann
solver

cvisc real 0.1 Artificial viscosity constant

amr_flux_conserve(). At the end hydro_3d() tests the grid refinement with several calls to
the PARAMESH amr_test_refinement() routine, then initiates changes in refinement with a
call to the PARAMESH amr _refine_derefine() routine.

Three other externally visible routines in the hydro module are init_hydro(), which ini-
tializes the module by setting the hydrodynamical variables to zero; init_block(), which sets
the initial conditions in a single block; and tot_bnd(), which is called by the PARAMESH
guard cell filling routines when an external boundary is encountered. The latter two routines
are the most important from the standpoint of users wishing to construct a new problem
setup (Section 6.3).

In addition to the global common file common.fh, the hydrodynamical routines include
three other common files: common hydro.fh, which contains declarations for variables spe-
cific to 1D hydrodynamical schemes (appropriate to the operator-split implementation in
FLASH 1.0); common_ppm.fh, which contains declarations specific to the piecewise-parabolic
method; and iso13.fh, the common file exported by the nuclear burning module and con-
taining information on the nuclear isotopes to track (only used by hydro_3d()).

Equation of state module (eos)

The eos module implements the equation of state needed by the hydrodynamical and
nuclear burning solvers. Three sub-modules are available in FLASH 1.0: gamma, which
implements a perfect-gas equation of state; nadozhin, which implements an equation of state
appropriate to partially degenerate material at nuclear densities in thermal equilibrium with
radiation (Nadyozhin 1974); and helmholtz, which uses a fast Helmholtz free-energy table
interpolation to handle the same physics as nadozhin (Timmes & Swesty 1999).

The primary interface routine for the eos module in FLASH 1.0 is eos3d(), which sets the
pressure in an entire block of zones by calling the eos() routine supplied by each equation of
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Table 13: Runtime parameters used with the eos module.

Variable Type Default Description
gamma real 1.6667 Ratio of specific heats for the gas ()

Table 14: Runtime parameters used with the burn module.

Variable Type Default Description

tnucmin real 1.1 x 108 Minimum temperature in K for burning to
be allowed

tnucmax real 1.0 x 102  Maximum temperature in K for burning to
be allowed

dnucmin rteal 1.0 x 107'® Minimum density (g/cm?) for burning to
be allowed

dnucmax real 1.0 x 10  Maximum density (g/cm?) for burning to
be allowed

ni56max real 0.4 Maximum Ni*® mass fraction for burning

to be allowed

state sub-module. The input data for this routine are the density, temperature, and thermal
energy for the block (the block’s local identification number is passed as an argument, and
the block data are referenced through the global common blocks). Usually eos3d() is called
when these values have been changed (e.g., by the hydro routines) and the pressure must be
made consistent with them again. The eos() routine performs this computation for a row of
zones. (Routines in the eos module include common files exported by the hydro and burn
modules. For this [and physics] reasons, sensible use of eos requires the hydro module [and,
for nadozhin and helmholtz, the burn module| to be included.) Each sub-module also sup-
plies a routine called eos_fen() which enables the pressure to be returned for specified values
of the density, temperature, energy, and composition, without reference to the grid.

Nuclear burning module (burn)

The nuclear burning module uses a sparse-matrix semi-implicit ordinary differential equa-
tion (ODE) solver to calculate the nuclear burning rate and update the fluid variables ac-
cordingly (Timmes 1999). The primary interface routines for this module are init_burn(),
which calls routines to set up the nuclear isotope tables needed by the module; and burn(),
which calls the ODE solver and updates the hydrodynamical variables in a single row of a
single AMR block. In addition to the global common file common.fh and the 1D hydrody-
namical common file common_hydro.fh, the burning routines include a common file named
is013.fh which declares variables shared within the burning module.

Gravity module (grav)
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Table 15: Runtime parameters used with the grav/constant module.

Variable Type Default Description
gconst real -981 Gravitational = acceleration  constant

(cm/s?)

The grav module sets up the gravitational field; the effects of gravity are handled by the
hydro module. In FLASH 1.0 the only gravitational field sub-module is constant, which
creates a uniform acceleration in the z-direction. The next version of FLASH will include
a Poisson solver to compute the gravitational field due to the matter on the computational
grid. This module supplies two routines: gravty(), which sets the gravitational acceleration
in a row of zones, and tstep_grav(), which sets the timestep constraint due to gravitation
(currently a no-op).

