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Chapter 1

Introduction

FLASH is a modular, adaptive-mesh, parallel simulation code capable of handling general compressible flow
problems found in many astrophysical environments. FLASH is designed to allow users to configure initial
and boundary conditions, change algorithms, and add new physics modules with minimal effort. It uses the
PARAMESH library to manage a block-structured adaptive grid, placing resolution elements only where
they are needed most. FLASH uses the Message-Passing Interface (MPI) library to achieve portability and
scalability on a variety of different parallel computers.

The Center for Astrophysical Thermonuclear Flashes, or FLASH Center, was founded at the University
of Chicago in 1997 under contract to the United States Department of Energy as part of its Accelerated
Strategic Computing Initiative (ASCI). The goal of the Center is to address several problems related to
thermonuclear flashes on the surfaces of compact stars (neutron stars and white dwarfs), in particular X-ray
bursts, Type Ia supernovae, and novae. To solve these problems requires the participants in the Center to
develop new simulation tools capable of handling the extreme resolution and physical requirements imposed
by conditions in these explosions, and to do so while making efficient use of the parallel supercomputers
developed by the ASCI project, the most powerful constructed to date.

1.1 What’s new in FLASH 2.2

We continue to make substantial improvements and expansions to the FLASH code originally developed by
Fryxell et al. (2000), and to progress toward the ASCI FLASH Center’s goal of increased problem-solving
capability, modularization, and development. Since the release of FLASH 2.1 in June 2002, many new
improvements and additions have been made to the FLASH code, including:

• Increased portability;

• Improved modularity;

• Additional new solvers;

• Additional test setups;

• Cleaner interfaces; and

• Reorganization of directory structure to make framework cleaner and more flexible.

Some specific new features include:

• Modifications to PPM hydrodynamics to allow users to solve for perturbations from hydrostatic equi-
librium in a fixed gravitational field;

• Generalizations to the Poisson solvers to allow them to work with different equations, such as the
Helmholtz equation, and different types of boundary conditions, including Dirichlet, Neumann, and
given-value;

3
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• Much faster Poisson solvers;

• Ability to separately advect passive tracers and fluids that contribute to the equation of state;

• Support for particle motion in 1D spherical and 2D axisymmetric coordinates;

• Support for cosmological simulations in comoving coordinates;

• Support for runtime visualization;

• Ability to flag conflicting modules in the framework;

• New profiling and memory utilization reporting features;

• Improved fidlr routines;

• Support for compiling FLASH in parallel.

Finally, starting with FLASH 2.2, incremental updates of the code will be more be more readily available.
The FLASH web page will contain intermediate releases which will have bug fixes, optimizations and new
features.

1.2 About the user’s guide

This user’s guide is designed to enable individuals unfamiliar with the FLASH code to quickly get acquainted
with its structure and to move beyond the simple test problems distributed with FLASH, customizing it to
suit their own needs. Chapter 2 (Quick start) discusses how to get started quickly with FLASH, describing
how to configure, build, and run the code with one of the included test problems, then examine the resulting
output. Users familiar with the capabilities of FLASH who wish to quickly ‘get their feet wet’ with the
code should begin with this section. Users who want to get started immediately using FLASH to create
new problems of their own will want to refer to Chapter 3 (The FLASH configuration script) and Chapter
4 (Creating New Problems).

Part II begins with an overview of both the FLASH code architecture and a brief overview of the modules
included with FLASH. It then goes on describe in detail each of the modules included with the code, along
with their submodules, runtime parameters, use with included solvers, and the equations and algorithms
they use. Important note: We assume that the reader has some familiarity both with the basic
physics involved and with numerical methods for solving partial differential equations. This
familiarity is absolutely essential in using FLASH (or any other simulation code) to arrive at meaningful
solutions to physical problems. The novice reader is directed to an introductory text, examples of which
include

Fletcher, C. A. J. Computational Techniques for Fluid Dynamics (Springer-Verlag, 1991)

Laney, C. B. Computational Gasdynamics (Cambridge UP, 1998)

LeVeque, R. J., Mihalas, D., Dorfi, E. A., and Müller, E., eds. Computational Methods for Astrophysical
Fluid Flow (Springer, 1998)

Roache, P. Fundamentals of Computational Fluid Dynamics (Hermosa, 1998)

Toro, E. F. Riemann Solvers and Numerical Methods for Fluid Dynamics, 2nd Edition (Springer, 1999)

The advanced reader who wishes to know more specific information about a given module’s algorithm is
directed to the literature referenced in the algorithm section of the chapter in question.

Part III describes the different test problems distributed with FLASH. Part IV describes in more detail
the analysis tools distributed with FLASH, including fidlr and sfocu. Finally, Part V gives detailed
instructions for extending FLASH’s capabilities by integrating new solvers into the code.



Chapter 2

Quick start

This section describes how to quickly get up and running with FLASH, showing how to configure and build
it to solve the Sedov explosion problem, how to run it, and how to examine the output using IDL.

2.1 System requirements

You should verify that you have the following:

• A copy of the FLASH source code distribution. This is most likely available either as a Unix tar file or as
a local Concurrent Versions System (CVS) source tree. To request a copy of the distribution, click on the
“Code Request” link at the FLASH Code Group web site, http://flash.uchicago.edu/flashcode/.
You will be asked to fill out a short form before receiving download instructions. Please remember
the user name and password you use to download the code: you will need these to get bug fixes and
updates to FLASH.

• A Fortran 90 compiler and a C compiler. Most of FLASH is written in Fortran 90. Information
available at the Fortran Market web site (http://www.fortran.com/) can help you select a Fortran
90 compiler for your system.

• An installed copy of the Message-Passing Interface (MPI) library. A freely available implementation
of MPI called MPICH has been created at Argonne National Laboratory and can be accessed on the
World Wide Web at http://www-unix.mcs.anl.gov/mpi/mpich/.

• To use the Hierarchical Data Format (HDF) for output files (the default), you will need an installed copy
of the freely available HDF library. Currently FLASH supports HDF version 4.x and HDF5 version
1.4.x (the two formats are not compatible). HDF5 in serial is the current default FLASH format.
HDF is available from the HDF Project of the National Center for Supercomputing Applications
(NCSA) at http://hdf.ncsa.uiuc.edu/. The contents of HDF output files produced by the FLASH
io/amr/hdf* modules are described in detail in Chapter 7.

• To use the output analysis tools described in this section, a copy of the IDL language from Research
Systems, Inc. (http://www.rsinc.com/). IDL is a commercial product. It is not required for the
analysis of FLASH output, but without it the user will need to write his or her own analysis tools.
(FLASH output formats are described in Chapter 7.) The currently available IDL routines were written
and tested with IDL 5.4, and should work with later versions as well. You are encouraged to upgrade
if you are using an earlier version.

The FLASH code group is working with members of the Mathematics and Computer Science Division
at Argonne National Laboratory to develop more sophisticated visualization tools to distribute either
as part of or alongside FLASH. Currently, the code group provides a runtime visualization module
that can help in analysis, see Chapter 16

5
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• The GNU make utility, gmake. This utility is freely available and has been ported to a wide variety of
different systems. (For more information, see the entry for make in the development software listing at
http://www.gnu.org/.) On some systems make is an alias for gmake. GNU make is required because
FLASH 1.6 and higher uses macro concatenation when constructing Makefiles.

• To run the FLASH 2.2 Python setup script, a copy of the Python language, version 1.5.2 or later.
Several different versions of Python are freely available at http://www.python.org.

FLASH has been tested on the following Unix-based platforms. In addition, it may work with others not
listed (see Chapter 22).

• SGI single- and multiprocessor systems running IRIX

• Intel- and Alpha-based single and multiprocessor systems running Linux, including clusters

• Cray/SGI T3E running UNICOS

• The ASCI Nirvana machine, built by SGI

• IBM SP2 systems including the ASCI Blue Pacific, Frost, Quad (at Argonne), and Blue Horizon
machines

• IBM SP4 sytems

• Sun E10K Starfire Clusters

• Compaq TRU64 Unix Clusters

• The ASCI Red machine, built by Intel

2.2 Unpacking and configuring FLASH for quick start

To begin, unpack the FLASH source code distribution. If you have a Unix tar file, type ‘tar xvf FLASHX.Y.tar’
(without the quotes), where X.Y is the FLASH version number (for example, use FLASH 2.2.tar and
FLASH2.2/ for FLASH version 2.2). If you are working with a CVS source tree, use ‘cvs checkout

FLASHX.Y’ to obtain a personal copy of the tree. You may need to obtain permission from the local CVS
administrator to do this. In either case you will create a directory called FLASHX.Y/. Type ‘cd FLASHX.Y’
to enter this directory.

Next, configure the FLASH source tree for the Sedov explosion problem. Type

./setup sedov -auto

This configures FLASH for the sedov problem, using the default hydrodynamic solver, equation of state,
mesh package, and I/O format defined for this problem. For the purpose of this quick start example, we
will use the default I/O format, HDF5. The source tree is configured to create a two-dimensional code by
default.

From the FLASH root directory (i.e. the directory from which you ran setup), execute gmake. This will
compile the FLASH code. If you should have problems and need to recompile, ‘gmake clean’ will remove
all object files from the object/ directory, leaving the source configuration intact; ‘gmake realclean’ will
remove all files and links from object/. After ‘gmake realclean,’ a new invocation of setup is required
before the code can be built. The building can take a long time on some machines, doing a parallel build
(gmake -j 4 for example) can significantly speed things up, even on single processor systems.

Assuming compilation and linking were successful, you should now find an executable named flashX in
the object/ directory, where X is the major version number (e.g., 2 for X.Y = 2.0). You may wish to check
that this is the case.

If compilation and linking were not successful, here are a few common suggestions to diagnose the problem:

• Make sure the correct compilers are in your path, and that they produce a valid executable.
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# runtime parameters

lrefine max = 4

basenm = "sedov 4 "

restart = .false.

trstrt = 0.005

nend = 1000

tmax = 0.02

gamma = 1.4

xl boundary type = "outflow"

xr boundary type = "outflow"

yl boundary type = "outflow"

yr boundary type = "outflow"

plot var 1 = "dens"

plot var 2 = "temp"

plot var 3 = "pres"

Figure 2.1: FLASH parameter file contents for the quick start example.

• The default sedov problem uses HDF5 in serial. Make sure you have HDF5 installed. If you do not
have HDF5, but HDF4, then you need to rerun the setup script. Type:

./setup sedov -auto --with-module=io/amr/hdf4

If you have neither HDF4 or HDF5 then you can setup and compile FLASH, but, you will not be able
to generate either a checkpoint or a plot file. You can setup FLASH without IO by typing:

./setup sedov -auto --with-module=io/null

• Make sure the paths to MPI and HDF libraries are correctly set in the Makefile.h in the object/

directory.

• Make sure your version of MPI creates a valid executable that can run in parallel.

These are just a few suggestions, you might also check for further information in this guide, or at the
FLASH web page:

http://flash.uchicago.edu/flashcode/

FLASH expects to find a text file named flash.par in the directory from which it is run. This file
sets the values of various runtime parameters which determine the behavior of FLASH. If it is not present,
FLASH will abort; flash.par must be created in order for the program to run. Here we will create a simple
flash.par which sets a few parameters and allows the rest to take on default values. With your text editor,
create flash.par in the main FLASH directory with the contents of Figure 2.1.

This instructs FLASH to use up to four levels of adaptive mesh refinement (AMR) and to name the
output files appropriately. We will not be starting from a checkpoint file (this is the default, but here it is
explicitly set for clarity). Output files are to be written every 0.005 time units and will be created until
t = 0.02 or 1000 timesteps have been taken, whichever comes first. The ratio of specific heats for the gas
(γ) is taken to be 1.4, and all four boundaries of the two-dimensional grid have outflow (zero-gradient or
Neumann) boundary conditions. Note the format of the file: each line is a comment (denoted by a hash
mark, #), blank, or of the form variable = value. String values are enclosed in double quotes ("). Boolean
values are indicated in the Fortran style, .true. or .false. Be sure to insert a carriage return after the
last line of text. A full list of the parameters available for your current setup is contained in paramFile.txt,
which also includes brief comments for each parameter.

(If you wish to skip the creation of a flash.par, a complete example is provided in the setups/sedov/
directory.)
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2.3 Running FLASH

We are now ready to run FLASH. To run FLASH on N processors, type

mpirun -np N object/flashX

remembering to replace N and X with the appropriate values. Some systems may require you to start MPI
programs with a different command; use whichever command is appropriate to your system. The FLASH
executable can take one command-line argument, the name of the runtime parameter file. The default
parameter file name is flash.par. This is system-dependent and is not permitted by some machines (or
MPI versions).

You should see a number of lines of output indicating that FLASH is initializing the Sedov problem,
listing the initial parameters, and giving the timestep chosen at each step. After the run is finished, in the
current directory you should find several files:

• flash.log echoes the runtime parameter settings and indicates the run time, the build time, and the
build machine. During the run, a line is written for each timestep, along with any warning messages.
If the run terminates normally, a performance summary is written to this file. Messages indicating
when the code refined and what output resulted are also contained in flash.log.

• flash.dat contains a number of integral quantities as functions of time: total mass, total energy, total
momentum, etc. This file can be used directly by plotting programs such as gnuplot; note that the
first line begins with a hash (#) and thus is ignored by gnuplot.

• sedov 4 hdf5 chk 000* are the different checkpoint files. These are complete dumps of the entire
simulation at intervals of trstrt, suitable for use in restarting the simulation. They are also the
primary output products of FLASH.

• sedov 4 hdf5 plt cnt 000* are plot files. These are files containing only density, temperature, and
pressure (in single precision, for some I/O modules). They are designed to be written more frequently
than checkpoint files for the purpose of making simulation movies (or for analyses that do not require
all of the checkpointed quantities).

• amr log includes various messages from the PARAMESH package.

We will use the xflash routine under IDL to examine the output. Before doing so, we need to set the values
of two environment variables, IDL PATH and XFLASH DIR. Under csh this can be done using the commands

setenv XFLASH DIR "$PWD/tools/fidlr2"

setenv IDL PATH "${XFLASH DIR}:$IDL PATH"

If you get a message indicating that IDL PATH is not defined, enter

setenv IDL PATH "$XFLASH DIR":idl-root-path

where idl-root-path points to the directory in which IDL is installed. Now run IDL (idl) and enter xflash
at the IDL> prompt. You should see the main widget as shown in Figure 2.2. Select any of the output files
through the File/Open Prototype... dialog box. This will define a prototype file for the dataset, which is
used by fidlr2 to describe the dataset. With the prototype defined, enter one of the suffices in the first
suffix box in the main widget. xflash can generate output for a number of consecutive files, but if you fill in
only the beginning suffix, only one file is read. Choose the problem type from the defaults menu (in our case,
Sedov). Selecting the problem type is only important for choosing default ranges for our plot; plots for other
problems can be generated by ignoring this setting and overriding the default values for the data range and
the coordinate ranges. Select the desired plotting variable and colormap. Under ‘Options,’ select whether
to plot the logarithm of the desired quantity, and select whether to plot the outlines of the AMR blocks.
For very highly refined grids the block outlines can obscure the data, but they are useful for verifying that
FLASH is putting resolution elements where they are needed. Finally, click ‘Velocity Options’ to overlay the
velocity field. The ‘xskip’ and ‘yskip’ parameters enable you plot only a fraction of the vectors so that they
do not obscure the background plot.
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Figure 2.2: The main xflash widget.

When the control panel settings are to your satisfaction, click the ‘Plot’ button to generate the plot. For
Postscript and GIF output, a file is created in the current directory. The result should look something like
Figure 2.3, although this figure was generated from a run with eight levels of refinement rather than the four
used in the quick start example run. With fewer levels of refinement the Cartesian grid causes the explosion
to appear somewhat diamond-shaped.

FLASH is intended to be customized by the user to work with interesting initial and boundary conditions.
In the following sections we will cover in more detail the algorithms and structure of FLASH and the sample
problems and tools distributed with it.
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Figure 2.3: Example of xflash output for the Sedov problem with eight levels of refinement.



Chapter 3

The FLASH configuration script
(setup)

The setup script, found in the FLASH root directory, provides the primary command-line interface to the
FLASH source code. It configures the source tree for a given problem and target machine and creates files
needed to parse the runtime parameter file and make the FLASH executable. More description of what
setup does may be found in Section 5. Here we describe its basic usage.

Running setup without any options prints a message describing the available options:

[sphere 5:09pm] % ./setup

usage: setup <problem-name> [options]

problems: see setups/ directory

options: -auto -[123]d -maxblocks=<#> -nxb=<#> -nyb=<#> -nzb=<#>

-portable -verbose [-site=<site> | -ostype=<ostype>]

[-debug | -test] -preprocess -objdir=<relative obj directory>

Available values for the mandatory option (the name of the problem to configure) are determined by scanning
the setups/ directory.

A “problem” consists of a set of initial and boundary conditions, possibly additional physics (e.g., a
subgrid model for star formation), and a set of adjustable parameters. The directory associated with a
problem contains source code files which implement the initial conditions and, in a few cases, the boundary
conditions and extra physics, together with a configuration file, read by setup, which contains information
on required physics modules and adjustable parameters.

setup determines site-dependent configuration information by looking in source/sites/ for a directory
with the same name as the output of the hostname command; failing this, it looks in source/sites/Prototypes/
for a directory with the same name as the output of the uname command. The site and operating system
type can be overridden with the -site and -ostype command-line options. Only one of these options can
be used. The directory for each site or operating system type contains a makefile fragment (Makefile.h)
that sets command names, compiler flags, and library paths, and any replacement or additional source files
needed to compile FLASH for that machine type.

setup uses the problem and site/OS type, together with a user-supplied file called Modules which lists
the code modules to include, to generate a directory called object/ which contains links to the appropriate
source files and makefile fragments. It also creates the master makefile (object/Makefile) and several
Fortran include files that are needed by the code in order to parse the runtime parameter file. After running
setup, the user can make the FLASH executable by running gmake in the object/ directory (or from
the FLASH root directory, if the -portable option is not used with setup). Parallel builds, using the -j

argument to gmake should work, and can significantly speed up the build process. The optional command-line
modifiers have the following interpretations:

11
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-verbose Normally setup echoes to the standard output summary messages indicating what
it is doing. Including the -verbose option causes it to also list the links it creates.

-portable This option creates a portable build directory by copying instead of linking to the
source files in source/ and setups/. The resulting build directory can be placed
into a tar archive and sent to another machine for building (use the Makefile created
by setup in the tar file).

-auto This modifier replaces -defaults, which is still present in the code but has been
deprecated. Normally setup requires that the user supply a plain text file called
Modules (in the FLASH root directory) which specifies which code modules to in-
clude. A sample Modules file appears in Figure 3.1. Each line is either a comment
(preceded by a hash mark (#)) or a module include statement of the form INCLUDE

module. Sub-modules are indicated by specifying the path to the sub-module in
question; in the example, the sub-module gamma of the eos module is included. If a
module has a default sub-module, but no sub-module is specified, setup automati-
cally selects the default using the module’s configuration file.

The -auto option enables setup to generate a “rough draft” of a Modules file for
the user. The configuration file for each problem setup specifies a number of code
module requirements; for example, a problem may require the perfect-gas equation
of state (materials/eos/gamma) and an unspecified hydro solver (hydro). With
-auto, setup creates a Modules file by converting these requirements into module
include statements. In addition, it checks the configuration files for the required
modules and includes any of their required modules, eliminating duplicates. Most
users configuring a problem for the first time will want to run setup with -auto to
generate a Modules file, then edit Modules directly to specify different sub-modules.
After editing Modules in this way, re-run setup without -auto to incorporate the
changes into the code configuration.

-[123]d By default setup creates a makefile which produces a FLASH executable capable
of solving two-dimensional problems (equivalent to -2d). To generate a makefile
with options appropriate to three-dimensional problems, use -3d. To generate a
one-dimensional code, use -1d. These options are mutually exclusive and cause
setup to add the appropriate compilation option to the makefile it generates.

-maxblocks=# This option is also used by setup in constructing the makefile compiler options.
It determines the amount of memory allocated at runtime to the adaptive mesh
refinement (AMR) block data structure. For example, to allocate enough memory
on each processor for 500 blocks, use -maxblocks=500. If the default block buffer
size is too large for your system, you may wish to try a smaller number here (the
defaults are currently defined in source/driver/physicaldata.fh). Alternatively,
you may wish to experiment with larger buffer sizes if your system has enough
memory.

-nxb=# -nyb=# -nzb=# These options are also used by setup in constructing the makefile compiler options.
It determines the number of interior cells for every block; these are the number of
cells in a block without the ghostcells. The mesh on which the problem is solved is
composed of blocks. The defaults value for these values is 8.

-debug The default Makefile built by setup will use the optimized setting for compilation
and linking. Using -debug will force setup to use the flags relevant for debugging
(e.g., including -g in the compilation line).
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# Modules file constructed for rt problem by setup -auto

INCLUDE driver/time dep

INCLUDE hydro

INCLUDE materials/eos/gamma

INCLUDE gravity/constant

INCLUDE mesh

INCLUDE io

Figure 3.1: Example of the Modules file used by setup to determine which code modules to include.

-test When FLASH is tested by the automated test suite, test will choose the paper
compilation arguments for the test executable.

-preprocess This option will preprocess all of the files before compilation. This is useful for
machines whose compilers do not support preprocessing.

-objdir Overrides the default object directory with one whose name is specified by this
parameter.

When setup is run, it reads all of the Config files in the module directories to find the runtime parameters
that the code understands. A file named paramFile.txt is generated by setup and contains a list of all of
the runtime parameters that are understood by FLASH and some brief comments describing their purpose.
In addition to the name, comments (if available), the default value, and the module that owns the parameter
are listed. This file provide a useful way to determine which parameters can be used in a flash.par for a
given problem.

To set runtime parameters to values other than the defaults, create a runtime parameter file named
flash.par in the directory from which FLASH is to be run. The format of this file is described briefly in
Chapter 2 and in more detail in Section 4.3.

Setup also creates two functions that are used by FLASH. buildstamp takes a file logical unit number and
outputs the date and time the current FLASH executable was setup, along with the platform information.
flash release returns a character string containing the full version number (including the minor version
number) of the present build of FLASH.
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Chapter 4

Creating new problems

Every problem that is run with FLASH requires a directory in FLASH2.2/setups. This is where the FLASH
setup script looks to find the problem–specific files. The FLASH distribution includes a number of pre–
written setups. However, most new FLASH users will begin by defining a new problem, so it is important
to understand the technique for adding a customized problem setup.

Each setups directory contains the routines that initialize the FLASH grid. The directory also includes
parameter files that setup uses to select the proper physics modules from the FLASH source tree. When
the user runs setup, the proper source files are selected and linked to the object directory (Chapter 3).

There are two files that must be included in the setup directory for any problem. These are

Config lists the modules required for the problem and defines additional
runtime parameters.

init block.F90 Fortran routine for setting initial conditions in a single block.

We will look in detail at these files for an example setup. This is a simple setup that creates a domain
with hot ash inside a circle of radius radius centered at (xctr, yctr, zctr). The density is uniformly set
at rho ambient and the temperature is t perturb inside the circle and t ambient outside.

To create a new setup, we first create the new directory and then add the Config and init block.F90

files. The easiest way to construct these files is to use files from another setup as a template.

4.1 Creating a Config file

The simplest way to construct a Config file is to copy one from another setup that incorporates the same
physics as the new problem. Config serves two principal purposes: (1) to specify the required modules and
(2) to register runtime parameters. The Config file for the example problem contains the following:

# configuration file for our example problem

REQUIRES driver/time_dep

REQUIRES materials/eos/gamma

REQUIRES materials/composition/fuel+ash

REQUIRES io

REQUIRES mesh

REQUIRES hydro

These lines define the FLASH modules required by the setup. We are going to carry two fluids (fuel
and ash), so we require the composition module fuel+ash. At runtime, this module will initialize the
multifluid database to carry the two fluids, and it will set up their properties. We also require I/O, meshing,
and hydrodynamics, but we do not specify particular sub-modules of these modules; any sub-modules of

15
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io, mesh, and hydro will satisfy these requirements. However, we require the simple gamma-law equation
of state (materials/eos/gamma) for this problem, so we specify it explicitly. In constructing the list of
requirements for a problem, it is important to keep them as general as the problem allows. Specific modules
satisfying the requirements are given in the Modules file when we actually run setup (the Modules file and
its format are introduced in Chapter 3).

After defining the modules, the Config file lists any runtime parameters specific to this problem:

# runtime parameters

PARAMETER rho_ambient REAL 1.

PARAMETER t_ambient REAL 1.

PARAMETER t_perturb REAL 5.

PARAMETER radius REAL 0.2

PARAMETER xctr REAL 0.5

PARAMETER yctr REAL 0.5

PARAMETER zctr REAL 0.5

Here we define the ambient density (rho ambient), the ambient and perturbed temperatures (t ambient,
t perturb), the radius of the perturbed region (radius), and the coordinates of the center of the perturbation
(xctr, yctr, zctr). All of these parameters are floating point numbers. We also give the default values for
each parameter (in case they are not assigned values in the runtime parameter file; see below).