Input/output module (io)

The io module handles the output produced by FLASH, in particular the periodic check-
points and the regular output of total energy, mass, and momentum information. It has two
sub-modules, hdf, which selects the Hierarchical Data Format (HDF) for checkpoint files,
and £77_unf, which selects Fortran 77 unformatted output. The HDF output produced by
io/hdf is described in Section 6.2.

The primary interface routines for the io module are output_initial(), which handles out-
put just after initialization and before the main FLASH timestep loop is entered; output(),
which handles periodic output inside the timestep loop; output_final(), which handles out-
put following the completion of the timestep loop; and wr_integrals(), which computes the
totals of several quantities, including energy, mass, momentum, and so on, then writes them
to an ASCII file named flash.dat at the end of each timestep. The checkpoint routines
provided by the two sub-modules of io are checkpoint_wr(), which writes checkpoint files,
and checkpoint_re(), which reads them in.

PARAMESH and related modules (paramesh, mmpi, mpi_amr)

The paramesh module supplies the adaptive mesh-refinement (AMR) library used by the
rest of FLASH (MacNeice et al. 1999). It supplies a block-structured grid with factor-of-
two refinement between levels, as described in Section 3.2. The mmpi and mpi_amr modules
supply routines for translating the shared-memory subroutine calls used by PARAMESH
into Message-Passing Interface (MPI) calls. The next version of PARAMESH, which will be
included with a future version of FLASH, relies only upon MPI calls, and these modules will
cease to be included. See the PARAMESH home page at

http://esdcd.gsfc.nasa.gov/ESS/macneice/paramesh/paramesh.html

for further details.

72



Table 16: Runtime parameters used with the paramesh module.

Variable Type  Default Description

lrefine max integer 1 Maximum number of levels of adaptive
mesh refinement (AMR)

lrefine min integer 1 Minimum AMR refinement level

nrefs integer 2 Number of timesteps to advance before ad-

justing the grid refinement

6.2 Formats of output files produced by FLASH

Currently FLASH can store simulation data in three basic formats: F77, HDF 4, and HDF 5.
Different techniques can be used to write the data: moving all the data to a single processor
for output; each processor writing to a separate file; and parallel access to a single file. The
output format varies from module to module, and is described here in detail.

The default I/O module is Hierarchical Data Format version 4 (HDF 4). This HDF
format provides an API for organizing data in a database fashion. In addition to the raw
data, information about the data type and byte ordering (little or big endian), rank, and
dimensions of the dataset is stored. This makes the HDF format extremely portable. Differ-
ent packages can query the file for its contents, without knowing the details of the routine
that generated the data.

HDF 4 is limited to files < 2 GB is size. Furthermore, the official release of HDF 4
does not support parallel I/0O. To address these limitations, HDF 5 was released. HDF 5 is
supported on a large variety of platforms, and offers the same functionality as HDF 4, with
the addition of large file support and parallel I/O via MPI-I/O. Information of the different
versions of HDF can be found at http://hdf.nsca.uiuc.edu. This section assumes that
you already have the necessary HDF libraries installed on your machine.

The I/O modules in FLASH have two responsibilities—generating and restarting from
checkpoint files, and generating plot files. A checkpoint file contains all the information
needed to restart the simulation. The data is stored at the same precision (8-byte reals)
as it is carried in the code. A plotfile contains all the information needed to interpret the
tree structure maintained by FLASH and it contains a user-defined subset of the variables.
Furthermore, the data may be stored at reduced precision to conserve space.

The type of output you create will depend on what type of machine you are running on,
the size of the resulting dataset, and what you plan on doing with the datafiles once created.
Table 17 summarizes the different modules which come with FLASH.

6.2.1 General parameters

There are several parameters that control the frequency of output, type of output, and name
of the output files. These parameters are the same for all the different modules, although
not every module is required to implement all parameters. These parameters are used in
the top level I/O routines (initout.F, output.F, and finalout.F) to determine when to
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output. Some parameters are used to determine the resulting filename. Table 18 gives a
description of the I/O parameters.