The routine init block (or any other FLASH function) can access any of these variables through a
simple database subroutine call. The default value of any parameter (like rho ambient) can be overridden
at runtime by specifying a different value in a file flash.par (the runtime parameter file); for example,
rho ambient = 100.

All parameters required for initialization of the new problem should be added to Config.

4.2 Creating an init block.F90

The routine init block is called by the framework to initialize data in each AMR block. The framework
first forms the grid at the lowest level of refinement and calls init block to initialize the data in each block.
The code checks the refinement criteria in each block it has created, then refines the blocks according to
these criteria. It then calls init block to initialize the newly created blocks. This process repeats until the
mesh reaches the maximum refinement level in the areas marked for refinement.

The basic structure of the routine init block should consist of

1. Fortran module use statements to access the runtime databases.

2. Declaration of local variables.

3. Calls to the database to obtain the values of runtime parameters

4. Initialization of the variables.

5. Calls to the database to store the values of solution variables.

Any of the setups may be used as a template. We continue to look at the example setup and describe it in
detail below.

The first part of an init block consists of use-associating the Fortran 90 modules that provide access to
the variable database (dBase), the multifluid database (multifluid database), and the runtime parameter
database (runtime parameters). We will also need the ModuleEos module to access the pointwise equation
of state.

Each database module exposes a relatively small number of public procedures and constants (see Sec-
tion 5.1.2 for details). To help make clear what public variables from these modules a routine uses, we use
the ONLY clause in the use statement. In addition to listing the functions we intend to use, we also list any
parameters that we need from these modules, such as the dimension (ndim), the number of zones in each
direction (nxb, nyb, nzb), the number of guardcells (nguard), and the number of fluids (ionmax).
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subroutine init_block(block_no)

!

! sample init_block -- initialize a circle with high temperature fuel

! surrounded by ash.

!

use multifluid_database, ONLY: find_fluid_index

use runtime_parameters, ONLY: get_parm_from_context, GLOBAL_PARM_CONTEXT

use dBase, ONLY: nxb, nyb, nzb, nguard, ionmax, &

k2d, k3d, ndim, &

dBasePropertyInteger, &

dBaseKeyNumber, dBaseSpecies, &

dBaseGetCoords, dBasePutData

use ModuleEos, ONLY: eos

Next come the local declarations. In this example, there are loop indices, one dimensional scratch arrays,
integer keys that will be used in the database calls, and other scratch variables needed for the initialization.

implicit none

integer :: i, j, k, block_no, n

logical, save :: firstCall = .TRUE.

real, save :: smallx

! variables needed for the eos call

real :: temp_zone

real :: pel, eel, ptot, eint, abar, zbar

real :: dpt, dpd, ded, det, c_v, c_p, gamma, xalfa, xxni, xxne, xxnp

integer, save :: iXvector, iYvector, iZvector

integer, save :: iXcoord, iYcoord, iZcoord

integer, save :: iPoint

integer, save :: izn

real :: dist

integer, save :: idens, itemp, ipres, iener, igame, igamc

integer, save :: ivelx, ively, ivelz, inuc_begin

integer, save :: ifuel, iash

! save the parameters that describe this initialization

real, save :: rho_ambient, t_ambient, t_perturb

real, save :: radius

real, save :: xctr, yctr, zctr

! compute the maximum length of a vector in each coordinate direction

! (including guardcells)

integer, parameter :: q = max(nxb+2*nguard, &

nyb+2*nguard*k2d, &

nzb+2*nguard*k3d)



18 CHAPTER 4. CREATING NEW PROBLEMS

real, dimension(q) :: x, y, z

real :: xx, yy, zz

real, dimension(q) :: rho, p, t, game, gamc, vx, vy, vz, e

real, dimension(ionmax) :: xn

integer, save :: MyPE, MasterPE

Please note that FLASH promotes all floating point variables to double precision at compile time for
maximum portability. We therefore declare all floating point variables with real in the source code. Note
also that a lot of these variables are explicitly saved. These variables will not change through the simulation.
They include the runtime parameters that we defined above and the keys that will be used in database calls
(e.g. idens).

The variable firstCall is .true. the first time through this init block, when these saved variables
will be filled, and then it is set to be .false. for subsequent entries into init block.

The next part of the code calls the database to get the values we need to initialize the domain. In addition
to the runtime parameters and any physical constants, we also create integer keys that will be used in the
variable database calls. Most of the database calls are overloaded to accept either a string or an integer key
to select a variable. String comparisons are expensive, so we make them once, when getting the key, and
save the result for later use.

if (firstCall) then

MyPE = dBasePropertyInteger(’MyProcessor’)

MasterPE = dBasePropertyInteger(’MasterProcessor’)

!-----------------------------------------------------------------------------

! grab the parameters relevant for this problem

!-----------------------------------------------------------------------------

call get_parm_from_context(GLOBAL_PARM_CONTEXT, ’smallx’, smallx)

call get_parm_from_context(GLOBAL_PARM_CONTEXT, ’rho_ambient’, rho_ambient)

call get_parm_from_context(GLOBAL_PARM_CONTEXT, ’t_ambient’, t_ambient)

call get_parm_from_context(GLOBAL_PARM_CONTEXT, ’t_perturb’, t_perturb)

call get_parm_from_context(GLOBAL_PARM_CONTEXT, ’radius’, radius)

call get_parm_from_context(GLOBAL_PARM_CONTEXT, ’xctr’, xctr)

call get_parm_from_context(GLOBAL_PARM_CONTEXT, ’yctr’, yctr)

call get_parm_from_context(GLOBAL_PARM_CONTEXT, ’zctr’, zctr)

It is sometimes useful to have the init block routine print some output, such as echoing runtime
parameters to the screen. This is best done in the firstCall block.

if (MyPE == MasterPE) then

print *, ’Initializing the example setup’

endif

It is also useful to do some error checking to make sure the code was set up the way you intended when
the init block was written. The function abort flash will print out an error message and abort the code.

if (ionmax /= 2) then

call abort_flash(’Error: ionmax /= 2 in init_block’)

endif
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Next we get integer keys for the different database calls we will be making. Most of the database calls are
overloaded to accept a string or an integer to specify which variable is being stored, the coordinate direction,
etc. We do the string to integer conversion here, so it is only executed once each time FLASH is run.

!-----------------------------------------------------------------------------

! get the pointers into the solution vector

!-----------------------------------------------------------------------------

idens = dBaseKeyNumber(’dens’)

ivelx = dBaseKeyNumber(’velx’)

ively = dBaseKeyNumber(’vely’)

ivelz = dBaseKeyNumber(’velz’)

iener = dBaseKeyNumber(’ener’)

ipres = dBaseKeyNumber(’pres’)

itemp = dBaseKeyNumber(’temp’)

igame = dBaseKeyNumber(’game’)

igamc = dBaseKeyNumber(’gamc’)

inuc_begin = dBaseSpecies(1)

call find_fluid_index(’fuel’, ifuel)

call find_fluid_index(’ash’, iash)

iXvector = dBaseKeyNumber(’xVector’)

iYvector = dBaseKeyNumber(’yVector’)

iZvector = dBaseKeyNumber(’zVector’)

iPoint = dBaseKeyNumber(’Point’)

iXcoord = dBaseKeyNumber(’xCoord’)

iYcoord = dBaseKeyNumber(’yCoord’)

iZcoord = dBaseKeyNumber(’zCoord’)

izn = dBaseKeyNumber(’zn’)

firstCall = .FALSE.

endif

The next part of the routine involves setting up the initial conditions. This could be code for interpolating
a given set of initial conditions, constructing some analytic model, or reading in a table of initial values.

In the present example, we begin by getting the coordinates for the zones in the current block. This is
done by a set of calls to dBaseGetCoords. The key izn that we defined above in the lookup of “zn”tells the
database that we want the coordinates of the zone centers. We define the direction with iXcoord, iYcoord,
and iZcoord which we also set in the lookups above. The results are stored in the vectors x, y, and z.

x(:) = 0.0

y(:) = 0.0

z(:) = 0.0

if (ndim == 3) call dBaseGetCoords(izn, iZcoord, block_no, z)

if (ndim >= 2) call dBaseGetCoords(izn, iYcoord, block_no, y)

call dBaseGetCoords(izn, iXcoord, block_no, x)
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Next comes a set of loops (one for each dimension) over all of the interior zones in the block. We note
that the loops make use of the k2d parameter, which is equal to 1 for 2 and 3-d simulations and 0 otherwise,
and the K3D parameter, which is equal to 1 only for 3-d simulations. This provides a convenient way to
construct a general set of loops that will work regardless of the dimensionality. Inside these loops, the values
of the density, velocity, velocity, abundances, etc. are set. We also usually make a call to the equation of
state to ensure that these quantities are thermodynamically consistent.

!-----------------------------------------------------------------------------

! loop over all of the zones in the current block and set the temperature,

! density, and thermodynamics variables.

!-----------------------------------------------------------------------------

do k = nguard*k3d+1, nguard*k3d+nzb

zz = z(k)

do j = nguard*k2d+1, nguard*k2d+nyb

yy = y(j)

do i = nguard+1, nguard+nxb

xx = x(i)

For the present problem, we are making a hot circular region of fuel. We want to compute the distance
of the current zone from the center of the circular region, test whether we are inside the circle, and set the
temperature and composition accordingly. Remember that we know the value of the runtime parameters we
set up in the Config file from the calls to get parm from context made above.

!-----------------------------------------------------------------------------

! compute the distance from the center -- handle this specially for 1, 2, and

! 3 dimensions.

!-----------------------------------------------------------------------------

if (ndim == 1) then

dist = xx - xctr

elseif (ndim == 2) then

dist = sqrt((xx-xctr)**2 + (yy-yctr)**2)

else

dist = sqrt((xx-xctr)**2 + (yy-yctr)**2 + (zz-zctr)**2)

endif

if (dist <= radius) then

temp_zone = t_perturb

xn(ifuel) = smallx

xn(iash) = 1.0 - smallx

else

temp_zone = t_ambient

xn(ifuel) = 1.0 - smallx

xn(iash) = smallx

endif

We now have the density, composition, and temperature for the current zone. We can find the pressure,
internal energy, and gamma corresponding to these value from a call to the equation of state.
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!-----------------------------------------------------------------------------

! get the pressure and internal energy corresponding to the ambient density

! and perturbed temperature

!-----------------------------------------------------------------------------

call eos(rho_ambient, temp_zone, ptot, eint, xn, &

abar, zbar, dpt, dpd, det, ded, c_v, c_p, &

gamma, pel, xxne, xalfa,1)

rho(i) = rho_ambient

t(i) = temp_zone

vx(i) = 0.0

vy(i) = 0.0

vz(i) = 0.0

p(i) = ptot

e(i) = eint + 0.5*(vx(i)**2 + vy(i)**2 + vz(i)**2)

game(i) = p(i)/(eint*rho(i)) + 1.0

gamc(i) = gamma

We note that the energy stored by FLASH is the total energy density, so we add the kinetic energy
contribution to the internal energy returned from the EOS call. In the present case, the kinetic energy is
zero since all of our velocities are zero. This step is shown for completeness.

Now that we have the correct state for the current zone we want to put these values back into the
database. We show two methods here. First, the composition is stored one point at a time, using a
call to dBasePutData. We use the key inuc begin, which we obtained above, as the starting key for the
composition variables. We use the fact that the composition variables have contiguous keys to create a loop
over all species.

We exit the inner loop (over the x-coordinate) and store the remaining variables one vector at a time.
This is also done with the dBasePutData function, but this time using the iXvector key instead of iPoint.

!-----------------------------------------------------------------------------

! finally, fill the solution array

!-----------------------------------------------------------------------------

do n=1,ionmax

call dBasePutData(inuc_begin-1+n,ipoint, &

i, j, k, block_no, xn(n))

enddo

enddo

call dBasePutData(idens, iXvector, j, k, block_no, rho)

call dBasePutData(iener, iXvector, j, k, block_no, e)

call dBasePutData(itemp, iXvector, j, k, block_no, t)

call dBasePutData(ipres, iXvector, j, k, block_no, p )

call dBasePutData(ivelx, iXvector, j, k, block_no, vx )

call dBasePutData(ively, iXvector, j, k, block_no, vy )

call dBasePutData(ivelz, iXvector, j, k, block_no, vz )

call dBasePutData(igame, iXvector, j, k, block_no, game)

call dBasePutData(igamc, iXvector, j, k, block_no, gamc)

enddo
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enddo

return

end subroutine init_block

When init block returns, the database will now have the values of the initial model for the current
block. init block will be called for every block that is created as the code refines the initial model.

We encourage you to run the example setup to see this code in action. This setup can be used as the
basis for a much more complicated problem. For a demonstration of how to initialize the domain with a
one-dimensional initial model, look at the sample map setup.

More generally, a setup also may include customized versions of some of the FLASH routines or other
routines. Examples of FLASH routines that may be customized for a particular problem are

init 1d.F90 A routine that reads in a 1-d initial model file.

init mat.F90 Fortran routine for initializing the materials module.

Makefile The Make include file for the setup. This file is the Makefile for any
problem-specific routines that are not part of the standard FLASH
distribution (like init 1d above).

mark grid refinement.F90 Fortran routine for marking blocks to be refined, modified for this
specific problem.

Users are encouraged to put any modifications of core FLASH files in the setups directory they are working
on. This makes it easier to distribute patches to our user base.

An additional file required to run the code is flash.par. It contains flags and parameters for running
the code. Copies of flash.par may be kept in the setup directory for easy distribution.

4.3 The runtime parameter file (flash.par)

The file flash.par is read at runtime and sets the values of runtime parameters. The flash.par file for the
example setup is

# Parameters for the example setup

rho_ambient = 1.0

t_ambient = 1.0

t_perturb = 10.

radius = .2

# for starting a new run

restart = .false.

cpnumber = 0

ptnumber = 0

# dump checkpoint files every trstrt seconds

trstrt = 4.0e-4

# dump plot files every tplot seconds

tplot = 5.0e-5

# go for nend steps or tmax seconds, whichever comes first
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nend = 1000

tmax = 1.0e5

# initial, and minimum timesteps

dtini = 1.0e-16

dtmin = 1.0e-20

dtmax = 1.0e2

# Grid geometry

igeomx = 0

igeomy = 0

igeomz = 0

# Size of computational volume

xmin = 0.0

xmax = 1.0

ymin = 0.0

ymax = 1.0

zmin = 0.0

zmax = 1.0

# Boundary conditions

xl_boundary_type = "outflow"

xr_boundary_type = "outflow"

yl_boundary_type = "outflow"

yr_boundary_type = "outflow"

zl_boundary_type = "outflow"

zr_boundary_type = "outflow"

# Variables for refinement test

refine_var_1 = "dens"

refine_var_2 = "pres"

refine_var_3 = "none"

refine_var_4 = "none"

# Refinement levels

lrefine_max = 3

lrefine_min = 1

# Number of lowest-level blocks

nblockx = 1

nblocky = 1

nblockz = 1

# Hydrodynamics parameters

cfl = 0.8

# Simulation-specific parameters

basenm = "example_3lev_"

run_number = "001"

run_comment = "A simple FLASH 2.2 example"

log_file = "flash_example.log"
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Figure 4.1: Image of the initial temperature distribution in the example setup.

In this example, flags are set for a “cold start” of the simulation, grid geometry, boundary conditions,
and refinement. Parameters are also set for the ambient temperature and density and for details of the run
such as the number of timesteps between checkpoint files, the initial, minimum and final time steps, and the
minimum and maximum temperatures and densities.

setup produces a file named paramFile.txt each time it is run. This file lists all possible runtime
parameters and the values to which they were set initially, as well as a brief description of the parameters.

Running the example setup with the -auto option and the flash.par provided will produce five check-
point files and 29 plot files. The initial temperature distribution, as visualized by the magic of the fidlr tools,
appears in Figure 4.1
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Chapter 5

Overview of FLASH architecture

The FLASH source code is a collection of components called FLASH modules. FLASH modules can be
combined in a variety of ways to form specific FLASH applications. Of course, not all available FLASH
modules are necessarily used when solving any one particular problem. Thus, it is important to distinguish
between the entire FLASH source code and a given FLASH application.

5.1 Structure of a FLASH module

Most generally, a FLASH module represents some well-defined, top-level unit of functionality useful for a
given class of problems. Its structure conforms to a small set of rules that facilitate its interactions with
other modules in the creation of an application. Primary among these are the rules governing the retrieval
and modification of data on the solution grid. A module must also announce a general set of requirements
to the framework as well as publish a public interface of its services. Here we focus on the internal structure
of a FLASH module appropriate for users wishing to extend the current FLASH functionality.

First, it is important to recall how a selected group of FLASH modules is combined to form a partic-
ular application. This process is carried out entirely by the FLASH setup tool, which uses configuration
information provided by the modules and problem setup to properly parse the source tree and isolate the
source files needed to carry set-up a specific problem. For performance reasons, setup ties modules together
statically before the application is compiled.

Each FLASH module is divided into three principal components:

a) Configuration layer
b) “Wrapper” or “interface” layer
c) Algorithm

Additionally, a module may contain sub-modules which inherit from and override the functionality in the
parent module. Each of these components is discussed in detail in the following sections.

5.1.1 Configuration layer

Information about module dependencies, default sub-modules, runtime parameter definitions, library re-
quirements, and so on is stored in plain text files named Config in the different module directories. These
are parsed by setup when configuring the source tree and are used to create the code needed to regis-
ter module variables, implement the runtime parameters, choose sub-modules when only a generic module
has been specified, prevent mutually exclusive modules from being included together, and to flag problems
when dependencies are not resolved by some included module. In the future they may contain additional
information about module interrelationships.

27
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5.1.1.1 Configuration file syntax

The syntax of the configuration files is as follows. Arbitrarily many spaces and/or tabs may be used, but all
keywords must be in uppercase. Lines not matching an admissible pattern will raise an error when running
setup.

• # comment

A comment. Can appear at the end of a line.

• DEFAULT sub-module
Specifies which sub-module of the current module is to be used as a default if a specific sub-module has
not been indicated in the modules file (Section 6.1.3). For example, the Config file for the materials/eos
module specifies gamma as the default sub-module. If no sub-module is explicitly included (ie. INCLUDE
materials/eos is placed in modules), then this command instructs setup to assume that the gamma
submodule was meant (as though INCLUDE materials/eos/gamma had been placed in modules).

• EXCLUSIVE sub-module...
Specify a list of sub-modules that cannot be included together. If no EXCLUSIVE instruction is given,
it is perfectly legal to simultaneously include more than one sub-module in the code.

• REQUIRES module[/sub-module[/sub-module...]] [OR module[/sub-module...]]...
Specify a module requirement. Module requirements can be general, not specifying sub-modules, so
that module dependencies can be independent of particular algorithms. For example, the statement
REQUIRES materials/eos in a module’s Config file indicates to setup that the materials/eos module
is needed by this module. No particular equation of state is specified, but some EOS is needed, and
as long as one is included by modules, the dependency will be satisfied. More specific dependencies
can be indicated by specifying sub-modules. For example, materials/eos is a module with several
possible sub-modules, each corresponding to a different equation of state. To specify a requirement for,
eg., the Helmholtz EOS, use REQUIRES materials/eos/helmholtz. Giving a complete set of module
requirements is helpful to the end user, because setup uses them to generate the modules file when
invoked with the -auto option.

• CONFLICTS module1[/sub-module[/sub-module...]] ...
Specifies that current module is not compatible with and may not be used with specific module list
that follows. Setup issues an error if user attempts to set up a conflicting module configuration.

• PARAMETER name type default
Specify a runtime parameter. Parameter names are unique up to 20 characters and may not contain
spaces. Admissible types include REAL, INTEGER, STRING, and BOOLEAN. Default values for REAL and
INTEGER parameters must be valid numbers, or compilation will fail. Default STRING values must be
enclosed in double quotes ("). Default BOOLEAN values must be TRUE or FALSE to avoid compilation
errors. Once defined, runtime parameters are available to the entire code. Optionally, any parameter
may be specified with the CONSTANT attribute (e.g. PARAMETER foo REAL CONSTANT 2.2). If a user
attempts to set a constant parameter via the runtime parameter file, an error will occur.

• VARIABLE name [attribute list]
Register variable with the framework with name name and attributes defined by attribute list. These
variables can later be accessed by the program at runtime using the database accessor methods (see
5.1.2). Valid attributes are as follows:

– ADVECT/NOADVECT

A variable, Q, with the ADVECT property obeys an advection equation,

∂Q

∂t
+∇ · (Qv) = 0 (5.1)
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– RENORM/NORENORM

Variables, {Qi}, marked with the RENORM property obey the constraint:

∑

i

Qi = 0 (5.2)

– CONSERVE/NOCONSERVE

Variables marked with the CONSERVE property obey conservation laws (e.g. momentum vs. veloc-
ity).

• LIBRARY name
Specify a library requirement. Different FLASH modules require different external libraries, and they
must inform setup so it can link the libraries into the executable. Valid library names are HDF4 and
HDF5. Support for more libraries can be added by modifying the site-specific Makefile.h files to include
appropriate Makefile macros.

• FLUX name

Register flux variable name with the framework.

Config files also support the inclusion of special parameter comments. Any line in a Config file is considered
a parameter comment line if it begins with the token D. The first token after the comment line is taken to be
the parameter name. The remaining tokens are taken to be the parameter’s comment. A token is delineated
by one or more white spaces. For example,

D SOME_PARAMETER The purpose of this parameter is whatever

If the parameter comment requires additional lines the & is used as:

D SOME_PARAMETER The purpose of this parameter is whatever

D & This is a second line

Parameter comment lines are special because they are used by setup to build a formatted list of commented
runtime parameters for a particular problem setup. This information is generated in the file paramFile.txt
in the $FLASH HOME directory.

5.1.2 Interface layer and database module

After the module Config and Makefile are written, the source code files that carry out the specific work of
the modules must be added. These source files can be separated into two broad categories: what we term
“wrapper functions” and “algorithms.” In this section we discuss how to construct wrapper functions.

When constructing a FLASH module the designer must define a public interface of procedures that
the module exposes to clients (ie other modules in an application). This is true regardless of the specific
development language or syntactic features chosen to organize the procedures. These public functions are
then defined in one or more source code files that form what we refer to as the interface layer.

Currently, there is no language-level formality in FLASH for enforcing the distinction between the public
interface and private module functions that the interface harnesses. The developer is certainly encouraged
to implement this within the chosen development language – static functions in C; private class functions in
C++; private subroutines in a Fortran module, etc. However, nothing in FLASH will force this distinction
and carry out the associated name-hiding within an application.

The most important aspect of the interface/algorithm distinction is related to the rules for data access.
Wrapper functions communicate directly with the FLASH database module to access grid data (see below).
However, algorithms are not permitted to query the database module directly. Instead, they must receive
all data via a formal function argument list. Thus, when a module A wishes to request the services of module
B, A calls one of B’s public wrapper functions. Rather than being required to pass all necessary data to B
through a procedure argument list, B may “pull” data it needs access to from the database, marshal it as
necessary, call the module algorithm(s), receive the updated data, and update the database.

The following subsections describe the methods provided by the database module in more detail.
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5.1.2.1 dBaseGetData/dBasePutData

Usage

call dBaseGetData([variable, [direction, [q1, [q2, [q3,]]]]] block, storage)

call dBasePutData([variable, [direction, [q1, [q2, [q3,]]]]] block, storage)

Description

Data exchange with grid variables. All variables registered with the framework via the VARIABLE keywords
within a module Config file can be read/written with this pair of functions. The data is assumed to be
composed of one or more structured blocks each with an integer block id = [1,num blocks], where num blocks
is the total number of blocks on a given processor.

Arguments

character(:) variable Variable names – these must match name as regis-
tered in Config file; if no name is present all vari-
ables will be exchanged

character(:) direction Used when exchanging a subsection of of a par-
ticular block of data. Specifies the shape of the
data and how q1, q2, q3 should be interpreted;
if not present all elements of specified variable will
be exchanged

integer q1, q2, q3 Coordinate of data exchanged in order i−j−k (see
above examples)

integer block Integer block ID on a given processor specifying
the patch of data to access

real storage

storage(:)

storage(:,:)

storage(:,:,:)

Allocated storage to receive result. Rank and
shape of the storage array should match the rank
and shape of data taken or put

List of valid variable directions

direction =



























































“xyPlane”
“xzPlane”
“yzPlane”
“yxPlane”
“zxPlane”
“zyPlane”
“xVector”
“yVector”
“zVector”
“Point”

Integers

Note that integer “key values” can be used in place of strings to specify variable names and directions.
These are provided for performance reasons when many accesses to the database are required (for example
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in a nested loop). These integers for variables and directions are not publicly available, but can be accessed
through the dBaseKeyNumber() routines.