Table 17: I/O modules available in FLASH.

Module name Description

£77 unf FORTRAN 77 unformatted binary output. A single file
is created by the master processor and all data is moved
to the master via explicit MPI sends and receives before
writing to the file.

£77 unf parallel A parallel implementation of the £77_unf module. Each
processor writes its data to a separate file. For plot-
files, a header file is created by processor 0 that contains
the variable list, dimension, etc. This header file can be
read in by a conversion routine to create a single HDF
5 file from the collection of f77 plotfiles for a particular
timestep.

f77_unf _parallel _single  As above but single precision plotfiles.

hdf4 Hierarchical Data Format (HDF) 4 output. A single HDF
4 file is created by the master processor and all data
is moved to this processor via explicit MPI sends and
receives before writing to the file.

hdf5_parallel Hierarchical Data Format (HDF) 5 output. A single HDF
5 file is created, with each processor writing its data to
the same file simultaneously. This relies on the underly-

ing MPI-IO layer in HDF 5.

hdf5_parallel_single As above, but single precision plotfiles.

hdf5 serial Hierarchical Data Format (HDF) 5 output. Each proces-
sor passes its data to processor 0 through explicit MPI

sends and receives. Processor 0 does all of the writing.

null Don’t write any checkpoint or plotfiles.

74



Table 18: General I/O parameters.

Parameter name Description

rolling checkpoint The number of checkpoint files to keep available at any
point in the simulation. If a checkpoint number is >
rolling checkpoint, then the checkpoint number is re-
set to 0. There will be at most rolling checkpoint
checkpoint files kept.

wall _clock_checkpoint The maximum amount of wall clock time to go between
checkpoints. When the simulation is started, the cur-
rent time is stored. If wall clock_checkpoint seconds
elapse over the course of the simulation, a checkpoint file
is stored.

basenm The main part of the output filenames. The full filename
consists of the basename a series of three character abbre-
viations indicating whether it is a plotfile or checkpoint
file, and the format, and a 4-digit file number.

cpnumber The number of the current checkpoint file. This number
is appended to the end of the basename when creating
the filename.

ptnumber The number of the current plotfile. This number is ap-
pended to the end of the basename when creating the
filename.

restart A logical variable indicating whether the simulation is

restarting from a checkpoint file (.TRUE.) or starting
from scratch (.FALSE.).

nrstrt The number of timesteps desired between subsequent
checkpoint files.

trstrt The amount of simulation time desired between subse-
quent checkpoint files.

tplot The amount of simulation time desired between subse-
quent plotfiles.

corners A logical variable indicating whether to interpolate the
data to cell corners before outputting. This only applies
to plotfiles.
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6.2.2 Output file names

FLASH constructs the output filenames based on the user-supplied basename and the file
counter that is incremented after each output. Additionally, information about the file type
and data storage is included in the filename.

The general checkpoint filename is:

hdf
basename_¢ hdf5 » chk 0000 ,

£77
where hdf, hdf5, or £77 is picked depending on the I/O module used and the number at the
end of the filename is the current cpnumber.

The general plotfile filename is:

hdf
basename_{ hdf5 _plt_{ zi: }_OOOO ,

£77
where hdf, hdf5, or £77 is picked depending on the I/O module used, crn and cnt indicate
data stored at the cell corners or centers respectively, and the number at the end of the
filename is the current ptnumber.

6.2.3 HDF 4

The HDF 4 output module creates a single file containing the data on all processors, if the
total size of the dataset is < 2 GB. If there is more than 2 GB of data to be written, multiple
files are created to store the data. The number of files used to store the dataset is contained
in the number of files record. Each file contains a subset of the blocks (stored in the local
blocks record) out of the total number of blocks in the simulation. The blocks are divided
along processor boundaries.

The HDF 4 module performs serial I/O—each processors data is moved to the master
processor to be written to disk. This has the advantage of producing a single file for the
entire simulation, but is less efficient than if each processor wrote to disk.

HDF 4 has been tested successfully on most machines, with the exception of ASCI Red.

Table 19 summarizes the records stored in a HDF 4 file. The format of the plotfiles and
checkpoint files are the same, with the only difference being the number of unknowns stored.
The records contained in a HDF 4 file can be found via the hdp command that is part of the
HDF 4 distribution. The syntax is hdp dumpsds -h filename. The contents of a record
can be output by hdp dumpsds -i N filename, where N is the index of the record.