Examples

Given a Config file with the following variable registration specification:

VARIABLE dens

the variable dens can be accessed from within FLASH as, for example:

use dBase, ONLY: nxb, nyb, nzb

real, dimension(nxb,nyb,nzb) :: density

do this_block = 1, total_blocks

!get x-y-z cube of density at block this_block

call dBaseGetData("dens", this_block, density)

call foo(density)

end do

use dBase, ONLY: nxb, nzb

real, dimension(nxb,nzb) :: density

do this_block = 1, total_blocks

do j = 1, nyb

! get an x-z slice of data at y-level j for block this_block

call dBaseGetData("dens", ‘‘xzPlane’’, j, density)

call foo(density)

end do

end do

use dBase, ONLY: nxb

real, dimension(nxb) :: density

do this_block = 1, total_blocks

do j = 1, nyb

do k = 1, nzg

! get x-line of data at points j,k on block this_block

call dBaseGetData("dens", ‘‘xVector’’, j, k, this_block, density)

call foo(density)

end do

end do

end do

5.1.2.1.1 dBaseGetCoords/dBasePutCoords

Usage

call dBaseGetCoords(variable, direction, [q,] block, storage)

call dBasePutCoords(variable, direction, [q,] block, storage)

Description

Access global coordinate information for a given block, including ghost points.

Arguments
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character(:) variable Specifies position of coords relative to block: left,
right, or center (see below)

character(:) direction Specifies x-, y-, or z-coordinate
integer q If given, allows to get/put a single coordinate

point for a specified direction. Default is to give
complete 1d array of all coords for given block

integer block Integer block ID on a given processor
real storage

storage(:)

Allocated storage to receive result

Valid variable directions

direction =

{

“xCoord”
“yCoord”
“zCoord”

coord position =

{

“znl” : left block boundary
“zn” : block center
“znr” : right block boundary

Integers

Integers for variables and directions are not publicly available, but can be accessed through dBaseKeyNumber().

Example

real, DIMENSION(block_size) :: xCoords, data

do i = 1, lnblocks

call dBaseGetCoords("zn", "xCoord", i, xCoords)

call dBaseGetData("dens", "xVector", 0, 0, i, data)

call foo(data,xCoords)

enddo

5.1.2.2 dBaseGetBoundaryFluxes/dBasePutBoundaryFluxes

Usage

call dBaseGetBoundaryFluxes(time, position, direction, block, storage)

call dBasePutBoundaryFluxes(time, position, direction, block, storage)

Description

Access boundary fluxes for all flux variables on a specified block associated with a given time level.
Currently, only the current and previous timestep are supported.

Arguments

integer time context Specifies fluxes stored at current or previous
timestep

integer position Specifies left or right boundary in a given direction
character direction Specifies x-, y-, or z-coordinate
integer block Integer block ID on a given processor specifying

the patch of data to access
real storage(:,:,:) Return buffer of size nFluxes * dim1 * dim2
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Strings

direction =

{

“xCoord”
“yCoord”
“zCoord”

Integers

time context =

{

-1 (previous time-step)
0 (current time-step)

position =

{

0 (left)
1 (right)

Example

real, dimension(nfluxes,ny,nz): xl_bound_fluxes, xr_bound_fluxes

do this_block = 1, num_blocks

call dBaseGetBoundaryFluxes(0,0,"xCoord", this_block, xl_bound_fluxes)

call dBaseGetBoundaryFluxes(0,1,"xCoord", this_block, xr_bound_fluxes)

call foo(xl_bound_fluxes, xr_bound_fluxes)

call dBasePutBoundaryFluxes(0,0,"xCoord",this_block,xl_bound_fluxes)

call dBasePutBoundaryFluxes(0,1,"xCoord",this_block,xl_bound_fluxes)

end do

5.1.2.3 dBaseKeyNumber

Usage

result = dBaseKeyNumber(keyname)

Description

For faster performance, dBase{Get,Put}{Data,Coords} can be called with integer arguments instead of
strings. Each of the string arguments accepted by the Get/Put methods can be replaced by a corresponding
integer. However, these integers are not publicly available. To obtain them, one must call dBaseKeyNumber().

Arguments and return type

character keyname String with “variable” or “direction” name, as
in get/put data/coords; names of variables must
match Config description

integer dBaseKeyNumber Integer assigned for the string key name

Strings
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keyname =



































































“xyzCube”
“xyPlane”
“xzPlane”
“yzPlane”
“yxPlane”
“zxPlane”
“zyPlane”
“xVector”
“yVector”
“zVector”
“Point”

“RefineVariable1”
“RefineVariable2”
“RefineVariable3”
“RefineVariable4”
“xCoord”
“yCoord”
“zCoord”

“OldTemp”
“Shock”
“znl”
“zn”
“znr”
“znl0”
“znr0”
“ugrid”

“rhoflx”
“uflx”
“utflx”
“uttflx”
“pflx”
“eflx”
“eintflx”
“nucflx begin”

Typically, the call to dBaseKeyNumber is performed once, in a firstcall block at the top of a routine. The
integer that stores the result will be declared with the Fortran save keyword, so the key value will be valid
on subsequent entries to the routine.

Example

integer :: idens, ixCoord

idens = dBaseKeyNumber("dens")

ixCoord = dBaseKeyNumber("xCoord")

call dBasePutData(idens, ixCoord, block_no, data)

5.1.2.4 dBaseSpecies

Usage

result = dBaseSpecies(index)

Description

Maps species number (from one to maximum number of species) to variable number (actual index in
“unk” array).

Arguments and return type

integer index Species number from one to maximum number of
species

integer dBaseSpecies Actual index in “unk” array

At present, all of the species are stored with adjacent indices in the solution array. Thus one can find
the index of the first isotope with a call to dBaseSpecies(1), and increment this value by 1 to get the next
species.
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5.1.2.5 dBaseVarName

Usage

result = dBaseVarName(keynumber)

Description

Given a key number, return the associated variable name.

Example

integer :: idens

char(len = 4) :: name

idens = dBaseKeyNumber("dens")

name = dBaseVarName(idens) ! name now = "dens"

Arguments and return type

integer keynumber Variable keynumber obtained with call to
dBaseKeyNumber

character(len = 4) dBaseVarName String name of variable as defined in Config; if
variable does not exist returns “null”

5.1.2.6 dBasePropertyInteger

Usage

result = dBasePropertyInteger(property)

Description

Accessor methods for integer-valued scalar variables.

Arguments and return type

character property String with variable name, see below
integer dBasePropertyInteger Property value

Strings
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property =















































































































































































































































































































“Dimensionality” Dimensionality of problem defined at setup
“NumberOfVariables” Total number of solution variables defined
“NumberOfSpecies” Number of nuclear species defined

“NumberOfGuardCells” Width of ghost-cell region on each boundary of a block
“NumberOfFluxes” Total number of fluxes defined

“NumberOfNamedVariables” Total number of solution variables excluding nuclear abun-
dances

“NumberOfAdvectVariables” Total number of variables with the ADVECT attribute
“NumberOfRenormVariables” Total number of variables with the RENORM attribute
“NumberOfConserveVariables” Total number of variables with the CONSERVE attribute

for a given problem
“MaxNumberOfBlocks” Total number of allocated blocks on a given processor. May

exceed the number of blocks currently defined in the AMR
hierarchy, since block memory is allocated statically.

“LocalNumberOfBlocks” Total number of blocks on a given processor
“MaxBlocks tr” Statically allocated buffer size for work arrays

“NumberOfGuards work” Guardcells for scratch array
“xDimensionExists” Value of 1 if x-dimension is defined for given problem, 0

otherwise
“yDimensionExists” Value of 1 if y-dimension is defined for given problem, 0

otherwise
“zDimensionExists” Value of 1 if z-dimension is defined for given problem, 0

otherwise
“xBlockSize” Number of zones in x-direction for AMR blocks, excluding

ghost zones
“yBlockSize” Number of zones in y-direction for AMR blocks, excluding

ghost zones
“zBlocksize” Number of zones in z-direction for AMR blocks, excluding

ghost zones
“xLowerBound” Beginning x-index of a block (including ghost zones)
“yLowerBound” Beginning y-index of a block (including ghost zones)
“zLowerBound” Beginning z-index of a block (including ghost zones)
“xUpperBound” Ending x-index of a block (including ghost zones)
“yUpperBound” Ending y-index of a block (including ghost zones)
“zUpperBound” Ending z-index of a block (including ghost zones)

“CurrentStepNumber” Current time-step number
“BeginStepNumber” Initial time-step number

“MyProcessor” Local processor ID assigned by MPI
“MasterProcessor” Master processor ID

“NumberOfProcessors” Total number of processors

5.1.2.6.1 dBasePropertyReal

Usage

result = dBasePropertyReal(property)

Description

Accessor methods for real-valued scalar variables.

Arguments and return type
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character property String with variable name, see below
integer dBasePropertyReal Property value

Strings

property =















































“Time” Current value of the simulation time
“OldTimeStep” Current value of the simulation time

“Redshift” Current value of the simulation time
“OldRedshift” Current value of the simulation time
“ScaleFactor” Current value of the simulation time

“OldScaleFactor” Current value of the simulation time
“CPSSeconds” Current value of the simulation time
“TimeStep” Current value of the simulation timestep

5.1.2.6.2 dBaseSetProperty

Usage

call dBaseSetProperty(property, value)

Description

Mutator methods for writable scalar variables. See dBasePropertyInteger/Real for documentation on
property names.

Arguments

character property String with variable name
integer real value New property value

Strings

property =



















































































“CurrentStepNumber”
“BeginStepNumber”
“MyProcessor”
“MasterProcessor”
“NumberOfProsessors”
“Time”
“TimeStep”
“OldTimeStep”
“Redshift”
“CPUSeconds”
“OldRedshift”
“OldSacaleFactor”
“ScaleFactor”
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5.1.2.7 dBaseVarIndex

Usage

result = dBaseVarIndex(property)

Description

Returns pointer to array of integer keys of variables with specified property.

Arguments and return type

character property String with property name, see
below

integer, POINTER, DIMENSION(:) dBaseVarIndex Pointer to array of unk indices of
variables with given property

Strings

property =

{

“advect”
“renorm”
“conserve”

5.1.2.8 Various pointer-returning functions

Each of these functions allows FLASH developers to hook directly into an internal data structure in the
database. In general these functions will offer better performance then their corresponding dBaseGet/Put

counterparts, and will require less memory overhead. However, the interfaces are more complicated and
the functions are less flexible, and less safe, so it is suggested that developers strongly consider using
dBaseGet/PutData when performance differences are small.

Each function returns a Fortran 90 pointer to the solution vector on the specified block. If no block is
specified, a pointer is returned to all blocks on the calling processor. Currently the array index layout is
assumed to be (var,nx,ny,nz,block) in row-major ordering. The scratch (unksm) array stores variables
with no guardcells; this name should probably be changed in the future.

Argument and return type

integer block

real, DIMENSION( :,:,:,:,: ), POINTER dBaseGetDataPtrAllBlocks

real, DIMENSION( :,:,:,: ), POINTER dBaseGetDataPtrSingleBlock

real, DIMENSION( :,:,: ), POINTER dBaseGetPtrToXCoords

real, DIMENSION( :,:,: ), POINTER dBaseGetPtrToYCoords

real, DIMENSION( :,:,: ), POINTER dBaseGetPtrToZCoords

real, DIMENSION( :,:,:,:,: ), POINTER dBaseGetScratchPtrAllBlocks

real, DIMENSION( :,:,:,: ), POINTER dBaseGetScratchPtrSingleBlock
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5.1.2.9 dBaseGetDataPtrAllBlocks()

Return an F90 pointer to the left-hand-side solution vector for all blocks on a given processor, arranged
in row-major order as: (var,nx,ny,nz,block). dBaseKeyNumber must still be called to access the elements
of the array.

5.1.2.9.1 dBaseGetDataPtrSingleBlock(block no)

Return an F90 pointer to the left-hand-side solution vector on a specified block, arranged as (var,nx,ny,nz).

5.1.2.9.2 dBaseGetPtrToXCoords()

Return an F90 pointer to an array containing information on the x-coordinates of the AMR blocks. The
array returned is arranged as (block position, i, block number), where block position values denote
center, left, or right coordinates, and are obtained by calling dBaseKeyNumber with “zn”, “znl”, “znr” and
using the corresponding index to access the appropriate row in the array. For example:

real, pointer, dimension(:,:,:) :: xCoords

real :: x, xl, xr

integer :: izn, iznl, iznr

izn = dBaseKeyNumber("izn")

iznl = dBaseKeyNumber("iznl")

iznr = dBaseKeyNumber("iznr")

xCoord => dBaseGetPtrToXCoords()

do this_block = 1, num_blocks

do i = 1, blocksize

x = xCoord(izn, i, this_block) ! get first center coord

xl = xCoord(iznl, i, this_block) ! get first left coord

xr = xCoord(iznr, i, this_block) ! get first right coord

...

enddo

enddo

5.1.2.10 dBaseGetPtrToYCoords()

See dBaseGetPtrToXCoords().

5.1.2.10.1 dBaseGetPtrToZCoords()

See dBaseGetPtrToXCoords().

5.1.2.10.2 dBaseGetScratchPtrAllBlocks()

Return an F90 pointer to a scratch array of size (2, nxb, nyb, nzb, maxblocks).

5.1.2.11 dBaseGetScratchPtrSingleBlock(block no)

Return an F90 pointer to a scratch array of size (2, nxb, nyb, nzb).
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5.1.2.12 AMR tree interface functions

These functions enable FLASH developers to directly access the data structures used by PARAMESH to
describe the adaptive mesh. In general they should not be needed by developers of physics modules. Also,
they may not be available in future versions of FLASH.

Arguments and return types

integer block

integer, DIMENSION (mfaces) dBaseNeighborBlockList

integer, DIMENSION (mfaces) dbaseNeighborBlockProcList

integer, DIMENSION (mchild) dBaseChildBlockList

integer, DIMENSION (mchild) dBaseChildBlockProcList

integer dBaseParentBlockList

integer dBaseParentBlockProcList

integer dBaseRefinementLevel

integer, DIMENSION (nfaces) dbaseNeighborType

real, DIMENSION (mdim) dBaseBlockCoord

real, DIMENSION (mdim) dBaseBlockSize

integer dBaseNodeType

logical dBaseRefine

logical dBaseDeRefine

dBaseNeighborBlockList (block)
Given a block ID, return an array of block ID’s which are the neighbors of the specified block. The re-

turned array is of size max faces = 6, but not all of the six elements will have meaningful values if the problem
is run in fewer than three dimensions. Assuming the function is called as NEIGH = dBaseNeighborBlockList(),
the ordering is as follows. The neighbor on the lower x face of block L is at NEIGH(1,L), the neighbor on the
upper x face at NEIGH(2,L), the lower y face at NEIGH(3,L), the upper y face at NEIGH(4,L), the lower z
face at NEIGH(5,L), and the upper z face at NEIGH(6,L). If any of these values are set to −1 or lower, there
is no neighbor to this block at its refinement level. However there may be a neighbor to this block’s parent.
If the value is −20 or lower then this face represents an external boundary, and the user is required to apply
some boundary condition on this face. The exact value below −20 can be used to distinguish between the
different boundary conditions which the user may wish to implement.

dbaseNeighborBlockProcList (block)
Given a block ID, return an array of size max faces = 6 elements containing processor ID’s identifying

the processor that a given neighbor resides on. Ordering is identical to dBaseNeighborBlockList().

dBaseChildBlockList (block)
Given a block ID, return an array of size max child = 2 * max dim elements containing the block ID’s

of the child blocks of the specified block. The children of a parent are numbered according to the Fortran
array ordering convention, ie. child 1 is at the lower x, y, and z corner of the parent, child 2 at the higher x
coordinate but lower y and z, child 3 at lower x, higher y and lower z, child 4 at higher x and y and lower
z, and so on.

dBaseChildBlockProcList (block)
Given a block ID, return an array of size max child elements containing processor ID’s of the children

of the specified block. Ordering is identical to dBaseChildBlockList().

dBaseParentBlockList (block)
Given a block ID, return the ID of the block’s parent block.
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dBaseParentBlockProcList (block)
Given a block ID, return the processor ID upon which the block’s parent resides.

dBaseRefinementLevel (block)
Given a block ID, return that block’s integer level of refinement.

dBaseNodeType (block)
Given a block ID, return the block’s node type. If 1 then the node is a leaf node, if 2 then the node is a

parent but with at least 1 leaf child, otherwise it is set to 3 and it does not have any up−to−date data.

dbaseNeighborType (block)
Given a block ID, return an array of size (mfaces, maxblocks tr), containing the type ID’s of the

neighbors of the specified block. mfaces = mdim * 2, where mdim is the maximum possible dimensionality
(3).

dBaseBlockCoord (block)
Given a block ID, return an array of size ndim containing the x,y,z coordinates of the center of the block.

dBaseBlockSize (block)
Given a block ID, return an array of size ndim containing the block size in the x, y, and z directions.

dBaseRefine (block)
Given a block ID, return .true. if that block is set for refinement in the next call to amr refine derefine(),

and .false. otherwise.

dBaseDeRefine (block)
Given a block ID, return .true. if that block is set for refinement in the next call to amr refine derefine(),

and .false. otherwise.

5.1.3 Algorithms

Within each module are one or more procedures which perform the bulk of the computational work for the
module. A principal strategy behind the FLASH architecture is to decouple these procedures as much as
possible from the details of the framework in which they are embedded. This is accomplished by requiring
that all module algorithms communicate data only through function argument lists. That is, algorithms
may not query the database directly nor may they depend on the existence of externally defined or global
variables. This design ensures that algorithms can be tested, developed, and interchanged in complete
isolation from the larger, more complicated framework.

Thus, each algorithm in a module should have a well defined argument list. It is up to the algorithm
developer to make this as general or restrictive as he/she sees fit. However, it is important to keep in mind
that the more rigid the argument list, the less chance that another algorithm can share its interface. The
consequence is that the developer would have to add an entirely new wrapper function for just slightly
different functionality.

5.2 The FLASH source tree

An abstract representation of the FLASH architecture appears in Figure 5.1. Each box in this figure rep-
resents a component (FLASH module), which publishes a small set of public methods to its clients. These
public methods are expressed through virtual function definitions (stubs under Fortran 90), which are imple-
mented by real functions supplied by sub-modules. Typically each component represents a different class of
solver. For instance, for time-dependent problems the driver uses time-splitting techniques to compose the
different solvers, which are divided into different classes on the basis of their ability to be composed in this
fashion and upon natural differences in solution method (e.g., hyperbolic solvers for hydrodynamics, elliptic
solvers for radiation and gravity, ODE solvers for source etc.).
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Figure 5.1: Abstract representation of the FLASH architecture.

The adaptive mesh refinement module is treated in the same way as the solvers. The means by which
the driver shares data with the solver objects is the primary way in which the architecture affects the
overall performance of the code. Choices here, in order of decreasing performance and increasing flexibility,
include global memory, argument-passing, and messaging. FLASH 2.2 has eliminated global variable access
in favor of a well-defined set of accessor and mutator methods managed by the centralized database module.
When done with an eye toward optimization, the effects on performance are tolerable, and the benefits for
maintainability and extensibility are significant. This is discussed in greater detail below.

5.2.1 Code infrastructure

The structure of the FLASH source tree reflects the module structure of the code, as shown in Figure 5.2.
The general plan is that source code is organized into one set of directories, while the code is built in a
separate directory using links to the appropriate source files. The links are created by a source configuration
script called setup, which makes the links using options selected by the user and then creates an appropriate
makefile in the build directory. The user then builds the executable with a single invocation of gmake.

Source code for each of the different code modules is stored in subdirectories under source/. The
code modules implement different physics, such as hydrodynamics, nuclear burning, and gravity, or different
major program components, such as the main driver code and the input/output code. Each module directory
contains source code files, makefile fragments indicating how to build the module, and a configuration file
(see Chapter 3).

Each module subdirectory may also have additional sub-module directories underneath it. These contain
code, makefiles, and configuration files specific to different variants of the module. For example, the hydro/
module directory (as shown in Figure Fig:hydro module) can contain files which are generic to hydrody-
namical solvers, while its explicit/ subdirectory contains files specific to explicit hydro schemes and its
implicit/ subdirectory contains files specific to implicit solvers. Configuration files for other modules which
need hydrodynamics can specify hydro as a requirement without mentioning a specific solver; the user can
then choose one solver or the other when building the code (via the modules file (Chapter 3)).

When setup configures the source tree it treats each sub-module as inheriting all of the source code, con-
figuration files, and makefiles in its parent module’s directory, so generic code does not have to be duplicated.
Sub-modules can themselves have sub-modules, so for example one might have hydro/explicit/split/ppm
and hydro/implicit/ppm. Source files at a given level of the directory hierarchy override files with the same
name at higher levels, whereas makefiles and configuration files are cumulative. This permits modules to
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Figure 5.2: Directory structure of FLASH 2.2.
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supply stub routines that are treated as ‘virtual functions’ to be overridden by specific sub-modules, and it
permits sub-module directories to be self-contained.

When a module is not explicitly included by Modules, only one thing is done differently by setup: sub-
modules are not included, except for a null sub-module, if it is present. Most top-level modules should
contain only stub files to be overridden by sub-modules, so this behavior allows the module to be ‘not
included’ without extra machinery (such as the special stub files and makefiles required by earlier versions
of FLASH). In those cases in which the module’s files are not appropriate for the ‘not included’ case, the
null sub-module allows one to override them with appropriate versions.

New solvers and new physics can be added. At the current stage of development of FLASH it is probably
best to consult the authors of FLASH (see Chapter 22.3) for assistance in this. Some general guidelines for
adding solvers to FLASH 2.2 may be found in Chapter 21.

The setups/ directory has a structure similar to that of source/. In this case, however, each of the
”modules” represents a different initial model or problem, and the problems are mutually exclusive; only
one is included in the code at a time. Also, the problem directories have no equivalent of sub-modules. A
makefile fragment specific to a problem need not be present, but if it is, it is called Makefile. Chapter 4
describes how to add new problem directories.

The setup script creates a directory called object/ in which the executable is built. In this directory
setup creates links to all of the source code files found in the specified module and sub-module directories
as well as the specified problem directory. (A source code file has the extension .c, .C, .f, .f90, .F90,

.F, .fh, or .h.) Because the problem setup directory and the machine-dependent directory are scanned
last, links to files in these directories override the “defaults” taken from the source/ tree. Hence special
variants of routines needed for a particular problem can be used in place of the standard versions by simply
giving the files containing them the same names.

Using information from the configuration files in the specified module and problem directories, setup
creates a file named init global parms.F90 to parse the runtime parameter file and initialize the runtime
parameter database. It also creates a file named rt parms.txt, which concatenates all of the PARAMETER
statements found in the appropriate configuration files and so can be used as a “master list” of all of the
runtime parameters available to the executable.

setup also creates makefiles in object/ for each of the included modules. Each copy is named Make-
file.module, where module is driver, hydro, gravity, and so forth. Each of these files is constructed by
concatenating the makefiles found in each included module path. So, for example, including
hydro/explicit/split/ppm causes Makefile.hydro to be generated from files named Makefile in hydro/,
hydro/explicit/, hydro/explicit/split/, and hydro/explicit/split/ppm/. If the module is not ex-
plicitly included, then only hydro/Makefile is used, under the assumption that the subroutines at this level
are to be used when the module is not included. The setup script creates a master makefile (Makefile) in
object/ which includes all of the different modules’ makefile fragments together with the site- or operating
system-dependent Makefile.h.

The master Makefile created by setup creates a temporary subroutine, buildstamp.F90, which echoes
the date, time, and location of the build to the FLASH log file when FLASH is run. To ensure that
this subroutine is regenerated each time the executable is linked, the Makefile deletes buildstamp.F90

immediately after compiling it.

The setup script can be run with the -portable option to create a directory with real files which can be
collected together with tar and moved elsewhere for building. In this case the build directory is assigned the
name object problem/. Further information on the options available with setup may be found in Chapter
3. .

Additional directories included with FLASH are tools/, which contains tools for working with FLASH
and its output (Sec:FLASH output comparison utility), and docs/, which contains documentation for FLASH
(including this user’s guide) and the PARAMESH library.

5.3 Modules included with FLASH: a brief overview

The current FLASH distribution comes with a set of core components that form the backbone of many
common problems, namely: database, driver, hydro, io, mesh, particles, source terms, gravity, and materials.
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A detailed discussion of the role of each of these modules is presented in Part IV. Here we give a brief overview
of each.

Chapter 6 describes in detail the various driver modules which may be implemented with FLASH. In
addition to the default driver, which controls the initialization, evolution, and output of a FLASH simulation,
four new driver modules have been written to implement different explicit time advancement algorithms.
Three are written in the delta formulation: euler1, rk3, and strang delta. The fourth, strang state,
is written in the state-vector formulation. This chapter also includes a subsection concerning simulation
services, runtime parameters, and logfiles.

Chapter 7 describe the FLASH I/O modules, which control how FLASH data structures are stored on
different platforms and in different formats. Discussed in this section are the I/O module hdf4, which uses
the Hierarchical Data Format (HDF) for storing simulation data, and the two major HDF5 modules (serial
and parallel versions).

Chapter 8 describes the mesh module, together with the PARAMESH package of subroutines for the
parallelization and adaptive mesh refinement (AMR) portion of FLASH.

Chapter 9 describes the two hydrodynamic modules included in FLASH 2.x. The first is based on
the PROMETHEUS code (Fryxell, Müller, and Arnett 1989); the second is based on Kurganov numerical
methods. Section 9.3 describes the magnetohydrodynamics module included with the FLASH code, which
solves the equations of ideal MHD.

Chapter 10 discusses the material properties module, which handles the tracking of multiple fluids in
FLASH simulations. It includes the equation of state module, which implements the EOS for the hydrody-
namical and nuclear burning solvers; the composition submodule, which sets up the different compositions
needed by FLASH; and the stellar conductivity module, which may be used for computing the opacity of
stellar material.

Chapter 11 describes source terms, including the nuclear burning module, which calculates the nuclear
burning rate of a hydrodynamical simulation, and the stirring module, which adds a divergence-free, time-
correlated ‘stirring’ velocity at selected modes in a given hydrodynamical simulation.

Chapter 12 describes the gravity module, which computes gravitational potential or gravitational ac-
celeration source terms for the code. It includes several sub-modules: the constant submodule, the plane
parallel sub-module, the ptmass submodule, and the Poisson submodules.

Chapter 13 describes the particle module, which follows the evolution of both physical particles and
Lagrangian mass tracers.

Chapter 14 describes the cosmology module, which provides features required for solving cosmological
problems in comoving coordinates. These include the evolution of the scale factor (via the Friedmann
equation), the redshift terms in the comoving Euler equations, and a library of useful cosmological functions
(e.g., to convert redshifts to times).

Chapter 15 describes several solvers included with FLASH, including solvers for ordinary differential
equations (ODE) and multipole and multigrid Poisson solvers.

Chapter 16 describes the 2d runtime visualization module, used to produce simple pictures of a FLASH
simulation.

Finally, Chapter 17 describes the utilities module, which is a collection of reusable high-level utility
functions that simplify programming in FLASH.
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Chapter 6

Driver modules

Figure 6.1: The driver module directory.

The driver module controls the initialization, evolution, and output of a FLASH simulation. Initial-
ization can be from scratch or from a stored checkpoint file. Evolution can use any of several different
operator-splitting techniques to combine different physics operators and integrate them in time, or call a sin-
gle operator if the problem of interest is not time-dependent. Output involves the production of checkpoint
files, plot files, analysis data, and log file time stamps. In addition to these functions, the driver supplies
important simulation services to the rest of the FLASH framework, including Fortran modules to handle
runtime parameters, physical constants, memory usage reports, and log file management (these are discussed
further in Chapter 7).

The initialization and termination routines and simulation services modules are common to both time-
dependent and time-independent drivers and thus are included at the highest level of driver. The file
flash.F90 contains the main FLASH program (equivalent to main() in C) and calls these routines as

47
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needed. The default flash.F90 is empty and is intended to be overridden by submodules of driver. At this
time only time-dependent drivers are supplied with FLASH; these are submodules of the driver/time dep

module. The time dep version of flash.F90 calls the FLASH initialization routine, loops over timesteps,
and then calls the FLASH termination routine. During the time loop it computes new timesteps, calls an
evolution routine (evolve()), and calls output routines as necessary.

The details of each available time integration method are completely determined by the version of
evolve() supplied by that method. The default time update method is to call each physics module’s
update routine for two equal timesteps – thus, hydro, source terms, gravity, hydro, source terms, gravity.
The hydrodynamics update routines take a “sweep order” argument in case they are directionally split; in
this case, the first call uses the ordering x−y−z, and the second call uses z−y−x. Each of the update rou-
tines is assumed to directly modify the solution variables. At the end of each pair of timesteps, the condition
for updating the mesh refinement pattern is tested, and a refinement update is carried out if required.

The alternative “delta formulation” drivers (driver/time dep/delta form) modify a set of variables
containing the change in the solution during the timestep. The change is only applied to the solution variables
after all operators have been invoked. This technique permits more general time integration methods, such
as Runge-Kutta methods, to be employed, and it provides a more flexible method for composing operators.
However, only a few physics modules can make use of it as yet. More details on the delta formulation drivers
appear in Section 6.1.

The driver module supplies certain runtime parameters regardless of which type of driver is chosen. These
are described in Table 6.1.

Table 6.1: driver module parameters.

Parameter Type Default Description
nend integer 100 Maximum number of timesteps to take before halt-

ing the simulation

restart boolean .false. Set to .true. to restart the simulation from a
checkpoint file

run number string “” Identification number for run

run comment string “” Identifying comment for run

log file string “flash.log” Name of log file

tinitial real 0. Initial simulation time

tmax real 1. Maximum simulation time to advance before halt-
ing the simulation

zinitial real -1. Initial simulation redshift (ignored if < 0; used to
set tinitial if > 0)

zfinal real -2. Final simulation redshift (ignored if < 0)

dtini real 10−10 Initial timestep

dtmin real 10−10 Minimum timestep

dtmax real 105 Maximum timestep

small real 10−10 Generic small cutoff value for dimensionless posi-
tive definite quantities
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Table 6.1: driver module parameters (continued).

Parameter Type Default Description

smlrho real 10−10 Cutoff value for density

smallp/e/t/u/x real 10−10 Cutoff values for pressure, energy, temperature,
velocity, and advected abundances

x/y/zmin real 0 Minimum x, y, and z coordinates for grid

x/y/zmax real 1 Maximum x, y, and z coordinates for grid

igeomx/y/z integer 0 Grid geometry in x, y, and z directions:
0=Cartesian/planar; 1=radial (cylindrical); 2=ra-
dial (spherical); 3=polar (cylindrical); 4=polar
(spherical); 5=azimuthal (spherical). Types 3, 4,
5 are not yet supported in FLASH.

igrav integer 0 If set to 1, use gravity

iburn integer 0 If set to 1, use nuclear burning

iheat integer 0 If set to 1, use heating processes

icool integer 0 If set to 1, use cooling processes

wall clock time limit real 604800 Maximum simulation time in seconds

print tstep loc boolean .false. when true, it prints the x,y, and z coordinates of
the zone that is determining the timestep (for all
limiters).

6.1 Delta-formulation and Strang-state driver modules

These driver modules implement different explicit time advancement algorithms. This usage is slightly differ-
ent than that of the default driver module, which does not directly implement a time advancement algorithm;
the default driver and hydro modules each implement parts of the Strang splitting time advancement. In
this section are listed the time advancement tasks common to all of the new drivers. In following subsections,
the details of each time advancement method will be described.

The three driver modules written in the delta formulation are euler1, rk3, and strang delta. They
make appropriate calls to the physics modules, and update the solution by calling functions provided by the
formulation module. The strang state driver is written in the state-vector formulation; it also calls the
physics modules, but does not update the solution. To use these modules, first choose the driver by including
one of the following lines into the Modules file:

INCLUDE driver/time dep/delta form/euler1

INCLUDE driver/time dep/delta form/rk3

INCLUDE driver/time dep/delta form/strang delta

INCLUDE driver/time dep/delta form/strang state

The directory names for some of the new modules are misleading. All the new time advancements are in a
directory named delta form, regardless of their formulation.
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The time advancement module determines which formulation module should be used; two instantiations
are possible. For euler1, rk3, or strang delta, specify

INCLUDE formulation/state form/delta form

but for strang state specify

INCLUDE formulation/state form

The services provided by the formulation module for the delta formulation are a superset of those provided
for the state-vector formulation, which explains the directory structure used. For both instantiations, the
formulation module contains (i) subroutines for updating the conserved and auxiliary variables locally (on
a block or face of a block), given a local Lphysics(U), and (ii) a parameter which declares which formulation
is being used. For the delta formulation, the module also (iii) declares the global ∆U array and contains
subroutines for accessing it, and (iv) provides a subroutine to update the variables globally.

For delta formulation time advancements, the delta formulation driver modules use the formulation
module to hold and access the global ∆U array, and to update the solution. In the state-vector formulation,
the formulation module is not directly used by the driver; instead, the physics modules call the update
subroutines the formulation module provides.

The new driver modules discretize the left-hand side of

∂V

∂t
= (spatial difference terms) + (source terms). (6.1)

The time advancement algorithm is contained in a subroutine named evolve. Each call to evolve advances
the solution through one time step, ∆t. Each time advancement algorithm begins with a vector of primary
variables, V n at time tn, and an associated set of auxiliary variables, W n. Primarily through calls to other
physics modules, evolve applies a set of operations to the variables to produce an updated vector, V n+1

at time tn+1 = tn +∆t. Depending on the formulation, the time advancement may or may not update the
auxiliary variables – in the state-vector formulation, the other physics modules update them.

The distinction between V and W is that time-dependent differential equations are solved to determine
the primary variables. The auxiliary variables are obtained from the primary variables through algebraic
relations. Often the primary variables are the conserved variables, U , and in the rest of this section U will
replace V . However, the time advancement algorithms implemented do not require this correspondence.

The time advancement algorithms are written generally, in that each differential equation is treated in
the same way. The distinction between the equations (for example, between the x-momentum equation and
the total energy equation) is expressed in the other physics modules. The time advancement algorithm does
not need to know the identity of the variables on which it operates, except possibly to update the auxiliary
variables from the primary variables; but this update is handled by a call to a subroutine provided by the
formulation module.

6.1.1 The euler1 module

The euler1 module implements the first-order, Euler explicit scheme:

Un+1 = Un +∆tL(Un) (6.2)

where L(U) represents all of the physics modules. The euler explicit method is implemented in the delta
formulation. No runtime parameters are defined for this module.

At the beginning of a time step, ∆U is set to zero. Each of the physics modules is called, with U n as
the initial state, and adds its contribution to ∆U . After all the physics modules have been called, the global
∆U array holds L(Un). Equation (6.2) yields Un+1. Finally, the auxiliary variables are updated from the
conserved variables with a call to the global update subroutine provided by the formulation module.

Note that because all the physics modules start with the same initial state, the order in which the physics
modules are called does not affect the results (except possibly through floating point roundoff differences
when contributing to ∆U .)

The set of steps, consisting of calls to physics modules, updating the conserved variables, and updating
the auxiliary variables, is often called a stage. The majority of the computational cost of a stage is the in
the calls to the other physics modules; this component corresponds to a “function evaluation” for ordinary
differential equation solvers. In the Euler explicit algorithm, there is one stage per time step.
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6.1.2 The rk3 module

Runge-Kutta schemes are a class ordinary differential equation solvers which are appreciated for their higher
order of accuracy, ease of implementation, and relatively low storage requirements. There are many third-
order Runge-Kutta methods; all require at least three stages. Most require at least three storage locations
per primary variable, but the one implemented in the delta formulation in FLASH, derived by Williamson
(J. Comp. Phys. 35:48, 1980) requires only two.

The two storage registers will be referred to as U and ∆U . The global solution vector, U , holds U n at the
beginning of the time step, then intermediate solutions U (·) at the end of each stage. The manipulation of
the global ∆U array is more complicated. ∆U accumulates contributions from the physics modules during
a stage, but it also holds results from previous stages; it is important to distinguish between the results of
the physics modules, L(U), and the quantity held in the global ∆U array. First the algorithm will be shown;
then the usage of the global ∆U array will be discussed. For the equation

∂U

∂t
= L(U), (6.3)

Williamson’s algorithm is, starting with Un,

U (1) = Un +
1

3
∆t
[

L(Un)
]

(6.4)

U (2) = U (1) +
15

16
∆t
[

L(U (1))− 5

9
L(Un)

]

(6.5)

Un+1 = U (3) = U (2) +
8

15
∆t
[

L(U (2))− 153

128

(

L(U (1))− 5

9
L(Un)

)]

. (6.6)

U (m) is the result of the m-th stage, and the auxiliary variables are updated each time a new U (m) is
computed.

The algorithm is implemented using the following steps to attain the low storage. At the beginning of
the time step, ∆U is set to zero. During the first stage each physics module contributes to ∆U , so after all
have contributed, ∆U holds the bracketed term in eq. (6.4), L(Un). U (1) is then computed using eq. (6.4).
Stage 1 is completed by multiplying ∆U by −5/9, which is required for the following stages. The process is
repeated for stage 2: after the physics modules have contributed, ∆U holds the bracketed term in eq. (6.5);
U (2) is computed by eq. (6.5) and stored in U ; then ∆U is multiplied by −153/128. Stage 3 is similar, but
ends after U (3) = Un+1 is computed and stored. It is critical that the only changes made to the ∆U array
are those just listed; no physics module should change the value of ∆U , except to add its contribution, and
since ∆U holds information from previous stages, it should not be reset to zero except at the beginning of
the time step.

No runtime parameters are defined for this module.

6.1.3 strang state and strang delta modules

The second-order accurate splitting method (Strang 1968) is attractive because of its low memory require-
ments. The algorithm is based on the operator splitting approach, in which a set of subproblems is solved
rather a single complicated problem. Each subproblem typically accounts for one term in a system of partial
differential equations, representing a particular type of physics and for which an appropriate (specialized)
numerical method is available. The basic operator splitting method is first-order accurate, but the Strang
splitting scheme is second-order accurate over two time steps. In the first time step, the subproblems are
solved in a given sequence. Second-order accuracy is obtained by reversing the sequence in the second time
step.

A key feature of the operator splitting approach is that the output of one subproblem is the input to the
next subproblem. This allows an implementation that, globally, stores only the current solution, but can
also cause problems including accuracy losses due to decoupling various physical effects (splitting errors) and
difficulties implementing boundary conditions.

In practice it has been found that splitting errors are reduced when the subproblems are ordered in
increasing stiffness, i.e. the stiffest subproblem is solved last in the sequence; this has recently been supported
by numerical analysis (Sportisse 2000).
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Two driver modules implement an algorithm similar to the Strang splitting time advancement. Since the
sequence is not exactly reversed in the second step compared to the first, the algorithm is not the true Strang
splitting. However, the source terms include nuclear burning source terms which are very stiff, and there
are sound arguments for computing them last. The strang state module implements the algorithm in the
state-vector formulation, and is recommended for “production” runs for its low memory requirements. The
strang delta driver is implemented in the delta formulation and is provided for testing and comparison.
For both versions, one call to evolve (which implements the time advancement algorithm) advances the
solution from tn to tn+2, i.e. over two time steps.

In the strang state driver, the sequence of calls to physics modules in the first time step is

hydro(x-sweep)
hydro(y-sweep)
hydro(z-sweep)
gravity
source terms

In the second time step, only the order of the hydro calls is reversed:

hydro(z-sweep)
hydro(y-sweep)
hydro(x-sweep)
gravity
source terms

Mesh refinement and derefinement are executed only after the second step, not between the two steps; also
the time step is held constant for the two steps. The y- and z-sweeps of hydro are not called unless that
dimension is included in the simulation. The same algorithm is used in the strang delta module, but
after each call to a physics module, a call to a subroutine is necessary to update the solution. When the
strang state driver is used, these calls are made by each physics module.

No runtime parameters are defined for either module.

6.1.4 New formulation modules

The purposes of this module class are

1. To provide functions, usable by physics modules and driver modules,

to update the solution locally (on a block or a face of a block) or globally (on all blocks.)

2. If needed by the time advancement (driver) module, to provide storage space for the global ∆U array
and functions to access it.

Time advancement methods (drivers) are implemented in either the state-vector or delta formulations. There
are two corresponding instantiations of the formulation module. In the state-vector instantiation, only the
local update functions in item (1) are provided; drivers in the state-vector formulation do not require any
other services. The delta instantiation provides both local and global update functions and global ∆U array
storage, as required by drivers in the delta formulation.

The services provided to delta formulation drivers are a superset of those provided to drivers in the state-
vector formulation, and the directory structure is used to express that. The /formulation/state form

directory contains the local update subroutines and a version of formulation Module suitable for the state-
vector instantiation. formulation Module defines a module in the Fortran90 sense, as opposed to the FLASH
hierarchy sense. The formulation/state form/delta form directory contains the global update subroutine
and the version of formulation Module required for the delta instantiation.

When /formulation/state form is specified in the Modules file, the local update functions and the first
formulation Module are built into the executable, as appropriate for drivers in the state-vector formulation;
when /formulation/state form/delta form is specified in the Modules file, the local update functions, the
global update function, and the second version of formulation Module are used in the executable as required
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by drivers in the delta formulation. This use of the FLASH code framework and directory hierarchy allows
static allocation of the global ∆U array when needed but saves that memory when not. At the same time
it allows local update functions to be used by both state-vector and delta formulations without duplicating
code.

Currently the update functions apply only to the particular variable sets described. The local update
functions must be given the (old) conserved variables in the order ρ1, · · · , ρionmax, ρu, ρv, ρw, ρE, and
they store in the database X1, · · · , Xionmax, ρ, P , T , γ, u, v, w, and E. The mapping from the conserved
variables to the database variables is not general, it is specific to the variables just listed. Variables other
than those specifically listed will not be updated, and their influence on the variables just listed will be
ignored. Development of more flexible update routines is underway. However, changes will most likely be
internal to the local and global update functions, and the organization of these modules is not expected to
change.

6.1.4.1 State-Vector Instantiation

In this subsection the local update functions, named du update block, du update xface, du update yface,
and du update zface, are described. These subroutines accept local arrays of conserved variables and their
changes as inputs, compute updated conserved variables, compute auxiliary variables from algebraic relations
(with the aid of appropriate equation of state calls), and store the updated variables in the database.

These subroutines accept the block number, a local ∆U , local conserved variables U , the time step ∆t,
and a scalar factor c, all as passed arguments. The face update routines also accept an index specifying
which grid plane to update. The conserved variables are those listed in eq.(6.7). The conserved variables
are updated by

Unew = Uold + c∆t∆U. (6.7)

The factor c allows an update to an intermediate time between tn and tn+1, often required by Runge-Kutta
time advancement methods; it is intended for use by drivers in the delta formulation through the global
update subroutine.

From the updated conserved variables, all variables stored in the database are computed. The density, ρ,
and species mass fractions, Xs, are obtained from the species densities, ρs. The velocity components u, v,
and w and the total energy per unit volume E are computed from the momenta and total energy per unit
mass, respectively, by dividing by ρ. The internal energy, ei, is calculated by subtracting the kinetic energy,
(u2 + v2 + w2)/2, from E. The temperature, T , pressure, P , and ratio of specific heats, γ are obtained
through a call to the equation of state, for which ρ, Xs, and ei are inputs.

Finally, the updated variables are stored in the variable database. The variables stored are Xs, ρ, P , T ,
γ, u, v, w, and E. Only the interior cells of a block or face are updated; for all guard cells, zeros are stored
for all updated variables. None of the calculations described above are executed for the guard cells.

For the state-vector formulation, there are only a few tasks for the Fortran 90 module formulation Module.
First, it defines a Fortran logical parameter delta formulation to be ‘false’. This parameter is designed
to be accessed by physics modules. When false, it indicates that each physics module should update the
solution; while the local update routines just described are recommended for this purpose, there is no re-
quirement that they be used. Second, formulation Module defines several parameters for sizing arrays and
a set of integers (indices) used to access the variable database; these are used by the local update subroutines.

In the state-vector instantiation, formulation Module does not declare the global ∆U array. It does
define some functions which are used to access that array, but in this instantiation they do not perform any
operations – they are ‘stub’ functions. The reason for defining them is as follows. If a physics module is
written so that either the state-vector or delta formulation can be used, it must include calls to functions
which access the global ∆U array. When the state-vector formulation is used these calls are not made, but
some compilers might raise errors if these functions were not defined. By defining them in this instantiation
of formulation Module, such errors are avoided. The stub functions are contained, in the Fortran 90 sense,
in formulation Module. The local update functions are not contained in the formulation Module, although
they directly access the array sizing parameters and database indices therein.
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6.1.4.2 Delta Instantiation

In this section the global update subroutine du update and the delta formulation version of formulation Module

are described. The global update routine is a wrapper to the local update subroutine du update block. Two
arguments, c and ∆t, are passed into du update. For each block, it gets ρ, Xs, u, v, w, and E from the
database; computes the (old) conserved variables from these; gets the ∆U for the block from the global ∆U
array; and calls du update block. Recall that du update block computes the updated variables and stores
them in the database.

For the delta instantiation, formulation Module defines the same array-sizing parameters and database
indices as in the state-vector instantiation. However, it defines the parameter delta formulation to be
‘true’, indicating to the physics modules that their contributions should be added to the global ∆U array.
The delta instantiation of formulation Module statically allocates the global ∆U array, and defines several
functions to manipulate it. Each element of the global ∆U array is set to zero by du zero. A physics
module can add its local ∆U for a block to the global array by calling du block to global; the subroutines
du xface to global, du yface to global and du zface to global do the same for faces (slices) of a block.
These subroutines are contained in formulation Module, and are the actual, working versions of the stub
functions defined in the state-vector instantiation.

The global ∆U array is a public, module-scope variable in the Fortran 90 sense. The du update subroutine
is not contained in formulation Module, but can access the array-sizing parameters and database indices
in the module. It can also access the global ∆U array directly, and is the only subroutine not contained in
formulation Module allowed to do so.

6.2 Simulation services

6.2.1 Runtime parameters

The driver module provides a Fortran 90 module called runtime parameters. The routines in this module
maintain ‘parameter contexts,’ essentially small databases of runtime parameters. Contexts can be created
and destroyed, and runtime parameters can be added to them, have their values modified, and be queried as
to their value or data type. These features allow a program to maintain several contexts for different code
modules without having to declare and share the parameters explicitly. User-written subroutines (e.g., for
initialization) should use the routines in this module to access the values of any runtime parameters they
require.

An example of the application of this module is to use the read parameters() routine (separately
supplied) to parse a text-format input file containing parameter settings. The calling program declares a
context, adds parameters to it, then calls read parameters() to parse the input file. Finally, the context is
queried to obtain the input values. Such a program might look like the following code fragment.

program test

use runtime_parameters

type (parm_context_type) :: context

real :: x_init

...

call create_parm_context (context)

call add_parm_to_context (context, "x_init", 4.)

...

call read_parameters ("input.par", context)

call get_parm_from_context (context, "x_init", x_init)

...

end

Parameter names supplied as arguments to the routines are stored or compared in a case-insensitive fashion.
Thus N x and n x refer to the same parameter, and

integer n_x
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call add_parm_to_context (context, "N_x", 32)

call get_parm_from_context (context, "n_X", n_x)

write (*,*) n_x

call set_parm_in_context (context, "n_x", 64)

call get_parm_from_context (context, "N_X", n_x)

write (*,*) n_x

prints

32

64

The following routines, data types, and public constants are provided by this module. Note that the main
FLASH initialization routine (init flash()) and the initialization code created by setup already handle
the creation of the database and the parsing of the parameter file, so users will mainly be interested in
querying the database for parameter values.

• parm context type

Data type for contexts.

• global parm context

A parameter context available to all program units which use the runtime parameters module. This
is made available only for programs which share the rest of their data among routines via included
common blocks. Programs which use modules should declare their own contexts within their modules.

• parm {real,int,str,log,invalid}
Constants returned by get parm type from context().

• create parm context (c)

Create context c.

• destroy parm context (c)

Destroy context c, freeing up the memory occupied by its database.

• add parm to context (c,p,v)

Add a parameter named p to context c. p is a character string naming the parameter, and v is the
default or initial value to assign to the parameter. v can be of type real, integer, string, or logical. The
type of v sets the type of the parameter; subsequent sets or gets of the parameter must be of the same
type, or an error message will be printed.

• set parm in context (c,p,v)

Set the value of parameter p in context c equal to v. p is a character string naming the parameter,
which must already have been created by add parm to context (else an error message is printed). The
type of v must match the type of the initial value used to create the parameter, else an error message
is printed.

• get parm from context (c,p,v)

Query context c for the value of parameter p and return this value in the variable v. Parameter p must
already exist, and the type of v must match the type of the initial value used to create the parameter,
else an error message is printed.

• get parm type from context (c,p,t)

Query context c for the data type of parameter p. The result is returned in t, which must be of type
integer. Possible return values are parm real, parm int, parm str, parm log, and parm invalid.
parm invalid is returned if the named parameter does not exist.
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• list parm context (c,l)

Print (to I/O unit l) the names and values of all parameters associated with context c.

• bcast parm context (c,p,r)

Broadcast the parameter names and values from a specified context c to all processors. p is the calling
processor’s rank, and r is the rank of the root processor (the one doing the broadcasting).

6.2.2 Physical constants

The driver supplies a Fortran 90 module called physical constants, which maintains a centralized database
of physical constants. The database can be queried by string name and optionally converted to any chosen
system of units. The default system of units is CGS. This facility makes it easy to ensure that all parts
of the code are using a consistent set of physical constant values and unit conversions and to update the
constants used by the code as improved measurements become available.

For example, a program using this module might obtain the value of Newton’s gravitational constant G
in units of Mpc3 Gyr−2 M−1

¯ by calling

call get_constant_from_db ("Newton", G, len_unit="Mpc",

time_unit="Gyr", mass_unit="Msun")

In this example, the local variable G is set equal to the result, 4.4983× 10−15 (to five significant figures).