As described above, HDF 4 cannot produce files > 2 GB in size. This is overcome in the
FLASH HDF 4 module by splitting the dataset into multiple files when it would otherwise
produce a file larger than 2 GB in size.

When reading a single unknown from a FLASH HDF 4 file, you will suffer performance
penalties, as there will be many non-unit-stride accesses on the first dimension, since all the
variables are stored together in the file.
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Record label

Table 19: FLASH HDF 4 file format.

Description of the record

file creation time

total blocks

time

timestep

number of steps

number of blocks
per zone

number of files

local blocks

unknown names

character*x40 file_creation_time

The time and date that the file was created.

integer tot_blocks
The total number of blocks in the simulation.

Note: the number of blocks contained in this file may be less than
the total number of blocks if the output is spread across multiple
files (see ‘number of files’ and ‘local blocks’)

real time

The simulation time at file output.

real dt

The current timestep.

integer nsteps

The number of timesteps from the start of the calculation.
real nblocks_per_zone(3)

The number of zones in each direction:
nblocks_per _zone (1) — x-direction
nblocks_per_zone(2) — y-direction
nblocks_per_zone(3) — z-direction

integer num files

The number of files that comprise the dataset. Because the filesize
cannot be larger than 2 GB, the data is split into multiple files if
necessary, with each containing roughly the same number of blocks.

integer local_blocks

The number of blocks in this file. If there are multiple files, this
number will be less than ‘total blocks’.

character*4 unk _names(nvar)

This array contains 4 character names corresponding to the first
index of the unk array. They serve to identify the variables stored
in the ‘unknowns’ record.
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Record label

Table 19: HDF 4 format (continued).

Description of the record

refine level

node type

gid

integer lrefine(local_blocks)

This array stores the refinement level for each block.

integer nodetype(local_blocks)

This array stores the nodetype for a block. Blocks with nodetype
= 1 are leaf nodes, and this data will always be valid. For plotting
purposes, it is the leaf data that you want to plot.

integer gid(nfaces+i+nchild,local_blocks)

This is the global identification array. For a given block, this array
gives the block number of the blocks that neighbor it, and the block
number of its parent and children.

The first nfaces elements point to the neighbors (at the same level of
refinement). The faces are numbered from minimum to maximum
coordinate with x first, followed by y, and z. A -1 indicates that
there is no neighbor at the same level of refinement. A number <=
-20 indicates that you are on the physical boundary of the domain.
If the neighbor points to the current block, it means that there
are periodic boundary conditions. The next element points to the
parent of the current block, and the last nchild elements point to
the children of the current block.

Ex: below is a simple domain, assume that at the boundaries, ev-
erything is -20

looking at block no 5 (2-d):
gid(1,block no) = 4
gid(2,block no) = -1
gid(3,block no) 3
gid(4,block no) = -20

gid(5,block no) = 1 (the parent)
gid(6,blockno) = -1 (the children)
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Record label

Table 19: HDF 4 format (continued).

Description of the record

coordinates

block size

bounding box

minimum

bounding box

maximum

unknowns

gid(7,block no) = -1
gid(8,block no) = -1
gid(9,block no) = -1
looking at block no 1:
gid(1,block no) = -20

gid(2,block_no) = 6
gid(3,block_no) = -20
gid(4,block_no) = -20

gid(5,block no) = -1

gid(6,block no) =
gid(7,block no) =
gid(8,block no) =
gid(9,block no) =

[S2 B~ VO O]

real coord(ndim,local_blocks)

This array stores the coordinates of the center of the block.
coord(1,block_no) = x-coordinate
coord(2,block_no) = y-coordinate
coord(3,block_no) = z-coordinate

real size(ndim,local_blocks)

This array stores the dimensions of the current block.
size(1,block._no) = x size
size(2,block no) =y size
size(3,block._no) = z size

real bnd_box_min(ndim,local_blocks)
This array stores the coordinate of the minimum block edge in each
direction.

bnd _box min(1,block no) = minimum x edge

bnd_box min(2,block no) = minimum y edge

bnd_box min(3,block no) = minimum z edge

as above, but the maximum edge value in each direction.

real unk(nvar,nx,ny,nz,local_blocks)

nx = no. of zones/block in x
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Table 19: HDF 4 format (continued).