Physical constants are taken from the 1998 Review of Particle Properties, Eur. Phys. J. C 3, 1 (1998),
which in turn takes most of its values from Cohen, E. R. and Taylor, B. N., Rev. Mod. Phys. 59, 1121
(1987). The following routines are supplied by this module.

• get constant from db (n,v[,units])

Return the value of the physical constant named n in the variable v. Optional unit specifications are
used to convert the result. If the constant name or one or more unit names aren’t recognized, a value
of 0 is returned.

• add constant to db (n,v,len,time,mass,temp,chg)

Add a physical constant to the database. n is the name to assign, and v is the value in CGS units.
len, time, mass, temp, and chg are the exponents of the various base units used in defining the unit
scaling of the constant. For example, a constant with units (in CGS) of cm3 s−2 g−1 would have len=3,
time=-2, mass=-1, temp=0, and chg=0.

• add unit to db (t,n,v)

Add a unit of measurement to the database. t is the type of unit (“length,” “time,” “mass,” “charge,”
“temperature”), n is the name of the unit, and v is its value in terms of the corresponding CGS unit.
Compound units are not supported, but they can be created as physical constants.

• init constants db ()

Initialize the constants and units databases. Can be called by the user program, but doesn’t have to
be, as it is automatically called when needed (ie. if a “get” or “add” is called before initialization).

• list constants db (lun)

List the constants and units databases to the specified logical I/O unit.

• destroy constants db ()

Deallocate the memory used by the constants and units databases, requiring another initialization call
before they can be accessed again.
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6.2.3 Monitoring performance

FLASH includes a set of routines for monitoring performance. They come in two flavors. The default
set of routines collects the timing information using the functionality provided by mpi. The second set of
routines is based upon PAPI, a public domain performance tool available from University of Tennesse. These
routines measure the time and flops in the segments being monitored. To use them, PAPI must be installed
on the system, whereas the default set needs no extra software. The PAPI-based routines work well on
some machines, and not so well on others; and therefore must be used with caution. To invoke PAPI-based
performance routines, the Modules file must include util/tools/PAPI. The discussion in the rest of the
section holds true for both the sets since the interfaces and functionality are identical.

The performance routines start or stop a timer at the beginning or end of the routine(s) to be monitored
and accumulate performance information in dynamically assigned accounting segments. At the comple-
tion of the program, the routines write out a performance summary. We note that these routines are not
recommended for use in timing very short segments of code due to the overhead in accounting.

All of the source code for the performance monitoring can be found in the module file perfmon.F90. The
list below contains the performance routines along with a short description of each. Many of the subroutines
are overloaded to take either a module name or an integer index.

• timer init ()

Initializes the performance accounting database. Calls system time routines to subtract out their
initialization overhead.

• timer create (module,id)

Creates a timer and returns a unique integer index for the timer.

• timer start(module)

Subroutine that begins monitoring code module module or module associated with index id. If module
is not associated with a previously assigned accounting segment, the routine creates one, whereas
if id is not associated with one, then nothing is done. The parameter module is specified with a
string (max 30 characters). Calling timer start on the same module more than once without first
calling timer stop causes the current timer for that module to be reset (the accumulated time in the
corresponding accounting segment is not reset). Timing modules may be nested as many times as there
are slots for accounting segments (see MaxModules setting). Routine may be called with an integer
index in addition to the name of the module.

• timer stop(module)

Stops accumulating time in the accounting segment associated with code module module. If timer stop
is called for a module which does not exist or for a module which is not currently being timed, nothing
happens. Routine may be called with an integer index in addition to the name of the module.

• timer value(module)

Returns the current value of the timer for the accounting segment associated with the code module
module or referenced by index id. If timer value is called for a module which does not exist, 0. is
returned.

• timer reset(module)

Resets the accumulated time in the accounting segment corresponding to the specified code module.
Routine may be called with an integer index in addition to the name of the module.

• timer lookup index(module)

Function that given a string module name returns an integer index. The integer index can be used in
any of the overloaded timer routines. If a timer name is not found, the function returns timer invalid.
Use of this function to obtain an integer index and subsequently calling the routines by that index
rather than the string name is encouraged for performance reasons.
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• perf summary (lun, n period)

Subroutine that writes a performance summary of all current accounting segments to the file associated
with logical unit number lun. Included is the average over n period intervals (eg. timesteps). If
using PAPI, then mflops/sec are also included for each segment. The accounting database is not
reinitialized. lun and n period are of default integer type. Calling perf summary stops all currently
running timers.

Below is a very simple example of calling the performance routines.

program example

integer i

call timer_init

do i = 1, 1000

call timer_start (’blorg’)

call blorg

call timer_stop (’blorg’)

call timer_start (’gloob’)

call gloob

call timer_stop (’gloob’)

enddo

call perf_summary (6, 1000)

end

6.2.4 Profiling with Jumpshot or Vampir

FLASH can be used with both Jumpshot and Vampir to look at the MPI message traffic across different
processors. Jumpshot is freely available from Argonne National Laboratory as part of the MPE package in
MPICH. Vampir is a commercial product installed at many supercomputing centers. Both of these packages
work in similar ways—all MPI calls are logged as the code is run, and a graphical view of time spent in each
MPI routine as well as the flow of the different messages can be examined. By default, only the different MPI
routines are labeled in these graphical views. profiling.F90 provides the necessary library calls for both
Vampir and Jumpshot to inform these packages about the different FLASH routines. Anytime a timer start

call is made, the appropriate Vampir or Jumpshot ’start logging’ routine is called, and assigned the label
that is used for the timer. The log is stopped with the timer stop call. Thus all the major blocks of code
that are bracketed by timer start and timer stop become known to Vampir or Jumpshot.

Because the machine that a user runs on may not have the necessary libraries needed to resolve this calls,
this profiling is disabled by default. To enable it, the appropriate preprocessor definition needs to be enabled
in profiling.F90, MPE for Jumpshot, and VAMPIR for Vampir. This can be done by editing profiling.F90

directly, or supplying these preprocessor directives on the compilation line. In either case, the necessary
libraries will need to be added to the link line.

6.2.5 Log file maintenance

The driver supplies a Fortran 90 module called logfile to manage the FLASH log file, which contains
various types of useful information, warnings, and error messages produced by a FLASH run. User-written
routines may also make use of this module as needed. The logfile routines enable a program to open and
close a log file, write time or date stamps to the file, and write arbitrary messages to the file. The file is
kept closed and is only opened for appending when information is to be written, avoiding problems with
unflushed buffers. For this reason, logfile routines should not be called within time-sensitive loops, as the
routines will generate system calls.

An example program using the logfile module might appear as follows:

program test

use logfile

integer :: i
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call create_logfile ("test.log", "test.par", .false.)

call stamp_logfile ("beginning log file test...")

do i = 1, 10

call open_logfile

write (log_lun,*) ’i = ’, i

call close_logfile

enddo

call stamp_logfile ("done with log file test.")

end

The following routines, data types, and public constants are provided by this module.

• create logfile (name, parmfile, restart)

Creates the named log file and writes some header information to it, including the build stamp and
the values of all runtime parameters in the global parameter context. The name of the parameter file
is taken as an input; it is echoed to the log file. If restart is .true., the file is opened in append mode.

• stamp logfile (string)

Write a date stamp and a specified string to the log file.

• tstamp logfile (n, t, dt)

Write a dated timestep stamp for step n, time t, timestep dt to the log file. n must be an integer, while
t and dt must be reals.

• write logfile (string)

Write a string to the log file without a date stamp.

• break logfile()

Write a ‘break’ (a row of =) to the log file.

• open logfile()

Open the log file for writing, creating it first with a default name (logfile) if necessary. open logfile()

and close logfile() should only be used if it is necessary to write something directly to the log file
unit with some external routine.

• close logfile()

Close the log file.

• log lun

The logical unit number being used by the logfile module (to permit direct writes to the log file by
external routines).
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Chapter 7

FLASH I/O modules and output
formats

Figure 7.1: The io module directory.

Currently FLASH can store simulation data in two basic output formats: Hierarchical Data Format
(HDF) (sometimes called HDF 4), and HDF5. In general, these format are not compatible, but some tools
for translating from one format to the other exist. These formats control how the binary data is stored on
disk, how to address it, what to do about different data storage on different platforms. The mapping of
FLASH data-structures to records in these files is controlled by the FLASH I/O modules. These file formats
have different strengths and weaknesses, and the data layout is different for each file type.

Different techniques can be used to write the data to disk: move all the data to a single processor for
output; have each processor write to a separate file; and parallel access to a single file. In general, parallel
access to a single file will provide the best performance. On some platforms, such as Linux clusters, there
may not be a parallel filesystem, so moving all the data to a single process is the best solution.
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The hdf4 I/O module uses the HDF version 4 format. This format provides an application programming
interface (API) for organizing data in a database fashion. In addition to the raw data, information about
the data type and byte ordering (little or big endian), rank, and dimensions of the dataset is stored. This
makes the HDF format extremely portable across platforms. Different packages can query the file for its
contents, without knowing the details of the routine that generated the data.

HDF is limited to files < 2 GB is size. Furthermore, the official release of HDF does not support parallel
I/O. To address these limitations, HDF5 was released. HDF5 is supported on a large variety of platforms,
and offers the same functionality as HDF, with the addition of large file support and parallel I/O via MPI-
I/O. Information about the different versions of HDF can be found at http://hdf.nsca.uiuc.edu. This
section assumes that you already have the necessary HDF libraries installed on your machine.

As of FLASH 2.2, the default I/O format is HDF5; the default I/O module is hdf5 serial (see Table 7.1).
The I/O modules in FLASH have two responsibilities—generating and restarting from checkpoint files,

and generating plot files. A checkpoint file contains all the information needed to restart the simulation. The
data is stored at the same precision (8-byte reals) as it is carried in the code, and includes all of the variables.
A plotfile contains all the information needed to interpret the tree structure maintained by FLASH and it
contains a user-defined subset of the variables. Furthermore, the data may be stored at reduced precision to
conserve space.

The type of output you create will depend on what type of machine you are running on, the size of the
resulting dataset, and what you plan on doing with the datafiles once created. Table 7.1 summarizes the
different modules which come with FLASH 2.2.

Table 7.1: I/O modules available in FLASH.

Module name Description
amr/hdf4 Hierarchical Data Format (HDF) 4 output. A single HDF

file is created by the master processor and all data is moved
to this processor via explicit MPI sends and receives before
writing to the file.

amr/hdf5 serial Hierarchical Data Format (HDF) 5 output. Each processor
passes its data to processor 0 through explicit MPI sends
and receives. Processor 0 does all of the writing. The
resulting file format is identical to the parallel version; the
only difference is how the data is moved during the writing.

amr/hdf5 parallel Hierarchical Data Format (HDF) 5 output. A single HDF5
file is created, with each processor writing its data to the
same file simultaneously. This relies on the underlying
MPI-IO layer in HDF5.

null Don’t write any checkpoint files or plotfiles.

It is strongly recommended that you use one of the HDF5 output formats with FLASH. These are
currently the best performing I/O modules in FLASH. Furthermore, support for HDF5 exists for just about
every platform you are likely to encounter.

7.1 General parameters

There are several parameters that control the frequency of output, type of output, and name of the output
files. These parameters are the same for all the different modules, although not every module is required to
implement all parameters. Some of these parameters are used in the top level I/O routines (initout.F90,
output.F90, and finalout.F90) to determine when to output, while others are used to determine the
resulting filename. Table 7.2 gives a description of the I/O parameters.
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Table 7.2: General I/O parameters.

Parameter Type Default value Description
rolling checkpoint INTEGER 10000 The number of checkpoint files to keep

available at any point in the simula-
tion. If a checkpoint number is >
rolling checkpoint, then the checkpoint
number is reset to 0. There will be at most
rolling checkpoint checkpoint files kept.
This parameter is intended to be used when
disk space is at a premium.

wall clock checkpoint REAL 43200 The maximum amount of wall clock time
(seconds) to elapse between checkpoints.
When the simulation is started, the current
time is stored. If wall clock checkpoint

seconds elapse over the course of the simula-
tion, a checkpoint file is stored. This is useful
for ensuring that a checkpoint file is produced
before a queue closes.

basenm STRING “chkpnt” The main part of the output filenames. The
full filename consists of the base name, a se-
ries of three-character abbreviations indicat-
ing whether it is a plotfile or checkpoint file,
the file format, and a 4-digit file number. See
§7.1.1 for a description of how FLASH output
files are named.

cpnumber INTEGER 10000 The number of the current checkpoint file.
This number is appended to the end of the
basename when creating the filename. When
restarting a simulation, this indicates which
checkpoint file to use.

ptnumber INTEGER 1 The number of the current plotfile. This
number is appended to the end of the base-
name when creating the filename.

restart BOOLEAN .false. A logical variable indicating whether the sim-
ulation is restarting from a checkpoint file
(.TRUE.) or starting from scratch (.FALSE.).

nrstrt INTEGER 10000 The number of timesteps desired between
subsequent checkpoint files.

trstrt REAL 1 The amount of simulation time desired be-
tween subsequent checkpoint files.

tplot REAL 1 The amount of simulation time desired be-
tween subsequent plotfiles.

zrstrt REAL 1.E99 The desired redshift interval between check-
point files.
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Table 7.2: FLASH I/O parameters (continued).

Parameter Type Default value Description

zplot REAL 1.E99 The desired redshift interval between plot-
files.

corners BOOLEAN .false. A logical variable indicating whether to in-
terpolate the data to cell corners before out-
putting. This only applies to plotfiles.

plot var 1, ...

plot var 12

STRING “none” Name of the variables to store in a plotfile.
Up to 12 variables can be selected for storage,
and the standard 4-character variable name
can be used to select them.

memory stat freq INTEGER 100000 The number of timesteps to elapse be-
tweeen memory statistic dumps to the log file
(flash.log)

wr integrals freq INTEGER 1 The number of timesteps to elapse be-
tween outputs to the scalar/integral data file
(flash.dat)

7.1.1 Output file names

FLASH constructs the output filenames based on the user-supplied basename and the file counter that is
incremented after each output. Additionally, information about the file type and data storage is included in
the filename.

The general checkpoint filename is:

basename

{

hdf

hdf5

}

chk 0000 ,

where hdf, hdf5, or f77 is picked depending on the I/O module used and the number at the end of the
filename is the current cpnumber.

The general plotfile filename is:

basename

{

hdf

hdf5

}

plt

{

crn

cnt

}

0000 ,

where hdf or hdf5 is picked depending on the I/O module used, crn and cnt indicate data stored at the
cell corners or centers respectively, and the number at the end of the filename is the current ptnumber.

7.2 Restarting a simulation

In a typical production run, your simulation can be interrupted for a number of reasons—machine crashes,
the present queue window closes, the machine runs out of disk space, or (gasp) a bug in FLASH. Once the
problem is fixed, you do not want to start over from the beginning of the simulation, but rather would like
to pick up where you left off.

There are many ways to get FLASH to produce a restart file:

• Amount of simulation time elapsed
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The trstrt runtime parameter specifies the number of seconds in simulation time between restart
files. If the simulation is being controlled by redshift rather than time (zinitial > 0), the zrstrt

parameter can be used to force checkpoints at a fixed interval in redshift.

• Number of timesteps elapsed

The nrstrt runtime parameter specified the number of timesteps between restart dumps.

• End of a simulation

When the number of timesteps equals nend or the simulation time equals tmax, a restart file is produced,
and the simulation ends.

• Wall clock time elapsed

The wall clock checkpoint gives the number of seconds in wall clock time between checkpoint files.
The counter is started when the simulation begins, and checkpoint files will be produced at multiples
of this time.

• The .dump restart mechanism

Creating a file named .dump restart in the output directory that the master processor is writing to
will cause FLASH to output a checkpoint file and stop the simulation. This is useful if you know a
machine is going down or a queue window is about to end, and you want to produce one last checkpoint
so you don’t lose all of the evolution time since the last one was written.

These different methods can be combined without problems. Each counter (number of timesteps between
last checkpoint, amount of simulation time single last checkpoint, and the amount of wall clock time elapsed
since the last checkpoint) is independent of the others.

FLASH is capable of restarting from any of the checkpoint files it produces. You will want to make sure
the file you wish to restart from is valid (i.e. the code did not stop while outputting). To tell FLASH to
restart, set the restart runtime parameter to .TRUE. in your flash.par. You will also want to set cpnumber
to the number of the file you wish to restart from. Finally, if you are producing plotfiles, you will want to set
ptnumber to the number of the next plotfile you want FLASH to output. Sometimes several plotfiles may
be produced after the last valid checkpoint file, so resetting ptnumber to the first plotfile produced after the
checkpoint you are restarting from will ensure that there are no gaps in your output. The restart script in
tools/scripts/jobs/ will automatically modify your flash.par to pick up where a simulation left off by
examining the logfile. To use it, make sure that it is set as executable and is in your path and type:

% restart -logfile my_simulation.log

where my simulation.log is the name of the FLASH logfile (usually flash.log, unless renamed with the
logfile runtime parameter).

7.3 Output formats

7.3.1 HDF

The HDF module writes the data to disk using the HDF 4.x library. This module should be supported with
HDF 4.1r2 or later. A single file containing the data on all processors is created, if the total size of the
dataset is < 2 GB. If there is more than 2 GB of data to be written, multiple files are created to store the
data. The number of files used to store the dataset is contained in the number of files record. Each file
contains a subset of the blocks (stored in the local blocks record) out of the total number of blocks in the
simulation. The blocks are divided along processor boundaries.

The HDF module performs serial I/O — each processor’s data are moved to the master processor to be
written to disk. This has the advantage of producing a single file for the entire simulation, but is less efficient
than if each processor wrote to disk directly. The plotfiles produced with the HDF module contain single
precision data (Note: versions of FLASH before 2.1 produced double-precision HDF plotfiles). Support for
corner data is available with this module. Support for particle I/O is not yet available with this module.
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Machine Compatibility

HDF has been tested successfully on most machines, with the exception of ASCI Red. The HDF library
will properly handle different byte orderings across platforms. The IDL tools provided with FLASH will
read the FLASH HDF data.

Data Format

Table 7.3 summarizes the records stored in a FLASH HDF file. The format of the plotfiles and checkpoint
files are the same, with the only difference being the number of unknowns stored. The records contained
in a HDF file can be found via the hdp command that is part of the HDF distribution. The syntax is hdp
dumpsds -h filename. The contents of a record can be output by hdp dumpsds -i N filename, where N

is the index of the record.
As described above, HDF cannot produce files > 2 GB in size. This is overcome in the FLASH HDF

module by splitting the dataset into multiple files when it would otherwise produce a file larger than 2 GB
in size.

When reading a single unknown from a FLASH HDF file, you will suffer performance penalties, as there
will be many non-unit-stride accesses on the first dimension, since all the variables are stored together in the
file.

Table 7.3: FLASH HDF file format.

Record label Description of the record
file creation time character*40 file creation time

The time and date that the file was created.

FLASH version character*20 flash version

This record contains the complete version number of the FLASH distri-
bution you are running. The format is FLASH 2.2.YYYYMMDD where
YYYYMMDD is the date of the release. This data is contained in the
file RELEASE and the version number is obtained from the flash release

function.

FLASH build date character*80 flash build date

The date and time that the FLASH executable was compiled. This is
generated by a subroutine that is created at compile time by the Makefile.

FLASH build directory character*80 flash build directory

The complete path to the FLASH root directory of the source tree used
when compiling the FLASH executable. This is generated by a subroutine
that is created at compile time by the Makefile.

FLASH build machine character*80 flash build machine

The name of the machine (and anything else returned from uname -a) that
FLASH was compiled on. This is generated by a subroutine that is created
at compile time by the Makefile.

FLASH setup call character*80 flash setup call

The complete syntax of the setup command used when creating the current
FLASH executable. This is generated by a subroutine that is created at
compile time by the Makefile.
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Table 7.3: HDF 4 format (continued).

Record label Description of the record

run comment character*80 run comment

The run comment that was defined for the present simulation. This is a
runtime parameter that is useful for notating a simulation.

total blocks integer tot blocks

The total number of blocks in the simulation.

Note: the number of blocks contained in this file may be less than the total
number of blocks if the output is spread across multiple files (see ‘number
of files’ and ‘local blocks’)

time real time

The simulation time at file output.

timestep real dt

The current timestep.

number of steps integer nsteps

The number of timesteps from the start of the calculation.

number of blocks per zone real nblocks per zone(3)

The number of zones in each direction:
nblocks per zone(1) — x-direction
nblocks per zone(2) — y-direction
nblocks per zone(3) — z-direction

number of files integer num files

The number of files that the dataset comprises. Because the filesize cannot
be larger than 2 GB, the data is split into multiple files if necessary, with
each containing roughly the same number of blocks.

local blocks integer local blocks

The number of blocks in this file. If there are multiple files, this number
will be less than ‘total blocks’.

unknown names character*4 unk names(nvar)

This array contains four-character names corresponding to the first index of
the unk array. They serve to identify the variables stored in the ‘unknowns’
record.

refine level integer lrefine(local blocks)

This array stores the refinement level for each block.

node type integer nodetype(local blocks)
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Table 7.3: HDF 4 format (continued).

Record label Description of the record
This array stores the node type for a block. Blocks with node type 1 are
leaf nodes, and their data will always be valid. For plotting purposes, it is
the leaf data that you want to plot.

gid integer gid(nfaces+1+nchild,local blocks)

This is the global identification array. For a given block, this array gives
the block number of the blocks that neighbor it, and the block number of
its parent and children.

The first nfaces elements point to the neighbors (at the same level of re-
finement). The faces are numbered from minimum to maximum coordinate
with x first, followed by y, then z. A -1 indicates that there is no neigh-
bor at the same level of refinement. A number <= -20 indicates that you
are on the physical boundary of the domain. If the neighbor points to the
current block, it means that there are periodic boundary conditions. The
next element points to the parent of the current block, and the last nchild
elements point to the children of the current block.

Example: Below is a simple domain. Assume that at the boundaries every-
thing is -20.

Looking at block number 5 (2-d):
gid(1,block no) = 4

gid(2,block no) = -1

gid(3,block no) = 3

gid(4,block no) = -20

gid(5,block no) = 1 (the parent)

gid(6,block no) = -1 (the children)
gid(7,block no) = -1

gid(8,block no) = -1

gid(9,block no) = -1

Looking at block number 1:
gid(1,block no) = -20

gid(2,block no) = 6

gid(3,block no) = -20

gid(4,block no) = -20

gid(5,block no) = -1

gid(6,block no) = 2

gid(7,block no) = 3

gid(8,block no) = 4

gid(9,block no) = 5
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Table 7.3: HDF 4 format (continued).

Record label Description of the record

coordinates real coord(ndim,local blocks)

This array stores the coordinates of the center of the block.
coord(1,block no) = x-coordinate
coord(2,block no) = y-coordinate
coord(3,block no) = z-coordinate

block size real size(ndim,local blocks)

This array stores the dimensions of the current block.
size(1,block no) = x size
size(2,block no) = y size
size(3,block no) = z size

bounding box minimum real bnd box min(ndim,local blocks)

This array stores the coordinate of the minimum block edge in each direc-
tion.
bnd box min(1,block no) = minimum x edge
bnd box min(2,block no) = minimum y edge
bnd box min(3,block no) = minimum z edge

bounding box maximum As above, but the maximum edge value in each direction.

processor number integer proc num(local blocks)

The processor number that each block was stored on. This is not used
by FLASH, but is useful for debugging purposes, to look at the domain
decomposition.

unknowns real unk(nvar,nx,ny,nz,local blocks)

nx = no. of zones/block in x
ny = no. of zones/block in y
nz = no. of zones/block in z

This array holds the unknowns. The variables corresponding to the first
argument are listed in the ‘unknown names’ record. Note that, for a plot file
with CORNERS=.TRUE. in the parameter file, the information is interpolated
to the zone corners before being stored. This is useful for certain plotting
packages.

7.3.2 HDF5

There are two major HDF5 modules: the serial and parallel versions. The format of the output files produced
by these modules is identical; only the method by which they are written differs. It is possible to create a
checkpoint file with the parallel routines and restart FLASH from that file using the serial routines. In each
module, the plot data are written out in single precision to conserve space. These modules require HDF5
1.4.0 or later. At the time of this writing, the current version of HDF5 is 1.4.4.
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7.3.2.1 Machine Compatibility

The HDF5 modules have been tested successfully on the three ASCI platforms and a Linux cluster. Perfor-
mance varies widely across the platforms, but the parallel version is usually faster than the serial version.
Experience on performing parallel I/O on a Linux Cluster using PVFS is reported in Ross et al. (2001).
Note, for clusters without a parallel filesystem, you should not use the parallel HDF5 I/O module with an
NFS mounted filesystem. In this case, all of the information will still have to pass through the node that
the disk is hanging off of, and contention will result. It is recommended that the serial version of the HDF5
module be used here. A shared object library provided with FLASH provides IDL with the ability to read
the FLASH files.

7.3.2.2 Data Format

The data format FLASH uses for HDF5 output files is similar to that of the HDF files, but there are a
few differences that make a record-to- record translation impossible. These changes were made to maximize
performance. Instead of putting all the unknowns in a single HDF record, unk(nvar,nx,ny,nz,tot blocks)

as in the HDF file, each variable is stored in its own record, labeled by the four-character variable name.
A number of smaller records (time, timestep, number of blocks, ...) are stored in a single structure in the
HDF5 file to reduce the number of writes required. Finally, the two bounding box records in the HDF file
are merged into a single record in the HDF5 file. This allows for easier access to a single variable when
reading from the file. The HDF5 format is summarized in table 7.4.

Note that particle I/O is only available with the HDF5 modules at this time.

Table 7.4: FLASH HDF5 file format.

Record label Description of the record
file creation time character*40 file creation time

The time and date that the file was created.

file format version integer file format version

An integer given the version number of the HDF5 file format. This is
incremented anytime changes are made to the layout of the file.

FLASH version character*80 flash version

The version of FLASH used for the current simulation. This is returned by
flash release, using the RELEASE function.

FLASH build date character*80 flash build date

The date and time that the FLASH executable was compiled. This is
generated by a subroutine that is created at compile time by the Makefile.

FLASH build directory character*80 flash build directory

The complete path to the FLASH root directory of the source tree used
when compiling the FLASH executable. This is generated by a subroutine
that is created at compile time by the Makefile.

FLASH build machine character*80 flash build machine

The name of the machine (and anything else returned from uname -a) that
FLASH was compiled on. This is generated by a subroutine that is created
at compile time by the Makefile.

FLASH setup call character*80 flash setup call
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Table 7.4: HDF5 format (continued).

Record label Description of the record
The complete syntax of the setup command used when creating the current
FLASH executable. This is generated by a subroutine that is created at
compile time by the Makefile.

run comment character*80 run comment

The run comment that was defined for the present simulation. This is a
runtime parameter that is useful for notating a simulation.

simulation parameters Several records are packed into a C structure

typedef struct sim_params_t {

int total_blocks;

int nsteps;

int nxb;

int nyb;

int nzb;

double time;

double timestep;

double redshift;

} sim_params_t;

sim_params_t sim_params;

sim params.total blocks: total number of blocks.
sim params.nsteps: the total number of steps to this point.
sim params.nxb: number of zones / block in the x-direction.
sim params.nyb: number of zones / block in the y-direction.
sim params.nzb: number of zones / block in the z-direction.
sim params.time: the current simulation time.
sim params.timestep: the current timestep.
sim params.redshift: the current redshift.

unknown names character*4 unk names(nvar)

This array contains four-character names corresponding to the first index of
the unk array. They serve to identify the variables stored in the ‘unknowns’
record.

refine level integer lrefine(tot blocks)

This array stores the refinement level for each block.

node type integer nodetype(tot blocks)

This array stores the node type for a block. Blocks with node type 1 are
leaf nodes, and their data will always be valid. For plotting purposes, it is
the leaf data that you want to plot.

gid integer gid(nfaces+1+nchild,tot blocks)
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Table 7.4: HDF5 format (continued).

Record label Description of the record
This is the global identification array. For a given block, this array gives
the block number of the blocks that neighbor it, and the block number of
its parent and children.

See the description in the HDF 4 table for full details.

coordinates real coord(ndim,tot blocks)

This array stores the coordinates of the center of the block.
coord(1,block no) = x-coordinate
coord(2,block no) = y-coordinate
coord(3,block no) = z-coordinate

block size real size(ndim,tot blocks)

This array stores the dimensions of the current block.
size(1,block no) = x size
size(2,block no) = y size
size(3,block no) = z size

bounding box real bnd box(2,ndim,tot blocks)

This array stores the minimum (bnd box(1,:,:)) and maximum
(bnd box(2,:,:)) coordinate of a block in each spatial direction.

variable real unk(nx,ny,nz,tot blocks)

nx = number of zones/block in x
ny = number of zones/block in y
nz = number of zones/block in z

This array holds the data for a single variable. The record label is identical
to the four-character variable name stored in the record unknown names.
Note that, for a plot file with CORNERS=.TRUE. in the parameter file, the
information is interpolated to the zone corners and stored.

particle tracers (Only in checkpoint files) Particle data. These are stored as an array of
structures defined via

typedef struct particle {

int intProperty[NUMINTPROPS];

double realProperty[NUMREALPROPS];

} particle_type;

particle_type particles[];

NUMINTPROPS and NUMREALPROPS are the number of integer and double-
precision properties defined for the particles, respectively. The Fortran/C
structure is mapped directly onto an HDF5 structure datatype with fields
whose names are the string names of the different properties. Currently the
number of properties and their order in the structure must be the same in
the checkpoint file and the compiled code when restarting from a checkpoint
file. This restriction may be relaxed in the next release.
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7.4 Working with output files

The HDF output formats offer the greatest flexibility when visualizing the data, as the visualization program
does not have to know the details of how the file was written, rather it can query the file to find the
datatype, rank, and dimensions. The HDF formats also avoid difficulties associated with different platforms
storing numbers differently (big endian vs. little endian). IDL routines for reading the FLASH HDF and
HDF5 formats are provided in FLASH 2.2/tools/fidlr/. These can be used interactively though the IDL

command line 20.5.

7.5 User-defined variables

user var is called just before output files are written. This routine allows the calculation of user-defined
variables, which can be then be written out for plotting or analysis. These user-defined variables must be
defined in the FLASH code (See Configuration layer, Chapter 5).

The supplied user var, in source/io/user var.F90, looks for two variables, vrtz and cond — the z-
component of vorticity, and a (thermal) conductivity. If either of these are present, the values are calculated
and stored in the FLASH data structures. If the output file to be written is a checkpoint file, then both of
these files are written out to disk; if the output file is a plot file, than these variables will be written if the
plot var variables are set accordingly (see the beginning of this chapter.) The supplied user var can be
used as a template for calculating other user-defined values. The cond variable is supplied as a convenience
— it could fairly easily be calculated in a post-processing step — whereas calculating vrtz would be more
complicated, as its calculation requires a numerical derivative, meaning that guardcell information (not
stored in the FLASH file structures) are required.

Note that these variables are stored in the FLASH data structures, and thus require memory even though
they are not used for computation.
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Chapter 8

Mesh module

Figure 8.1: The mesh module directory.

We have used a package known as PARAMESH (MacNeice et al. 1999) for the parallelization and adaptive
mesh refinement (AMR) portion of FLASH. PARAMESH consists of a suite of subroutines which handle
refinement/derefinement, distribution of work to processors, guard cell filling, and flux conservation. In this
section we briefly describe this package and the ways in which it has been modified for use with FLASH.

We also describe the UniformGrid. The UniformGrid is a meshing package designed for FLASH.
PARAMESH can be run in a uniform grid mode (see section 8.1.4), but you still pay the cost of the
adaptive mesh tree data. The UniformGrid pacakge runs a uniform grid without any of that overhead.

75
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8.1 Adaptive mesh refinement (AMR)

8.1.1 Algorithm

The refinement criterion used by PARAMESH is adapted from Löhner (1987). Löhner’s error estimator
was originally developed for finite element applications and has the advantage that it uses an entirely local
calculation. Furthermore, the estimator is dimensionless and can be applied with complete generality to any
of the field variables of the simulation or any combination of them (by default, PARAMESH uses the density
and pressure). Löhner’s estimator is a modified second derivative, normalized by the average of the gradient
over one computational cell. In one dimension on a uniform mesh it is given by

Ei =
| ui+1 − 2ui + ui−1 |

| ui+1 − ui | + | ui − ui−1 | +ε[| ui+1 | −2 | ui | + | ui−1 |]
, (8.1)

where ui is the refinement test variable’s value in the ith cell. The last term in the denominator of this
expression acts as a filter, preventing refinement of small ripples. The constant ε is given a value of 10−4.
Although PPM is formally second-order and its leading error terms scale as the third derivative, we have
found the second derivative criterion to be very good at detecting discontinuities in the flow variable u.
When extending this criterion to multidimensions, all cross derivatives are computed, and the following
generalization of the above expresion is used:

Ei1i2i3 =
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where the sums are carried out over coordinate directions, and where, unless otherwise noted, partial deriva-
tives are evaluated at the center of the i1i2i3-th zone.

8.1.2 Usage

PARAMESH uses a block-structured adaptive mesh refinement scheme similar to others in the literature
(e.g., Parashar 1999; Berger & Oliger 1984; Berger & Colella 1989; DeZeeuw & Powell 1993) as well as to
schemes which refine on an individual cell basis (Khokhlov 1997). In block-structured AMR, the fundamental
data structure is a block of uniform cells arranged in a logically Cartesian fashion. Each cell can be specified
using a block identifier (processor number and local block number) and a coordinate triple (i, j, k), where
i = 1 . . . nxb, j = 1 . . . nyb, and k = 1 . . . nzb refer to the x, y, and z directions, respectively. The complete
computational grid consists of a collection of blocks with different physical cell sizes, related to each other
in a hierarchical fashion using a tree data structure. The blocks at the root of the tree have the largest
cells, while their children have smaller cells and are said to be refined. Two rules govern the establishment
of refined child blocks in PARAMESH. First, the cells of a refined child block must be one-half as large as
those of its parent block. Second, a block’s children must be nested; that is, the child blocks must fit within
their parent block and cannot overlap one another, and the complete set of children of a block must fill its
volume. Thus, in d dimensions a given block has either zero or 2d children. A simple domain is shown in
Figure 8.4.

Each block contains nxb× nyb× nzb interior cells and a set of guard cells (Figure 8.2). The guard cells
contain boundary information needed to update the interior cells. These can be obtained from physically
neighboring blocks, externally specified boundary conditions, or both. The number of guard cells needed
depends upon the interpolation scheme and differencing stencil used for the hydrodynamics algorithm; for the
explicit PPM algorithm distributed with FLASH, four guard cells are needed in each direction, as illustrated
in Figure 8.3.

PARAMESH handles the filling of guard cells with information from other blocks or a user-specified
external boundary routine. If a block’s neighbor has the same level of refinement, PARAMESH fills its guard
cells using a direct copy from the neighbor’s interior cells. If the neighbor has a different level of refinement,
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Figure 8.2: A single 2-D AMR block showing the interior zones (shaded) and the perimeter of guardcells.

Figure 8.3: A simple computational domain showing varying levels of refinement. The dotted lines around
one block outline the guardcells for that block.
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F = [ f1 + f2 + f3 + f4 ]

Figure 8.4: Flux conservation at a jump in refinement. The fluxes in the fine cells are added and replace the
coarse cell flux (F)

the neighbor’s interior cells are used to interpolate guard cell values for the block. If the block and its
neighbor are stored in the memory of different processors, PARAMESH handles the appropriate parallel
communication (blocks are not split between processors). PARAMESH supports only linear interpolation
for guard cell filling at jumps at refinement, but it is easily extended to allow other interpolation schemes.
In FLASH, several different interpolation methods can be chosen at setup time. Each interpolation scheme
is stored in a subdirectory under /source/mesh/amr/paramesh2.0. Once each block’s guard cells are filled,
it can be updated independently of the other blocks. PARAMESH also enforces flux conservation at jumps
in refinement, as described by Berger and Colella (1989). At jumps in refinement, the fluxes of mass,
momemtum, energy (total and internal), and species density in the fine cells across boundary cell faces are
summed and passed to their parent. The parent and the neighboring cell are at the same level of refinement
(because PARAMESH limits the jumps in refinement to be one level between blocks). The flux in the parent
that was computed by the more accurate fine zones is taken as the correct flux through the interface, and it
is passed to the corresponding coarse face on the neighboring block (see Figure 8.4). The summing allows
a geometrical weighting to be implemented for non-Cartesian geometries, which ensures that the proper
corrected flux is computed.

Each processor decides when to refine or derefine its blocks by computing a user-defined error estimator
for each block. Refinement involves creation of either zero or 2d refined child blocks, while derefinement
involves deletion of a block and all its siblings (2d blocks). As child blocks are created, they are temporarily
placed at the end of the processor’s block list. After the refinements and derefinements are complete, the
blocks are redistributed among the processors using a work-weighted Morton space-filling curve in a manner
similar to that described by Warren and Salmon (1987) for a parallel treecode. An example Morton curve
is shown in Figure 8.5.

During the distribution step each block is assigned a work value (an estimate of the relative amount of
time required to update the block). The Morton number of the block is then computed by interleaving the
bits of its integer coordinates as described by Warren and Salmon (1987); this determines its location along
the space-filling curve. Finally, the list of all blocks is partitioned among the processors using the block
weights, equalizing the estimated workload of each processor.

8.1.2.0.1 Dividing the computational domain Dividing the domain is the first step in the mesh-
generation process. This routine is responsible for creating the initial top-level block(s) and setting the
neighbors of these blocks correctly. These initial blocks then form the top of the tree, and new blocks may
be created by refining these top blocks.

By default, FLASH generates an initial mesh with only one top-level block. There are times when this is
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Figure 8.5: Morton space-filling curve

inconvenient; for instance, when simulating a domain longer in one dimension than the other while wanting
equal spatial resolution in each dimension.

divide domain() creates an initial mesh of nblockx * nblocky * nblockz top level blocks, where
nblockx, nblocky, and nblockz are runtime parameters which default to 1. These blocks are all created on
one processor, and thus the total number of these top-level blocks may not exceed the compiled-in parameter
MAXBLOCKS.

Since divide domain() is responsible for setting the neighbors of top-level blocks correctly (to either
other top-level blocks or to external boundary conditions calcluated by tot bnd), this is also where the
periodic boundary conditions are initially set up. If periodic boundary conditions are set in (for instance)
the x-direction, the blocks that are first in the x-direction are set to have as their left-most neigbor the blocks
that are last in the x-direction, and vice versa. Thus, when the guard cell filling is performed, the periodic
boundary conditions are automatically maintained.

8.1.2.1 Message buffering

In the maintenance of the tree structure during refinement or derefinement, many small messages must be sent
between processors. On any system with a non-negligable latency time for sending messages, communications
costs can be significantly reduced by batching these many small messages into fewer large messages.

The routines in batchsend.F90 and batchsend dbl.F90 do simple message buffering. In several amr
routines, all blocks need to send to their neighbors a small number of pieces of data along with a tag, as well
as recieve some data. The processors they are to send to and recieve from are known ahead of time. The
routines b int sendrecv(), b logical sendrecv(), and b dbl sendrecv() take as input arrays containing
the messages, tags, and processors to send or recieve from, and batch them so that as few messages as
possible go between processors.

Because of the amount of copying and memory allocation involved in the process, this buffering does have
a cost, and thus under some circumstances may produce a performance loss rather than gain. Thus, the
message buffering may be turned on or off with the logical runtime parameter msgbuffer, which is .false.
by default.
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8.1.3 Choice of grid geometry

Currently FLASH supports three different types of grid geometry: one-, two-, and three-dimensional Carte-
sian grids; two-dimensional cylindrical (r, z) grids; and one-dimensional spherical (r) grids. We describe the
usage of each type of grid geometry in turn.

8.1.3.1 Cartesian geometry

FLASH uses Cartesian (plane-parallel) geometry by default. This is equivalent to specifying

igeomx = 0

igeomy = 0

igeomz = 0

in the runtime parameter file. When running problems that have spherical or cylindrical symmetry on a
Cartesian mesh, it is recommended that the refinement marking routine be designed to always refine the
origin, in order to minimize grid geometry effects there (see section 8.1.6).

The multigrid Poisson solver (solvers/poisson/multigrid) supplied with FLASH 2.1 only works in
Cartesian geometries. The multipole solver (solvers/poisson/multipole) works in any supported “closed”
geometry, including 1D spherical, 2D axisymmetric cylindrical, and 3D Cartesian geometries.

8.1.3.2 Cylindrical geometry

Axisymmetric cylindrical geometry (r, z) is supported by FLASH in two dimensions. (Polar (r, theta) geome-
try and 3D cylindrical (r, theta, z) geometries are not yet supported.) It is assumed that the cylindrical radial
coordinate is in the ‘x’-direction, and the cylindrical z-coordinate is in the ‘y’-direction. To run FLASH with
cylindrical coordinates, the igeomX runtime parameters must be set properly:

igeomx = 1

igeomy = 0

igeomz = 3

These parameters are interpreted by the hydrodynamics solvers and add the necessary geometrical factors
to the divergence terms.

As discussed in the AMR section, to ensure conservation at a jump in refinement, a flux correction step
is taken. Here we use the fluxes leaving the fine zones adjacent to a coarse zone to make a more accurate
flux entering the coarse zone.

Figure 8.6 shows a jump in refinement along the cylindrical ‘z’ direction. When performing the flux
correction step at a jump in refinement, we must take into account the area of the annulus that each flux
passes through to do the proper weighting. We define the cross-sectional area the z-flux passes through as

A = π(r2r − r2l ) , (8.3)

where rr and rl are the zone maxima and minima in the radial direction respectively. The flux entering the
coarse zone above the jump in refinement is corrected to agree with the fluxes leaving the fine zones that
border it. This correction is weighted according to the areas:

f3 =
A1f1 +A2f2

A3
(8.4)

For fluxes in the radial direction, the cross-sectional area is independent of the height, z, so the corrected
flux is simply taken as the average of the flux densities in the adjacent finer zones.

When using the multipole Poisson solver in 2D axisymmetric geometry, the gravitational boundary type
should be set to ‘‘isolated’’. In this geometry multipole moments ` > 0 (mpole lmax) can now be
accomodated, but only the m = 0 terms are used.
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Figure 8.6: Cartoon showing two fine zones and a coarse zone at a jump in refinement in the cylindrical ‘z’
direction. The block boundary has been cut apart here for illustrative purposes. The fluxes out of the fine
blocks are shown as f1 and f2. These will be used to compute a more accurate flux entering the coarse flux
f3. The area that the flux passes through in shown as the annulus at the top of each fine zone, and below
the coarse zone.

8.1.3.3 Spherical geometry

One-dimensional spherical problems (using the radial coordinate r) can be performed by specifying

igeomx = 2

igeomy = 4

igeomz = 5

in the runtime parameter file. Flux corrections use area weightings as for 2D cylindrical geometry. If the
minimum radius is chosen to be zero (xmin = 0.), the left-hand boundary type should be reflecting. When
using the multipole Poisson solver in 1D spherical coordinates, the gravitational boundary type should be
‘‘isolated’’. Note that in this case it does not make sense to use a multipole moment ` (mpole lmax)
larger than 0.

8.1.3.4 Conservative Prolongation/Restriction on Non-Cartesian Grids

We blocks are refined, we need to initialize the child data using the information in the parent cell in a manner
which preserves the zone-averages in the coordinate system we are using. When a block is derefined, the
parent block (which is now going to be a leaf block) needs to be filled using the data in the child blocks
(which are soon to be destroyed). The first procedure is called prolongation. The latter is called restriction.
Both of these procedures must respect the geometry in order to remain conservative. Prolongation and
restriction are also used when filling guardcells at jumps in refinement.

When using a supported non-Cartesian geometry, you should use the geometrically correct prolonga-
tion routines in source/mesh/amr/paramesh2.0/quadratic cylindrical (for cylindrical coordinates) or
source/mesh/amr/paramesh2.0/quadratic spherical (for spherical coordinates) by including this in your
Modules file. Other geometry types can be added in an manner analogous to that implemented here.

The default restriction routines understand Cartesian, 1-d spherical, and 2-d cylindrical geometries by
default. A zone-volume weighted average is used when restricting the child data up to the parent. For
example, in 2-d, the restriction would look like:

〈f〉i,j =
Vic,jc 〈f〉ic,jc + Vic+1,jc 〈f〉ic+1,jc + Vic,jc+1 〈f〉ic,jc+1 + Vic+1,jc+1 〈f〉ic+1,jc+1

Vi,j
(8.5)
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with Vi,j the volume of the zone with indices, i, j, and the ic, jc indices refer to the children. In practice, we
compute the volume of the parent zone as the sum of the children, to ensure conservation.

8.1.3.4.1 2-d cylindrical coordinates In cylindrical coordinates, we use a bi-quadratic polynomian,
neglecting the crossterms, to reconstruct the data in coarse zones before averaging over the fine zones to fill
the child data. The general form of the polynomial is:

f(r, z) = a1r
2 + a2r + a3 + a4z

2 + a5z (8.6)

A quadratic polynomial is chosen, as it is symmetric about the parent zone whose children we wish to
fill. A quadratic polynomial should lead to a third order accurate expression for the child data, but it
is not guaranteed to be monotonic (neither is a linear bi-linear polynomial in a non-Cartesian geometry).
Furthermore, there is no guarantee that the prolongation will preserve the property that the mass fractions
sum to unity. We will add monotonicity constraints that restore these properties.

The coefficients of the interpolating polynomial are found by forcing it to reproduce the zone-averages in
the coarse cells we are using for the reconstruction:

2π

Vi,j

∫ zj+1/2

zj−1/2

dz

∫ ri+1/2

ri−1/2

rdrf(r, z) = 〈f〉i,j (8.7)

with
Vi,j = π(r2i+1/2 − r2i−1/2)(zj+1/2 − zj−1/2) . (8.8)

For convience, we define
∆nri = (rni+1/2 − rni−1/2) . (8.9)

Since there are five unknowns in the reconstruction polynomial (a1, a2, a3, a4, a5), we need five coarse
zones on which to apply this constraint. Our arrangement is shown in Figure 8.7. After applying the
constraint and solving for the unknowns yields, we need to integrate the reconstruction polynomial over the
children.

〈f〉ic,jc =
2π

Vic,jc

∫ zjc+1/2

zjc−1/2

dz

∫ ric+1/2

ric−1/2

rdrf(r, z) (8.10)

To ensure that the newly initialized child data retains the property that the sum of the mass fractions is
unity, we compute the sum of the abundances, truncated to fall between smallx and 1 and compare this to
a tolerance (typically 10−8). If we exceed the tolerance, we mark all of the abundances all the children of
the current parent to be monotonized (all the abundances need to be treated the same to retain the proper
sum, and all the children of the same parent need to be monotonized is any of them fail this test to ensure
conservation).

For the other variables (i.e. those that are not abundances), we check to see if the newly created child
data falls outside the extrema set by the parents in the stencil of the reconstruction polynomial. If they do,
we monotonize all of the children of that parent using direct insertion.

8.1.3.4.2 1-d spherical coordinates The prolongation routine for 1-d spherical coordinates works
analogously to the 2-d cylindrical one described above. The reconstruction polynomial is a simple quadratic:

f(r) = a1r
2 + a2r + a3 (8.11)

with the constraints that
4π

Vi

∫ ri+1/2

ri−1/2

r2drf(r) = 〈f〉i (8.12)

This constraint is applied to the parent of the children whose children we are filling, and the parents on either
side. These three constraints are solved to yield the coefficients of the reconstruction polynomial (a1, a2, a3).
The reconstruction polynomial is then integrated over the two newly created children,

〈f〉ic =
4π

Vic

∫ ric+1/2

ric−1/2

r2drf(r) , (8.13)
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Figure 8.7: Coarse zone arrangement for conservative prolongation in 2-d cylindrical coordinates. We want
to use the zone-average data in the five coarse zones (〈f〉i,j , 〈f〉i+1,j , 〈f〉i−1,j , 〈f〉i,j−1 , 〈f〉i,j+1) to initialize
the children (shown in gray) of the i, j zone. The gray axes indicate the index space for the child zones.

where ic is the child zone index.

The same monotonicity constraints as described in the cylindrical prolongation section above are used in
spherical coordinates as well.

8.1.4 Using a uniform grid in PARAMESH

By default, FLASH will run a problem on an adaptive mesh, keeping the level of refinement of a block
between lrefine min and lrefine max. Sometimes it is useful to run a problem with a uniform mesh.
While there is a uniform mesh module distributed with FLASH (see section 8.2), the paramesh module also
can be run in a uniform ‘mode’, which will have only slightly more overhead that the purely uniform mesh
module. The basic steps to set this up are outlined below.

A typical problem in FLASH is set up with a single block at the top of the tree. As the refinement
criteria is applied to the initial conditions, this block and any children are refined to create the initial mesh.
If you are running on a uniform grid, there is no need to carry around the entire tree hierachry, only the leaf
blocks are needed. To get around this, we can use the divide domain functionality (see section ??) to create
as many top level blocks as are needed to satisfy our resolution needs. This is accomplished by using the
nblockx, nblocky, and nblockz runtime parameters to specify how many blocks to create in each direction.

Since you are placing the same resolution everywhere in the domain, it is no longer advantageous to
use small blocks. Instead, the number of zones in a block can be increased, which will reduce the memory
overhead (ratio of guardcells to interior zones in a single block). When you run setup on a problem, you can
set these values as arguments to setup. Currently, you cannot set nxb, nyb, and nzb as runtime parameters.
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Table 8.1: Hydrodynamical boundary conditions supported by FLASH.

xx boundary type Description
periodic Periodic (‘wrap-around’)
reflect Non-penetrating boundaries; zero-gradient with transverse velocity reflected
outflow Zero-gradient boundary conditions; allows shocks to leave the domain
hydrostatic Supports the fluid ‘above’ against gravity
user User-defined

Please note, some sections of the code assume that these quantities are even.
Be aware that while there is benefit to having a smaller number of larger blocks, you can swing too far in

this direction and experience a performance hit. PARAMESH does all of its load balancing based on blocks.
Additionally, a block must exist entirely on one processor. Therefore, make sure you have at least as many
blocks as number of processors on which you plan to run.