Record label Description of the record
ny = no. of zones/block in y
nz = no. of zones/block in z

This array holds the unknowns. The variables corresponding to the
first argument are listed in the ‘unknown names’ record. Note, for a
plot file with CORNERS=.TRUE. in the parameter file, the information
is interpolated to the zone corners before being stored. This is useful
for certain plotting packages.

6.2.4 HDF 5

There are two major HDF 5 modules, the serial and parallel versions. The format of the
output file produced by these modules is identical, only the method by which it is written
differs. Additionally, there are single precision versions of some of the modules, which pro-
duce plotfiles with 4-byte instead of 8-byte reals. At the time of this writing, the current
version of HDF 5 is 5.1.2.2.

The HDF 5 modules have been tested successfully on the three ASCI platforms. Perfor-
mance varies widely across the platforms, and currently, HDF 5 use is only recommended
on SGIs and ASCI Blue Pacific.

The data format FLASH uses for HDF 5 output files is similar to that of the HDF 4
files, with the major difference in how the unknowns are stored. Instead of putting all the
unknowns in a single HDF record, unk(nvar,nx,ny,nz,tot_blocks) as in the HDF 4 file,
each variable is stored in its own record, labeled by the 4-character variable name. This
allows for easier access to a single variable when reading from the file. The HDF 5 format is
summarized in table 20.

Table 20: FLASH HDF 5 file format.

Record label Description of the record
file creation time character*x40 file creation_time

The time and date that the file was created.

total blocks integer tot_blocks

The total number of blocks in the simulation.

time real time

The simulation time at file output.

timestep real dt

The current timestep.
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Record label

Table 20: HDF 5 format (continued).

Description of the record

number of steps

number of zones
per block

unknown names

refine level

node type

coordinates

block size

integer nsteps

The number of timesteps from the start of the calculation.
real nblocks_per_zone(3)

The number of zones in each direction:
nblocks_per_zone (1) — x-direction
nblocks_per_zone(2) — y-direction
nblocks_per_zone(3) — z-direction

character*4 unk _names(nvar)

This array contains 4 character names corresponding to the first
index of the unk array. They serve to identify the variables stored
in the ‘unknowns’ record.

integer lrefine(tot_blocks)

This array stores the refinement level for each block.

integer nodetype(tot_blocks)

This array stores the nodetype for a block. Blocks with nodetype
= 1 are leaf nodes, and this data will always be valid. For plotting
purposes, it is the leaf data that you want to plot.

integer gid(nfaces+1l+nchild,tot_blocks)

This is the global identification array. For a given block, this array
gives the block number of the blocks that neighbor it, and the block
number of its parent and children.

see the description in the HDF 4 table for full details.

real coord(ndim,tot_blocks)

This array stores the coordinates of the center of the block.
coord(1,block_no) = x-coordinate
coord(2,block no) = y-coordinate
coord(3,block_no) = z-coordinate

real size(ndim,tot_blocks)

This array stores the dimensions of the current block.
size(1,block_no) = x size
size(2,block_no) =y size
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Table 20: HDF 5 format (continued).

Record label Description of the record
size(3,block_no) = z size

bounding box real bnd box min(ndim,tot_blocks)
minimum
This array stores the coordinate of the minimum block edge in each
direction.
bnd_box min(1,block no) = minimum x edge
bnd_box min(2,block no) = minimum y edge
bnd_box min(3,block no) = minimum z edge

bounding box as above, but the maximum edge value in each direction.
maximum
variable real unk(nx,ny,nz,tot_blocks)

nx = no. of zones/block in x
ny = no. of zones/block in y
nz = no. of zones/block in z

This array holds the data for a single variable. The record label
is identical to the 4-character variable name stored in the record
unknown names. Note, for a plot file with CORNERS=.TRUE. in the
parameter file, the information is interpolated to the zone corners
and stored.

6.2.5 FORTRAN 77 (f77)

Unlike the HDF files, the f77 files do not have a record based format. This means it is
necessary to know the precise way the data was written to disk, to construct the analogous
read statement. In general, the data for a single block (tree, grid, and unknown information)
is stored together in the file. The different {77 modules use different precision for the plotfiles,
and this must be taken into account when reading the data.