The number of computation zones in each direction can be computed as:

N zones
x = nblockx× nxb (8.14)

for the x-direction. Adjust nxb and nblockx to get the desired number of zones in the x-direction (and
similarily for the other coordinate directions). You can then set lrefine max = lrefine min = 1.

Since there will be no refinement in the problem, the next step is to instruct the code to no longer check
for refinement. This is accomplished by setting nref to a very large number. nref is the frequency (in time
steps) to check the refinement criteria, and defaults to 2.

Finally, since there will be no jumps in refinement, the flux conserveration step is not necessary. This
can be eliminated by commenting out the FLUX preprocessor definition in hydro sweep. This will instruct
the code to skip over the conservation step.

8.1.5 Boundary conditions

Boundary conditions in FLASH are handled by filling of guardcells by calculation, rather than by getting
values from neighboring blocks. FLASH currently has built-in support for the boundary conditions listed in
Table 8.1. The boundaries are selected by setting variables such as xl boundary type (for the ‘left’ X – e.g.
−X – boundary) in flash.par.

The boundary conditions are implemented in two files, tot bnd and user bnd. Both of these files,
since they require access to mesh-specific data structures, are in the particular mesh directories. tot bnd

implements the FLASH-defined boundary conditions. user bnd is a template for the definition of user-
defined boundary conditions. If a boundary is set to user, the routine in user bnd will be called to fill that
boundary’s guard cells.

8.1.6 Modifying the refinement criteria with MarkRefLib

Sometimes, you wish to refine a particular region of the grid, independent of the second derivative of the
variables. This could be to better resolve the flow at the boundaries of the domain, to refine a region
where there is vigorous nuclear burning, or to better resolve some smooth initial condition. The MarkRefLib
module contains methods that can refine a rectangular or circular region, or on some variable threshold.
It is intended to be used inside the mark grid refinement routine. A copy of mark grid refinement.F90

should be placed in the setups directory for the problem you are working on. To use this library,

use markRefLib

should be placed in the header of the function. Then the call to the markRefInRadius, markRefInRect, or
markRefVarThreshold routine should be made in the region marked “insert user specified refinement criteria
here”. We discuss the individual methods below.
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• markRefInRadius

The general call to markRefInRadius is

call markRefInRadius(xc, yc, zc, radius, lref)

markRefInRadius takes an x (xc), y (yc), and z (zc) coordinate of the center of a sphere (circle in
2-d), and a radius (radius) and ensures that the mesh is refined up to lref levels for any blocks in
that sphere (if lref> 0) or is refined once (if lref< 0).

• markRefWithRadius

The general call to markRefWithRadius is

call markRefWithRadius(xc, yc, zc, radius, lref)

markRefWithRadius takes an x (xc), y (yc), and z (zc) coordinate of the center of a sphere (circle
in 2-d), and a radius (radius) and ensures that the mesh is refined up to lref levels for any blocks
containing points on the surface of that sphere (if lref> 0) or is refined once (if lref< 0).

• markRefInRect

The general call to markRefInRect is

call markRefInRect(xlb, xrb, ylb, yrb, zlb, zrb, lref, contained)

markRefInRect refines blocks containing any points within a given rectangular region having lower left
coordinate (xlb,ylb,zlb) and upper right coordinate (xrb,yrb,zrb). “Rectangular” is interpreted on
a dimension-by-dimension basis: the region is an interval, rectangle, or rectangular parallelipiped in
1/2/3D Cartesian geometry; the rectangular cross-section of a rectangular torus in 2D axisymmetric
(r− z) cylindrical geometry; an annular wedge in 2D polar (r− θ) cylindrical geometry; or an annulus
in 1D spherical (r) geometry. Either blocks are brought up to a specific level of refinement lref (if
lref> 0) or each block is refined once (if lref< 0). If the contained parameter is nonzero, only
blocks completely contained within the rectangle are refined; otherwise blocks with any overlap at all
are refined.

• markRefVarThreshold

To refine on a critical value of a variable, markRefVarThreshold takes an array containing that variable
in the form

real, dimension(nxb,nyb,nzb,maxblocks), :: VarVect

a threshold value for the variable (var th), and a flag (icmp) indicating whether to refine if the variable
is less than the threshold (icmp < 0) or greater than the threshold (icmp > 0). Any block meeting
that criterion is refined up to lref levels of refinement. The general form of the call is

call markRefVarThreshold(VarVect, var_th, icmp, lref)

• markRefOnEllipsoidSurface

The general call to markRefOnEllipsoidSurface is

call markRefOnEllipsoidSurface(x, y, z, a1, a2, a3, lref)

markRefOnEllipsoidSurface refines all blocks containing points on an ellipsoidal surface centered
on (xc,yc,zc) with semimajor axes (a1,a2,a3). Either blocks are brought up to a specific level of
refinement lref (if lref> 0) or each block is refined once (if lref< 0).

8.2 Uniform grid

8.2.1 Algorithm

8.2.2 Usage
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Chapter 9

Hydrodynamics modules

Figure 9.1: The hydrodynamics module directory.

The hydro module solves Euler’s equations for compressible gas dynamics in one, two, or three spatial
dimensions. These equations can be written in conservative form as

∂ρ

∂t
+∇ · (ρv) = 0 (9.1)

∂ρv

∂t
+∇ · (ρvv) +∇P = ρg (9.2)

∂ρE

∂t
+∇ · [(ρE + P )v] = ρv · g , (9.3)

87
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Table 9.1: Runtime parameters used with the hydrodynamics (hydro) modules.

Variable Type Default Description
eint switch real 0 If ε < eint switch · 12 |v|2, use the internal energy

equation to update the pressure
irenorm integer 0 If equal to one, renormalize multifluid abundances

following a hydro update; else restrict their values
to lie between smallx and 1.

where ρ is the fluid density, v is the fluid velocity, P is the pressure, E is the sum of the internal energy ε
and kinetic energy per unit mass,

E = ε+
1

2
|v|2 , (9.4)

g is the acceleration due to gravity, and t is the time coordinate. The pressure is obtained from the energy
and density using the equation of state. For the case of an ideal gas equation of state, the pressure is given
by

P = (γ − 1)ρε , (9.5)

where γ is the ratio of specific heats. More general equations of state are discussed in Chapter 10.2.1.

In regions where the kinetic energy greatly dominates the total energy, computing the internal energy
using

ε = E − 1

2
|v|2 (9.6)

can lead to unphysical values, primarily due to truncation error. This results in inaccurate pressures and
temperatures. To avoid this problem, we can separately evolve the internal energy according to

∂ρε

∂t
+∇ · [(ρε+ P )v]− v · ∇P = 0 . (9.7)

If the internal energy is a small fraction of the kinetic energy (determined via the runtime parameter
eint switch), then the total energy is recomputed using the internal energy from equation (9.7) and the
velocities from the momentum equation. Numerical experiments using the PPM solver included with FLASH
showed that using equation (9.7) when the internal energy falls below 10−4 of the kinetic energy helps avoid
the truncation errors, while not affecting the dynamics of the simulation.

For reactive flows, a separate advection equation must be solved for each chemical or nuclear species:

∂ρX`

∂t
+∇ · (ρX`v) = 0 , (9.8)

where X` is the mass fraction of the `th species, with the constraint that
∑

`X` = 1. FLASH will enforce
this constraint if you set the runtime parameter irenorm equal to 1. Otherwise, FLASH will only restrict the
abundances to fall between smallx and 1. The quantity ρX` represents the partial density of the `th fluid.
The code does not explicitly track interfaces between the fluids, so a small amount of numerical mixing can
be expected during the course of a calculation.

All hydrodynamic modules, as well as the MHD module described in Section 9.3, supply the runtime
parameters and solution variables described in Tables 9.1 and 9.2. Two hydrodynamic modules are included.
The first, discussed in Section 9.1, is based on the directionally split piecewise-parabolic method (PPM) and
makes use of second-order Strang time splitting. The second, discussed in Section 9.2, is based on Kurganov
methods and can make use of Strang splitting or Runge-Kutta time advancement. Explicit, directionally
split solvers like the PPM solver make use of the additional runtime parameter described in Table 9.3.
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Table 9.2: Solution variables used with the hydrodynamics (hydro) modules.

Variable Attributes Description
dens ADVECT NORENORM CONSERVE density
velx ADVECT NORENORM NOCONSERVE x-component of velocity
vely ADVECT NORENORM NOCONSERVE y-component of velocity
velz ADVECT NORENORM NOCONSERVE z-component of velocity
pres ADVECT NORENORM NOCONSERVE pressure
ener ADVECT NORENORM NOCONSERVE specific total energy (T + U)
temp ADVECT NORENORM NOCONSERVE temperature

Table 9.3: Runtime parameters used with the explicit hydrodynamics (hydro/explicit) modules.

Variable Type Default Description
cfl real 0.8 Courant-Friedrichs-Lewy (CFL) factor; must be

< 1 for stability in explicit schemes

9.1 The piecewise-parabolic method (PPM)

9.1.1 Algorithm

FLASH includes a directionally split piecewise-parabolic method (PPM) solver descended from the PROMETHEUS
code (Fryxell, Müller, and Arnett 1989). The basic PPM algorithm is described in detail in Woodward and
Colella (1984) and Colella and Woodward (1984). It is a higher-order version of the method developed by
Godunov (1959). FLASH implements the direct-Eulerian version of PPM.

Godunov’s method uses a finite-volume spatial discretization of the Euler equations together with an
explicit forward time difference. Time-advanced fluxes at cell boundaries are computed using the analytic
solution to Riemann’s shock tube problem at each boundary. Initial conditions for each Riemann problem
are determined by assuming the nonadvanced solution to be piecewise constant in each cell. Using the
Riemann solution has the effect of introducing explicit nonlinearity into the difference equations and permits
the calculation of sharp shock fronts and contact discontinuities without introducing significant nonphysical
oscillations into the flow. Since the value of each variable in each cell is assumed to be constant, Godunov’s
method is limited to first-order accuracy in both space and time.

PPM improves on Godunov’s method by representing the flow variables with piecewise parabolic func-
tions. It also uses a monotonicity constraint rather than artificial viscosity to control oscillations near
discontinuities, a feature shared with the MUSCL scheme of van Leer (1979). Although this could lead to a
method which is accurate to third order, PPM is formally accurate only to second order in both space and
time, as a fully third-order scheme proved not to be cost-effective. Nevertheless, PPM is considerably more
accurate and efficient than most formally second-order algorithms.

PPM is particularly well-suited to flows involving discontinuities, such as shocks and contact discon-
tinuities. The method also performs extremely well for smooth flows, although other schemes which do
not perform the extra work necessary for the treatment of discontinuities might be more efficient in these
cases. The high resolution and accuracy of PPM are obtained by the explicit nonlinearity of the scheme and
through the use of intelligent dissipation algorithms, such as monotonicity enforcement, contact steepening,
and interpolant flattening. These algorithms are described in detail by Colella and Woodward (1984).

A complete description of PPM is beyond the scope of this user’s guide. However, for comparison with
other codes, we note that the implementation of PPM in FLASH 2.x uses the direct Eulerian formulation of
PPM and the technique for allowing nonideal equations of state described by Colella and Glaz (1985). For
multidimensional problems, FLASH 2.x uses second-order operator splitting (Strang 1968). We note below
the extensions to PPM that we’ve implemented.

The PPM algorithm includes a contact steepening mechanism to keep contact discontinuities from spread-
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ing over too many zones. Its use requires some care, since under certain circumstances, it can produce
incorrect results. For example, it is possible for the code to interpret a very steep (but smooth) density gra-
dient as a contact discontinuity. When this happens, the gradient is usually turned into a series of contact
discontinuities, producing a stair step appearance in one-dimensional flows, or a series of parallel contact
discontinuities in multi-dimensional flows. Under resolving the flow in the vicinity of a contact discontinuity
is a common cause of this problem. The direction splitting used in our implementation of PPM can also
aggravate the situation. The contact steepening can be disabled at runtime by setting use steepening =

.false..
The version of PPM in the FLASH code has an option to more closely couple the hydrodynamic solve

with a gravitational source term. This can noticeably reduce spurious velocities caused by the operator
splitting of gravitational acceleration from the hydrodynamics. In our ‘modified states’ version of PPM,
when calculating the left and right states for input to the Riemann solver, we locally subtract off from
the pressure field the pressure that is locally supporting the atmosphere against gravity; this pressure is
unavailable for generating waves. This can be enabled by setting ppm modifiedstates = .true..

The interpolation/monotonization procedure used in PPM is very nonlinear, and can act differently
on the different mass fractions carried by the code. This can lead to updated abundances that violate
the constraint that the mass fractions sum to unity. Plewa and Müller (1999) (henceforth CMA) describe
extensions to PPM that help prevent overshoots in the mass fractions as a result of the PPM advection. We
implement two of the fixes they describe, the renormalization of the average mass fraction state as returned
from the Riemann solvers (CMA Eq. 13), and the (optional) additional flattening of the mass fractions to
reduce overshoots (CMA Eq. 14-16). The latter procedure is off by default, and can be enabled by setting
use cma flattening = .true..

Finally, there is an odd-even instability that can occur with shocks that are aligned with the grid. This
was first pointed out by Quirk (1997), who tested several different Riemann solvers on a problem designed to
demonstrate this instablility. The solution he proposed is to use a hybrid Riemann solver, using the regular
solver in most regions, but switching to an HLLE solver inside shocks. We’ve implemented such a procedure,
which can be enabled by setting hybrid riemann = .true.. The odd even test problem can be used to
examine the effects of this hybrid Riemann solver at removing this instability.

9.1.2 Usage

The hydro/explicit/split/ppm module supplies the runtime parameters described in Table 9.4.

9.1.3 Diffusion

Any of several diffusive processes can be added to the Euler equations in the PPM module. All of these are
treated explicitly in FLASH, and follow the same approach: a diffusive flux is calculated by assuming that
the diffusive flux of a quantity is proportional to the gradient of the quantity. The gradient is calculated by
finite difference. The fluxes are then calculated and added to the fluxes generated by the PPM module. This
addition is done before any of the zones are updated in the hydro step. This ensures conservation, since the
total flux (including the diffusive flux) will be corrected during the flux conservation step.

To include a diffusive process, you must modify your Modules file to use hydro/explicit/split/ppm/diffuse.
Then the logical runtime parameters diffuse therm, diffuse visc, and diffuse species should be set to
.TRUE. or .FALSE. depending on whether you wish to include these diffusive terms or not in your simulation.
Each diffusive process has an associated coefficient, which defaults to a constant. To override this default,
pick the desired form of the coefficient from the materials module.

All of the diffusive processes take on a form like

∂X

∂t
= ∇ ·D∇X , (9.9)

which, when solved explicitly, has a timestep limiter of the form

tdiff <
1

2

(δx)2

D
. (9.10)
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Table 9.4: Runtime parameters used with the PPM (hydro/explicit/split/ppm) module.

Variable Type Default Description
epsiln real 0.33 PPM shock detection parameter ε
omg1 real 0.75 PPM dissipation parameter ω1
omg2 real 10 PPM dissipation parameter ω2
igodu integer 0 If set to 1, use the Godunov method (completely flatten

all interpolants)
vgrid real 0 Scale factor for dissipative grid velocity
nriem integer 10 Max number of iterations to use in Riemann solver
rieman tol real 10−5 Convergence factor for Riemann solver
ppm modifystates boolean .false. Modify input states to Riemann solver to take into account

gravity.
cvisc real 0.1 Artificial viscosity constant
oldvisc boolean .true. If .true., use the original PROMETHEUS artificial vis-

cosity; else use a newer one developed by Müller and Plewa
hybrid riemann boolean .false. use HLLE in shocks to remove odd-even decoupling insta-

bility
use cma flattening boolean .false. use additional flattening on the mass fractions to prevent

overshoots
use steepening boolean .true. use contact steepening to sharpen contact discontinuities

This timestep limiter is used for all of the diffusive processes, by computing the maximum diffusion coefficient
of all the processes and finding the minimum timestep. This timestep will be used if it is smaller than the
hydro timestep.

9.1.3.1 Thermal Diffusion

The energy equation in the PPM module can be modified to include thermal diffusion:

∂ρE

∂t
+∇ · (ρE + P )v = ρv · g +∇ · (σ(Xi, ρ, T )∇T ) + enuc(Xi, ρ, T ) , (9.11)

where σ(Xi, ρ, T ) is the conductivity and

Fheat = −σ(Xi, ρ, T )∇T (9.12)

is the explicit heat flux.
There are several conductivity modules available for use with this routine in source/materials/conductivity,

and one of these must be included in your Modules file. conductivity/stellar uses a conductivity appropri-
ate for the degenerate matter of stellar interiors. conductivity/spitzer implements a conductivity accord-
ing to the formulation of Spitzer (1962). In conductivity/constant the heat conductivity is assumed con-
stant – σ is set equal to the runtime parameter conductivity constant. In conductivity/constant-diff,
the thermal diffusivity (λ = σ

ρcp
) is kept equal to the runtime parameter diff constant. This is equivalent

to diffusing temperature directly, e.g.

∂T

∂t
+∇ · Tv = ∇ · (λ∇T ) (9.13)

9.1.3.2 Viscosity

With viscosity, it is velocity which is diffused:

ρv

ρt
+∇ · ρvv +∇P = ρg +∇ · (ν∇v) (9.14)
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The fluxes are calculated as in the thermal diffusion, although there is one flux for each velocity component.
There are two viscosity modules in source/materials/viscosity. In viscosity/constant, the viscosity, ν,
is assumed constant and set by the runtime parameter diff visc nu. viscosity/spitzer uses a viscosity
computed according to the classical Spitzer (1962) prescription. Total energy fluxes are not updated by
viscosity, as it is assumed the effect is small.

9.1.3.2.1 Species Diffusion The species diffusion diffuses number density of species. Thus, there are
ionmax fluxes updated, and they are controlled by an assumed constant diffusivity diff spec D.

∂ρXi

∂t
+∇ · (ρXiv) = ∇ · (D∇ρXi) (9.15)

9.2 The Kurganov hydrodynamics module

The two Kurganov schemes are implemented in the kurganov hydro module, which is compatible with all
the new driver modules. The module is organized as follows. The subroutine hydro 3d is essentially a
wrapper to the subroutines kurganov block x, kurganov block y, and kurganov block z. These three
subroutines implement the reconstruction step for each of the spatial dimensions, and call kurganov line,
which calculates either the KT or KNP numerical fluxes.

9.2.1 Algorithm

The new hydro module provides two of Kurganov’s high-resolution central schemes, each second-order accu-
rate. These spatial discretization methods for the advective terms provide robust shock-capturing without
characteristic decompositions, which makes them relatively inexpensive compared to other shock-capturing
schemes. However, they may have a lower critical time step for stability and higher dissipation as a result.

Kurganov and his collaborators have developed a a class of numerical methods for hyperbolic conservation
laws. Compared to other methods for such systems, the Kurganov methods are simple and inexpensive
because they do not rely on characteristic decompositions or Riemann solvers; the only information they
require from the equations is the maximum and minimum signal propagation speeds. The Kurganov methods
evolved from methods developed by Tadmor and his colleagues, but differ in that staggered grids are not
used in the implementation, only as a device in the derivation of the schemes.

There are two parts to each Kurganov method, (i) reconstruction of the conserved variables, which
provides cell interface values, and (ii) computation of the interface flux from those interface values. Various
second- and third-order reconstruction algorithms have been developed; one-dimensional reconstructions
can be extended dimension-by-dimension, but some multidimensional third-order reconstructions have been
proposed. Two formulas are available for computing the fluxes from the interface values. For the first
numerical flux, several wave speeds were represented by a single estimate, the maximum magnitude of
the eigenvalues of the flux Jacobian (Kurganov and Tadmor 2000). Later two estimates (maximum and
minimum eigenvalues) were used, resulting in an improved numerical flux with reduced numerical dissipation
(Kurganov, Noelle, and Petrova 2001).

Next the second-order reconstruction used in the new hydro module will be described. The reconstruction
is one-dimensional, and is presented for an equispaced mesh. An arbitrary mesh cell is referred to by subscript
i. The reconstruction uses the cell-averaged conserved variables, Ui, at nearby cells to produce values of the
conserved variables at the left and right sides of each cell interface, U l

i+ 1
2

and U r
i+ 1
2

, respectively. To update

a given cell fluxes at two interfaces must be computed, so for the reconstruction presented, the this update
requires a five-point stencil.

The first step is to compute limited slopes, (Ux)i:

(Ux)i = minmod

[

θ (Ui+1 − Ui) , θ (Ui − Ui−1) ,
1

2
(Ui+1 − Ui−1)

]

(9.16)

where the minmod function returns the smallest argument in magnitude if all arguments are the same sign,
and zero if they are not. The parameter 1 ≤ θ ≤ 2 gives some control over the limiter. The minmod limiter
is recovered for θ = 1, and is one of the most diffusive limiters. The monotonized central limiter (Colella and
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Woodward 1984) is specified for θ = 2; it is significantly less dissipative, and recommended for most cases.
Other limiters may also be used to compute the slopes; each has its pros and cons.

Once the slopes have been determined, the interface values are calculated by

U l
i+ 1
2

= Ui +
1
2 (Ux)i (9.17)

Ur
i+ 1
2

= Ui+1 − 1
2 (Ux)i+1. (9.18)

Then, on each side of the interface, the speed of sound is computed. This requires the density, mass fractions,
and internal energy to be computed; then the equation of state module is called, which returns the pressure
and the ratio of specific heats. Finally, the speeds of sound cl

i+ 1
2

and cr
i+ 1
2

are computed by c = (γP/ρ)
1
2 .

The Kurganov-Noelle-Petrova (KNP) numerical flux is defined by

Fi+ 1
2
=
a−
i+ 1
2

F (Ur
i+ 1
2

) + a+
i+ 1
2

F (U l
i+ 1
2

)

a+
i+ 1
2

+ a−
i+ 1
2

+ ai+ 1
2

(

Ur
i+ 1
2

− U l
i+ 1
2

)

(9.19)

where, for the x-direction,

a+
i+ 1
2

= max
(

0, uli+ 1
2

+ cli+ 1
2

, uri+ 1
2

+ cri+ 1
2

)

(9.20)

a−
i+ 1
2

= − min
(

0, uli+ 1
2

− cli+ 1
2

, uri+ 1
2

− cri+ 1
2

)

(9.21)

ai+ 1
2
= −

(

a+
i+ 1
2

a−
i+ 1
2

)

/

(

a+
i+ 1
2

+ a−
i+ 1
2

)

. (9.22)

Equations (9.20) and (9.21) are specific to the x-direction because u, the x-component of the velocity, appears;
for the y- and z-directions, the appropriate velocity components, v and w, respectively should replace u.

The Kurganov-Tadmor (KT) numerical flux is

Fi+ 1
2
=

1

2

[

F (Ur
i+ 1
2

) + F (U l
i+ 1
2

) + ai+ 1
2

(

Ur
i+ 1
2

− U l
i+ 1
2

)]

(9.23)

where, for the x-direction,

ai+ 1
2
= max

(

|uli+ 1
2

+ cli+ 1
2

|, |uri+ 1
2

+ cri+ 1
2

|
)

. (9.24)

As in eqns. (9.20) and (9.21), the appropriate velocity components should be used in eq. (9.24) for the y-
and z-directions.

9.2.2 Usage

The hydro 3d subroutine was written as generally as possible – with minimal modification, it can be used as
a wrapper for most shock-capturing schemes which compute numerical fluxes. It accepts, as an argument,
the spatial direction – x, y, z, or all – for which the fluxes should be computed. It can therefore be used with
time advancement methods based on directional splitting. In order, the tasks handled by hydro 3d include:

1. fill guard cells

2. loop over blocks:

(a) eos call for guard cells

(b) get field data

(c) get mesh data

(d) for each applicable direction:

i. get fluxes on equispaced grid: call kurganov block for the appropriate direction

ii. apply geometry factors

iii. update global ∆U or locally update solution, depending on formulation
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Table 9.5: Runtime parameters used with the kurganov hydro module.

Para. name Type Default Description
knp integer 1 Specifies KNP numerical flux is to be used; for

KT, set knp=0
lim theta real 1.0 Adjusts slope limiter; 1.0 ≤ lim theta ≤ 2.0;

choose 1.0 for minmod limiter, 2.0 for monotonized
centered limiter

iv. save block boundary fluxes for AMR conservation

3. AMR flux conservation

4. loop over blocks:

(a) apply corrections from AMR flux conservation

By managing all these tasks, all the interaction between the Kurganov shock-capturing schemes and the rest
of the FLASH code framework is encompassed in hydro 3d.