The f77 modules with ‘_parallel’ appended to the name create a single file from each
processors, instead of first moving the data to processor 0 for writing. This is a lot faster on
most platforms. It has the disadvantage of generating a lot of files, which must all be read
in to recreate the dataset.

The £77_unf_parallel{ single} modules include a converter that will read in the header file
for the plotfiles, and create a single HDF 5 plotfile containing all the data. This conversion
routine is unsupported, but provided for completeness.

Working with output files

The HDF output formats offer the greatest flexibility when visualizing the data, as the
visualization program does not have to know the details of how the file was written, rather
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it can query the file to find the datatype, rank, and dimensions. The HDF formats also
avoid difficulties associated with different platforms storing numbers differently (big endian
vs. little endian).

6.3 Creating new problems

In general, creating new sets of initial conditions is quite straightforward. Most users need
only duplicate one of the existing setups and then edit it to suit their needs. Here we list
the steps needed in order to create a new problem from scratch; at any step you may wish
to copy a file from a similar existing setup and use it as a starting point. For example, to
create a problem with plane-parallel symmetry, but in which the plane normal is adjustable,
it may be helpful to start with files from the sod test problem. Similarly, for cylindrically
or spherically symmetric initial conditions the sedov problem is a useful starting point.

1. Create a directory in setups/ with the name of the problem. Move to this directory.

2. Create a setup configuration file named Config. The format of this file is described
in Section 6.1.2. This tells the setup script which optional code modules are required
and which runtime parameters to create.

3. Create code files to set up the problem and do anything else needed. If hydrodynamics
is included, at a minimum you must have a file named init _block.F, containing a
subroutine named init_block() which sets up the density, pressure, velocity, etc. for
the gas. If your problem requires special boundary conditions, you should also have
a version of the file tot_bnd.F, which contains a routine to set the values of fluid
variables in the guard cells. If your problem has an irregular boundary, you need a
version of the file divide_domain.F, which creates the top-level AMR block structure.
See one of the supplied problem setups for examples.

For any files you create in the problem’s setup directory with extensions .C, .c, .F, .f,
.h, or .fh, the setup script will automatically create links in the object/ directory.
However, they will only be compiled and linked into the executable if you create a
makefile for the problem. Files such as init_block.F, which have the same name as a
file in the included source directories, will simply replace the default files and do not
require special treatment. For other files, create a short Makefile (call it that) in the
problem setup directory with the contents

#——————= special files for problem—------
problem = list of object files
#— end special files——————————————-

where problem is the name of your problem.

6.4 Adding new solvers

Adding new solvers (either for new or existing physics) to FLASH is similar in some ways to
adding a problem configuration. In general one creates a subdirectory for the solver, placing
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it under the source subdirectory for the parent module if the solver implements currently
supported physics, or creating a new module subdirectory if it does not. Put the source files
required by the solver into this directory, then create the following files:

Makefile: The make include file for the module should set a macro with the name of the
module equal to a list of the object files in the module. Optionally (recommended), add a list
of dependencies for each of the source files in the module. For example, the source_terms
module’s make include file is

# Makefile for source term solvers

source_terms = source_terms.o burn.o heat.o cool.o init burn.o \
init heat.o init cool.o tstep burn.o tstep heat.o \
tstep_cool.o init_src.o

source_terms.o : source_terms.F common.fh
burn.o : burn.F

heat.o : heat.F

cool.o : cool.F

init_src.o : init_src.F common.fh
init_burn.o : init_burn.F
init_heat.o : init_ heat.F
init_cool.o : init_cool.F
tstep_burn.o : tstep_burn.F
tstep_heat.o : tstep_heat.F
tstep_cool.o : tstep_cool.F

Sub-module make include files use macro concatenation to add to their parent modules’
make include files. For example, the source_terms/burn sub-module has the following
make include file:

# Makefile for the nuclear burning sub-module

source terms += burn block.o net auxillary.o net_integrate.o \
sparsema28.0 gift.o net.o

burn_block.o : burn_block.F common.fh network_common.fh eos_common.fh
net_auxillary.o : mnet_auxillary.F network_common.fh eos_common.fh
net_integrate.o : net_integrate.F network_common.fh

sparsema28.o0 : sparse ma28.F

net.o : net.F network_common.fh eos_common.fh

gift.o : gift.F

network_common.fh : network_size.fh
touch network_common.fh
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# Additional dependencies

burn.o : common.fh network_common.fh
init_burn.o : common.fh network_common.fh

Note that the sub-module’s make include file only makes reference to files provided at its
own level of the directory hierarchy. If the sub-module provides special versions of routines
to override those supplied by the parent module, they do not need to be mentioned again in
the object list, because the sub-module’s Makefile is contenated with its parent’s. However,
if these special versions have additional dependencies, they can be specified as shown. Of
course, any files supplied by the sub-module that are not part of the parent module should
be mentioned in the sub-module’s object list, and their dependencies should be included.

If you are creating a new top-level module, your source files at this level will be included in
the code even if you do not request the module in Modules. However, no sub-modules will
be included. If you intend to have special versions of these files (stubs) that are used when
the module is not included, create a sub-module named null and place them in it. null is
automatically included if it is found and the module is not referenced in Modules.

If you create a top-level module with no Makefile, setup will automatically generate an
empty one. For example, creating a directory named my _module/ in source/ causes setup
to generate a Makefile.my_module in the build directory with contents

my_module =

If sub-modules of my module exist and are requested, their Makefiles will be appended to
this base.

In FLASH 1.6 it is no longer necessary to modify setup when adding a new top-level module.
setup automatically scans the source/ directory for modules to use.

Config: Create a configuration file for the module or sub-module you are creating. All
configuration files in a sub-module path are used by setup, so a sub-module inherits its
parent module’s configuration. Config should declare any runtime parameters you wish to
make available to the code when this module is included. It should indicate which (if any)
other modules your module requires in order to function, and it should indicate which (if
any) of its sub-modules should be used as a default if none is specified when setup is run.
The configuration file format is described in Section 6.1.2.

This is all that is necessary to add a module or sub-module to the code. However, it
is not sufficient to have the module routines called by the code! If you are creating a new
solver for an existing physics module, the module itself should provide the interface layer
to the rest of the code. As long as your sub-module provides the routines expected by the
interface layer, the sub-module should be ready to work. However, if you are adding a new
module (or if your sub-module has externally visible routines — a no-no for the future), you
will need to add calls to your externally visible routines. It is difficult to give completely
general guidance; here we simply note a few things to keep in mind.
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If you wish to be able to turn your module on or off without recompiling the code, create
a new runtime parameter (e.g., use_module) in the driver module. You can then test the
value of this parameter before calling your externally visible routines from the main code.
For example, the burn module routines are only called if (iburn .eq. 1). (Of course, if the
burn module is not included in the code, setting iburn to 1 will result in empty subroutine
calls.)

You will need to add #include "common.fh" if you wish to have access to the global
AMR data structure. Since this is the only mechanism for operating on the grid data (which
is presumably what you want to do) in FLASH 1.x, you will probably want to do this. An
alternative, if your module uses a pre-existing data structure, is to create an interface layer
which converts the PARAMESH-inspired tree data structure used by FLASH into your data
structure, then calls your routines. This will probably have some performance impact, but
it will enable you to quickly get things working.

You may wish to create an initialization routine for your module which is called before
anything (e.g., setting initial conditions) is done. In this case you should call the routine
init_module() and place a call to it (without any arguments) in the main initialization routine,
init_flash.F, which is part of the driver module. Be sure this routine has a stub available.

If your solver introduces a constraint on the timestep, you should create a routine named
tstep_module() which computes this constraint. Add a call to this routine in timestep.F
(part of the driver/time_dep module), using your global switch parameter if you have
created one. See this file for examples. Your routine should operate on a single block and
take three parameters: the timestep variable (a real variable which you should set to the
smaller of itself and your constraint before returning), the minimum timestep location (an
integer array with five elements), and the block identifier (an integer). Returning anything
for the minimum location is optional, but the other timestep routines interpret it in the
following way. The first three elements are set to the coordinates within the block of the
zone contributing the minimum timestep. The fourth element is set to the block identifier,
and the fifth is set to the current processor identifier (MyPE). This information tags along
with the timestep constraint when blocks and solvers are compared across processors, and it
is printed on stdout by the master processor along with the timestep information as FLASH
advances.

If your solver is time-dependent, you will need to add a call to your solver in the
evolve() routine (driver/time dep/evolve.F). If it is time-independent, add the call to
driver/steady/flash.F. evolve() implements second-order Strang time splitting within the
time loop maintained by driver/time_dep/flash.F. The steady version of flash.F simply
calls each operator once and then exits.

Try to limit the number of entry points to your module. This will make it easier to
update it when the next version of FLASH is released. It will also help to keep you sane.

6.5 Porting FLASH to other machines

Porting FLASH to new architectures should be fairly straightforward for most Unix or Unix-
like systems. For systems which look nothing like Unix, or which have no ability to interpret
the setup script or makefiles, extensive reworking of the meta-code which configures and
builds FLASH would be necessary. We do not treat such systems here; rather than do so,

86



it would be simpler for us to do the port ourselves. The good news in such cases is that,
assuming that you can get the source tree configured on your system and that you have a
Fortran 90 compiler and the other requirements discussed in Section 2, you should be able to
compile the code without making too many changes to the source. We have generally tried
to stick to standard Fortran 90, avoiding machine-specific features.

For Unix-like systems, you should make sure that your system has csh, a gmake which per-
mits included makefiles, awk, and sed. You will need to create a directory in source/sites/
with the name of your site (or a directory in source/sites/Prototypes/ with the name of
your operating system). At a minimum this directory should contain a makefile fragment
named Makefile.h. The best way to start is to copy one of the existing makefile fragments
to your new directory and modify that. Makefile.h sets macros which define the names
of your compilers, the compiler and linker flags, the names of additional object files needed
for your machine but not included in the standard source distribution, and additional shell
commands (such as file renaming and deletion commands) needed for processing the master
makefile.

For most Unix systems this will be all you need to do. However, in addition to Makefile.h
you may need to create machine-specific subroutines which override the defaults included
with the main source code. As long as the files containing these routines duplicate the
existing routines’ filenames, they do not need to be added to the machine-dependent object
list in Makefile.h; setup will automatically find the special routine in the system-specific
directory and link to it rather than to the general routine in the main source directories.

An example of such a routine is getarg(), which returns command-line arguments and
is used by FLASH to read the name of the runtime parameter file from the command line.
This routine is not part of the Fortran 90 standard, but it is available on many Unix systems
without the need to link to a special library. However, it is not available on the Cray T3E;
instead, a routine named pxfgetarg() provides the same functionality. Therefore we have
encapsulated the getarg() functionality in a routine named get_arguments(), which is part
of the driver module in a file named getarg.f. The default version simply calls getarg().
For the T3E a replacement getarg.f calling pxfgetarg() is supplied. Since this file overrides
a default file with the same name, getarg.o does not need to be added to the machine-
dependent object list in source/sites/Prototypes/UNICOS/Makefile.h.

7 Contacting the authors of FLASH

FLASH is still under active development, so many desirable features have not yet been
included (eg., self-gravity, thermal conduction, radiation transport, etc.). Also, you will
most likely encounter bugs in the distributed code. A mailing list has been established for
reporting problems with the distributed FLASH code. To report a bug, send email to

flash-bugs@mcs.anl.gov

giving your name and contact information and a description of the procedure you were fol-
lowing when you encountered the error. Information about the machine, operating system
(uname -a), and compiler you are using is also extremely helpful. Please do not send check-
point files, as these can be very large. If the problem can be reproduced with one of the
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standard test problems, send a copy of your runtime parameter file and your setup options.
This situation is very desirable, as it limits the amount of back-and-forth communication
needed for us to reproduce the problem. We cannot be responsible for problems which arise
with a physics module or initial model you have developed yourself, but we will generally
try to help with these if you can narrow down the problem to an easily reproducible effect
which occurs in a short program run and if you are willing to supply your added source code.

At present no address has been set up for general development questions and comments,
but we expect this to change in the near future. Documentation (including this user’s guide)
and support information for FLASH can be obtained on the World Wide Web at

http://flash.uchicago.edu/flashcode/
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