The kurganov module accepts two runtime parameters, listed in table 9.5. The integer knp selects which
numerical flux formula is to be used, KNP or KT. The real-valued lim theta is θ in eq. (9.16); lower values
result in more damping, higher values in less, within the range listed in the table. The runtime parameter
cfl is common to all hydro modules; table 9.5 lists only those specific to the Kurganov schemes. Because
of the reconstruction, a five-point stencil is required at each mesh cell; consequently, two guard cells are
required for a block. Corner guard cells are not required since the reconstruction is one-dimensional.

9.2.2.1 Interaction with delta and state-vector driver modules

New driver, formulation, and hydro modules have been implemented in a manner which maximizes flexibility.
In this section the interaction between these three module classes is explained. More generally, though, the
new hydro module represents all physics modules; it is an example of how other modules can be written so
they can be used with the new driver and formulation modules. To use the new methods, the user should
specify their inclusion through the Modules file, as described below.

The new hydro module, kurganov, can be used with drivers written in either delta or state-vector
formulations. All physics modules can be written with this feature, and the kurganov module can be used
as a guide for doing so.

On each block, the hydro module does the following. The contribution of the module, Lhydro(U), is
computed. If a delta formulation time advancement has been specified, then Lhydro(U) is added to the
global ∆U . If a state-vector formulation time advancement is being used, calls to update the solution on the
block from Lhydro(U) are made. In both cases, the formulation module provides the subroutines for these
actions. The line for the Modules file to specify the Kurganov scheme is:

INCLUDE hydro/explicit/delta form/kurganov

This directory name is somewhat misleading; even though delta form is in the pathname, the above line is
appropriate in the Modules file for both delta and state-vector formulations.

9.2.2.2 Caveats

At present, the compatibility of the new modules with the rest of the FLASH code is limited. The new
modules are incompatible with the default hydro module, which actually implements parts of the Strang
splitting time advancement in addition to the PPM spatial discretization. The time advancements imple-
mented in the delta formulation are not compatible with physics modules which update the variables, and
those implemented in the state-vector formulation have not been tested with the other physics modules;
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Table 9.6: Additional solution variables used with the MHD (hydro/mhd) module.

Variable Attributes Description
magx ADVECT NORENORM CONSERVE x-component of magnetic field
magy ADVECT NORENORM CONSERVE y-component of magnetic field
magz ADVECT NORENORM CONSERVE z-component of magnetic field
divb ADVECT NORENORM NOCONSERVE divergence of magnetic field

Table 9.7: Additional runtime parameters used with the MHD (hydro/mhd) module.

Variable Type Default Description
UnitSystem string ”none” System of units in which MHD calculations are

to be performed. Acceptable values are ”none”,
”CGS” and ”SI”.

resistive mhd logical .FALSE. Include/exclude resistive MHD terms.
killdivb logical .TRUE. Enable/disable divergence cleaning.

these deficiencies are being addressed. Currently only Cartesian coordinates are supported by the new hy-
dro module. The new modules have been extensively tested only for a nonreacting, single component gas
(ionmax=1) using the gamma-law equation of state.

9.3 The magnetohydrodynamics module

9.3.1 Description

The magnetohydrodynamics module included with the FLASH code solves the equations of ideal and re-
sistive MHD. As discussed in 9.3.2, the MHD module replaces the hydrodynamics module in simulations
of magnetized fluids. The two modules are conceptually very similar, and they share the same algorithmic
structure. Therefore, in the current version of the FLASH code, the MHD module is a submodule of the
hydrodynamics module.

The currently released version of the MHD module uses directional splitting to evolve the equations
of ideal and resistive magnetohydrodynamics. As the hydro module does, the MHD module makes three
sweeps to advance physical variables from one time level to another one. In each sweep, the module uses
AMR functionality to fill in guard cells and impose boundary conditions. Then it reconstructs characteristic
variables and uses these variables to compute time-averaged interface fluxes of conserved quantities. In
order to enforce conservation at jumps in refinement the module makes flux conservation calls to AMR
which redistributes affected fluxes using appropriate geometric area factors. Finally, the module updates the
solution and calls the EOS module to ensure that the solution is thermodynamically consistent.

After all sweeps are completed the MHD module enforces magnetic field divergence cleaning. Two options
are available: diffusive and elliptic projection cleaning. In order to select a particular method, the user must
respectively specify either mhd/divb diffuse or mhd/divb project in his or her problem Config file. The
default method is diffusive.

The interface of the MHD module is minimal. The module honors all of hydrodynamics module variables,
interface functions and runtime parameters described in Section 9. In addition, it declares four global
variables and three runtime parameters listed respectively in Tables 9.6 and 9.7.

9.3.2 Algorithm

The magnetohydrodynamic (MHD) module in the FLASH code is based on a finite-volume, cell-centered
method that was recently proposed by Powell et al. (1999). This particular choice for the solver is made so
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that the solver complies with the data structure layout required by the existing hydrodynamics module. As
a result of this choice, the MHD module in the FLASH code is fully compatible and is, in fact, swappable
with the hydro module.

The MHDmodule in the FLASH code solves the equations of compressible magnetohydrodynamics in one,
two and three dimensions. Written in non-dimensional (hence without 4π or µ0 coefficients), conservation
form these equations are

∂ρ

∂t
+ ∇ · (ρv) = 0 (9.25)

∂ρv

∂t
+ ∇ · (ρvv −BB) +∇(p+B2/2) = ρg (9.26)

∂ρE

∂t
+ ∇ · (v(ρE + p+B2/2)−B(v ·B)) = ρg · v +∇ · (B× (η∇×B)) (9.27)

∂B

∂t
+ ∇ · (vB−Bv) = −∇× (η∇×B), (9.28)

where

E =
1

2
v2 + e+

1

2

B2

ρ
(9.29)

is the specific total energy, ρ is the density of a magnetized fluid, v is the fluid velocity, p is the fluid thermal
pressure, e is the specific internal energy, B is the magnetic field, g is the body force per unit mass, for
example due to gravity, and η is magnetic viscosity. The thermal pressure is a scalar quantity, so that the
code is suitable for simulations of ideal plasmas in which magnetic fields are not too strong so as to cause
temperature anisotropies. As in regular hydrodynamics, the pressure is obtained from the internal energy
and density using the equation of state. Starting with this version, the MHD module supports general
equations of state and multi-species fluids. Also, in order to prevent negative pressures and temperatures, a
separate equation for internal energy is solved in a fashion described in the first part of this chapter.

The above equations of ideal magnetohydrodynamics are solved using a high-resolution, finite-volume
numerical scheme with MUSCL-type (van Leer 1979) limited gradient reconstruction. In order to maximize
the accuracy of the solver the reconstruction procedure is applied to characteristic variables. Since this may
cause certain variables such as density and pressure to fall out of physically meaningful bounds, extra care is
taken in the limiting step to prevent this from happening. All other variables are calculated in the module
from the interpolated characteristic variables.

In order to resolve discontinuous Riemann problems that occur at computational cell interfaces, the
code employs a Roe-type solver derived in Powell et al. (1999). This solver provides full characteristic
decomposition of the ideal MHD equations, and is therefore particularly useful for plasma flow simulations
that feature complex wave interaction patterns. The time integration in the MHD module is done using
a second-order, one-step method due to Hancock (Toro 1997). For linear systems with unlimited gradient
reconstruction this method can be shown to coincide with the classic Lax-Wendroff scheme.

A difficulty particularly associated with solving the MHD equations numerically lies in the solenoidality of
the magnetic field. The notorious ∇·B = 0 condition, a strict physical law, is very hard to satisfy in discrete
computations. Being only an initial condition of the MHD equations it enter s the equations indirectly and
is not therefore guaranteed to be generally satisfied unless special algorithmic provisions are made. Without
discussing this issue in much detail, which goes well beyond the scope of this user’s guide (for example, see
Tóth (2000) and references therein), we will remind that there are three commonly accepted methods to
enforce the ∇ · B condition: the elliptic projection method (Brackbill and Barnes 1980), the constrained
transport method (Evans and Hawley 1988) and the truncation-level error method (Powell et al. 1999). In
the FLASH code, the truncation-error and elliptic cleaning methods are implemented.

In the truncation-error method, the solenoidality of the magnetic field is enforced by including several
terms proportional to ∇ · B. This removes the effects of unphysical magnetic tension forces parallel to
the field and stimulates passive advection of magnetic monopoles if these are spuriously created. In many
applica tions, this method has been shown to be efficient and sufficient way to generate solutions of high
physical quality. However, it has also been shown (Tóth, 2000) that this method can sometimes, for example
in strongly discontinuous and stagnated flows, lead to accumulation of magnetic monopoles whose strength
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is sufficient to corrupt the physical quality of computed solutions. In order to eliminate this deficiency,
the FLASH code also uses a simple yet very effective method originally due to Marder (1987) to destroy
the magnetic monopoles on the scale on which they are generated. In this method, a diffusive operator
proportional to ∇∇ ·B is added to the induction equation, so that the equation becomes

∂B

∂t
+∇ · (vB−Bv) = −∇× (η∇×B)− v∇ ·B+ ηa∇∇ ·B, (9.30)

with the artificial diffusion coefficient ηa chosen to match that of grid numerical diffusion. In the FLASH
code, ηa = λ

2 (
1
∆x + 1

∆y + 1
∆z )

−1, where λ is the largest characteristic speed in the flow. Since the grid
magnetic diffusion Reynolds number is always on the order of unity, this operator locally destroys magnetic
monopoles at the rate at which they are created. Recent numerical experiments (Linde and Malagoli,
submitted; Powell et al. (2001)) indicate that this approach can very effectively bring the strength of
spurious magnetic monopoles to acceptably low levels, so that generated solutions are guaranteed to remain
physically consistent. The entire ∇ · B control process is local and very inexpensive compared to other
methods. Moreover, one can show that this process is asymptotically convergent (Munz et al., 2000), and
each of its applications is equivalent to one Jacobi iteration in solving the Poisson equation in the elliptic
projection method. The caveat is that this method only suppresses but does not completely eliminate
magnetic monopoles. Whether this is acceptable depends on a particular physical problem.

In order to eliminate magnetic monopoles completely, the FLASH code includes an elliptic projection
method. In this method, the unphysical divergence of magnetic field can be removed to any desired level
down to machine precision. This is achieved by solving a Poisson equation for a correcting scalar field whose
gradient removes contaminated field components when subtracted from the magnetic field. The Poisson
solver needed for this operation is the multigrid solver that is also used by the gravity module.

9.3.3 New features

The following features have been added to the MHD module since the FLASH 2.0 release:

• Full support of hydrodynamics module interface.

• Support for general equations of state.

• Support for multiple fluid species.

• Magnetohydrodynamic resistive effects in the induction equation and associated resistive heating in
the energy equation.
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Chapter 10

Material properties modules

Figure 10.1: The materials module directory.

FLASH has the ability to track multiple fluids, each of which can have their own properties. The materials
module handles these, as well as other things like EOS, composition, and conductivities.

10.1 The multifluid database

To access any of the fluid properties, you must use the multifluid database. This can be accomplished in
any FLASH routine by including the line:

99
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use multifluid_database

along with any of the other modules you have included. This module provides interface functions that can
be used to set or query a fluid’s properties. As with the other databases in FLASH, most of the properties
have both a string name and an integer key that can be used in the database call. Calling the function
with the integer key will be faster, since it avoids expensive string comparisons. The available properties are
listed in table 10.1.

Table 10.1: Properties available through the multifluid database.

Name Integer key Property Data type
“name” N/A fluid name string
“short name” N/A chemical symbol string
“num total” mf prop A A real
“num positive” mf prop Z Z real
“num neutral” mf prop N N real
“num negative” mf prop E E real
“binding energy” mf prop Eb binding energy real
“adiabatic index” mf prop gamma gamma real
“EOS weighting” mf prop EOS 1.0 if contributes to EOS, 0.0 otherwise real

Once the multifluid database is initialized (usually by the materials/composition module function
init materials(), the integer nfluids is publicly available, giving the number of fluids carried by FLASH.

An example of using the multifluid database to define two fluids two be tracked by FLASH is provided
by the example setup, discussed in 2.2. Note that, by default, all fluids have an equation-of-state (EOS)
weighting of unity, meaning that they contribute to the pressure and temperature and that their abundances
are restricted or renormalized at the end of each timestep. Setting this weighting to zero for a fluid enables
that fluid to be passively advected without contributing to the equation of state or abundance normalization.

We now briefly discuss the various interfaces to the multifluid database. Many of these functions are
overloaded to accept either string or integer properties (as listed in the table above), or to include optional
arguments. We only discuss the generic interface here.

• add fluid to db(name, short name, properties, status)

A quick way to set a number of properties for an individual fluid in a single subroutine call. Looks
for the next uninitialized fluid (init mfluid db() sets the names of all fluids to UNINITIALIZED) and
sets its properties according to the values specified in the subroutine call. Properties can be specified
in the order A, Z, N, E, ... or by keyword. For example,

call add_fluid_to_db ("helium", "He", A=4., Z=2., N=2.)

Properties not specifically initialized are set to 0. The status parameter is an optional status variable.

This function call is usually used when initializing the fluids in FLASH. Each composition sets the
properties for all the fluids in the routine init materials().

• set fluid property(f, p, v, status)

Set the property p of fluid f to value v. The fluid, f can be specified either using its string name
or index. p is either a string identifier or integer key specifying the property.. The value v can be
real-valued or string-valued, depending on the property being modified. status is an optional variable
which will be set to 0 if the operation was successful, -1 if not. Reasons why the operation can fail
include: f out of bounds if f is an index; f not found if f is a string name; p is not a valid property
identifier; v is not a valid value for the given property.

• get fluid property(f, p, v, status)

Like the setting version, but v now receives the value instead of setting it.
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• get mfluid property(p, v, status)

Return the value of the property p for all defined fluids. v must be an array of the correct type. status
is an optional exit status variable. v is filled with values up to the minimum of (its size, number of
fluids).

• find fluid index(f, i)

Find the database index i of a fluid named f. If init mfluid db() has not been called, or if the
fluid name is not found, this function terminates with an error. Errors are signaled by setting i to
MFLUID STATUS FAIL.

• query mfluid sum(p, w, v, status)

Given a property name p and an array of weights w, return the weighted sum of the chosen property in
v. w should be an array of length equal to the number of fluids in the database, or else a one-element
array. Typically, the weights used are the mass fractions of each of the fluids in the database. If it
is neither, or if the named property is invalid, the routine terminates. The optional status variable is
set to MFLUID STATUS OK or MFLUID STATUS FAIL depending on whether the summing operation was
successful.

• query mfluid suminv(p, w, v, status)

Same as query mfluid sum(), but compute the weighted sum of the inverse of the chosen property.

For example, the average atomic mass of a collection of fluids is typically defined as:

1

Ā
=
∑ Xi

Ai
(10.1)

where Xi is the mass fraction of species i, and Ai is the atomic mass of that species. To compute Ā
using the multifluid database, one would use the following lines:

call query_mfluid_suminv(mf_prop_A, xn(:), abarinv, error)

abar = 1.e0 / abarinv

where xn(:) is an array of the mass fractions for each species in FLASH.

• query mfluid sumfrc(p, w, v, status)

Same as query mfluid sum(), but compute the weighted sum of the chosen property divided by the
total number of particles (A).

• query mfluid sumsqr(p, w, v, status)

Same as query mfluid sum(), but compute the weighted sum of the square of the chosen property.

• init mfluid db()

Initialize the multifluid database. If this has not been called and one of the other routines is called, that
routine terminates with an error. The typical FLASH user will never need to call this him-/herself, as
this call is part of the init materials() call in the composition submodule.

• list mfluid db(lun)

List the contents of the multifluid database in a snappy table format. Output goes to the logical I/O
unit indicated by the lun parameter.
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10.2 Equations of state

The eosmodule implements the equation of state needed by the hydrodynamical and nuclear burning solvers.
Interfaces are provided to operate on an entire block (eos3d), a one-dimensional vector (eos1d), or for a
single zone (eos fcn). Additionally, these functions can be used to find the thermodynamic quantities from
either the density, temperature, and composition, or density, internal energy, and composition.

Three sub-modules are available in FLASH 2.2: gamma, which implements a perfect-gas equation of state;
multigamma, which implements a perfect-gas equation of state with multiple fluids, each of which can have
its own adiabatic index (γ), and helmholtz, which uses a fast Helmholtz free-energy table interpolation to
handle the same degenerate/relativistic electrons/positrons, and includes radiation pressure and ions (via
the perfect gas approximation). Full details of this equation of state are provided in Timmes & Swesty
(1999).

10.2.1 Algorithm

As described above, FLASH evolves the Euler equations for compressible, inviscid flow. This system of
equations must be closed by an additional equation that provides a relation between the thermodynamic
quantities of the gas. This is known as the equation of state for the material, and its structure and properties
depend on the composition of the gas.

It is common to call an equation of state (henceforth EOS) routine more than 109 times during the course
of a simulation when calculating two- and three-dimensional hydrodynamic models of stellar phenomena.
Thus, it is very desirable to have an EOS that is as efficient as possible, yet accurately represents the relevant
physics, and considerable work can go into development of a robust and efficient EOS. While FLASH is
capable of general equations of state, here we discuss the routines for three equations of state that are
supplied with FLASH: an ideal-gas or gamma-law EOS, an EOS for a fluid composed of multiple gamma-law
gases, and a tabular Helmholtz free energy EOS appropriate for stellar interiors. The gamma-law EOS
consists of simple analytic expressions that make for a very fast EOS routine in both the case of a single gas
or a mixture of gases. The Helmholtz EOS includes much more physics and relies on a table look-up scheme
for performance. In this section we discuss the physics of these equations of state; the interfaces between
the EOS routines and the codes are discussed in 10.2.

FLASH uses the method of Colella & Glaz (1995) to handle general equations of state. General equations
of state contain 4 adiabatic indices (Chandrasekhar 1939), but the method of Colella & Glaz parameterizes
the EOS and requires only two of the adiabatic indices. The first is necessary to calculate the adiabatic
sound speed and is given by

γ1 =
P

ρ

∂P

∂ρ
. (10.2)

The second relates the pressure to the energy and is given by

γ4 = 1 +
P

ρε
. (10.3)

These two adiabatic indices are stored as the variables gamc and game. All EOS routines must return γ1,
and γ4 is calculated from 10.3.

The gamma-law EOS models a simple ideal gas with a constant adiabatic index γ. Here we have dropped
the subscript on γ because for an ideal gas all adiabatic indices are equal. The relationship between pressure
P and density and specific internal energy ρ and ε is

P = (γ − 1) ρε . (10.4)

We also have an expression relating pressure to the temperature T

P =
Nak

Ā
ρT (10.5)

where Na is the Avogadro number, k is the Boltzmann constant, and Ā is the average atomic mass, defined
as

1

Ā
=
∑

i

Xi

Ai
(10.6)



10.2. EQUATIONS OF STATE 103

where Xi is the mass fraction of the ith element. Equating these expressions for pressure yields an expression
for the specific internal energy as a function of temperature

ε =
T

NakĀ
. (10.7)

Simulations are not restricted to a single ideal gas, however, because the multigamma EOS provides routines
for simulations with several species of ideal gases with different γs. In this case, the above expressions hold,
but γ represents the weighted average adiabatic index calculated from

1

(γ − 1)
=
∑

i

1

(γi − 1)

Xi

Ai
(10.8)

We note that the analytic expressions apply to both the forward (internal energy as a function of density,
temperature, and composition) and backward (temperature as a function of density, internal energy and
composition) relations. Because the backward relation requires no iteration in order to obtain the temper-
ature, this EOS is quite inexpensive to evaluate. Despite its performance, use of the gamma-law EOS is
limited due to its restricted range of applicability for astrophysical flash problems.

The Helmholtz EOS provided with the FLASH distribution contains more physics and is appropriate for
addressing astrophysical phenomena in which electrons and positrons may be relativistic and/or degenerate
and in which radiation may significantly contribute to the thermodynamic state. This EOS includes contri-
butions from radiation, completely ionized nuclei, and degenerate/relativistic electrons and positrons. The
pressure and internal energy are calculated as the sum over the components

Ptot = Prad + Pion + Pele + Ppos + Pcoul (10.9)

εtot = εrad + εion + εele + εpos + εcoul . (10.10)

Here the subscripts “rad,” “ion,” “ele,” “pos,” and “coul” represent the contributions from radiation, nuclei,
electrons, positrons, and corrections for Coulomb effects, respectively. The radiation portion assumes a
blackbody in local thermodynamic equilibrium, the ion portion (nuclei) is treated as an ideal gas with
γ = 5/3, and the electrons and positrons are treated as a non-interacting Fermi gas.

The blackbody pressure and energy are calculated as

Prad =
aT 4

3
(10.11)

εrad =
3Prad
ρ

(10.12)

where a is related to the Stephan-Boltzmann constant, σB = ac/4, and c is the speed of light. The ion
portion of each routine is the ideal gas of equations (10.4)-(10.5) with γ = 5/3. The number densities of
free electrons Nele and positrons Npos in the noninteracting Fermi gas formalism are given by

Nele =
8π
√
2

h3
m3
e c

3 β3/2
[

F1/2(η, β) + F3/2(η, β)
]

(10.13)

Npos =
8π
√
2

h3
m3
e c

3 β3/2
[

F1/2 (−η − 2/β, β) + β F3/2 (−η − 2/β, β)
]

, (10.14)

where h is the Planck constant, me is the electron rest mass, β = kT/(mec
2) is the relativity parameter,

η = µ/kT is the normalized chemical potential energy µ for electrons, and Fk(η, β) is the Fermi-Dirac
integral

Fk(η, β) =

∞
∫

0

xk (1 + 0.5 β x)1/2 dx

exp(x− η) + 1
. (10.15)

Because the electron rest mass is not included in the chemical potential, the positron chemical potential
must have the form ηpos = −η − 2/β. For complete ionization, the number density of free electrons in the
matter is

Nele,matter =
Z̄

Ā
Na ρ = Z̄ Nion , (10.16)
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and charge neutrality requires

Nele,matter = Nele −Npos . (10.17)

Solving this equation with a standard one-dimensional root-finding algorithm determines η. Once η is known,
the Fermi-Dirac integrals can be evaluated, giving the pressure, specific thermal energy, and entropy due to
the free electrons and positrons. From these, other thermodynamic quantities such as γc and γe are found.
Full details of this formalism may be found in Fryxell et al. (2000) and references therein.

The above formalism requires many complex calculations to evaluate the thermodynamic quantities, and
routines for these calculations typically are designed for accuracy and thermodynamic consistency at the
expense of speed. The Helmholtz EOS in FLASH provides a table of the Helmholtz free energy (hence the
name) and makes use of a thermodynamically consistent interpolation scheme to calculate the thermody-
namic quantities, obviating the need to perform the complex calculations required of the above formalism
during the course of a simulation. The interpolation scheme uses a bi-quintic Hermite interpolant, and the
result is an accurate EOS that performs reasonably well.

The Helmholtz free energy,

F = ε− T S (10.18)

dF = −S dT +
P

ρ2
dρ , (10.19)

is the appropriate thermodynamic potential for use when the temperature and density are the natural
thermodynamic variables. The free energy table distributed with FLASH was produced from the Timmes
EOS (Timmes & Arnett 1999). The Timmes EOS evaluates the Fermi-Dirac integrals (Equation 10.15) and
their partial derivatives with respect to η and β to machine precision with the efficient quadrature schemes of
Aparicio (1998) and uses a Newton-Raphson iteration to obtain the chemical potential of equation (10.17).
All partial derivatives of the pressure, entropy, and internal energy are formed analytically. Searches through
the free energy table are avoided by computing hash indices from the values of any given (T, ρZ̄/Ā) pair. No
computationally expensive divisions are required in interpolating from the table; all of them can be computed
and stored the first time the EOS routine is called.

We note that the Helmholtz free energy table is constructed only for the electron-positron plasma, it
is a 2-dimensional function of density and temperature, i.e. F (ρ,T), and it is made with Ā = Z̄ = 1
(pure hydrogen). One reason for not including contributions from photons and ions in the table is that
these components of the Helmholtz EOS are very simple (Equations 10.11–10.12) and one doesn’t need
fancy table look-up schemes to evaluate simple analytical functions. A more important reason for only
constructing an electron-positron EOS table with Ye = 1 is that the 2-dimensional table is valid for any
composition. Separate planes for each Ye are not necessary (or desirable), since simple multiplication by
Ye in the appropriate places gives the desired composition scaling. If photons and ions were included in
the table, then this valuable composition independence would be lost, and a 3-dimensional table would be
necessary.

The Helmholtz EOS has been subjected to considerable analysis and testing (Timmes & Swesty 2000),
and particular care was taken to reduce the numerical error introduced by the thermodynamical models
below the formal accuracy of the hydrodynamics algorithm (Fryxell, et al. 2000; Timmes & Swesty 2000).
The physical limits of the Helmholtz EOS are 10−10 < ρ < 1011 (g/cm3) and 104 < T < 1011 (K).
As with the gamma-law EOS, the Helmholtz EOS provides both forward and backward relations. In the
case of the forward relation (ρ, T , given along with the composition) the table lookup scheme and analytic
formulae directly provide relevant thermodynamic quantities. In the case of the backward relation (ρ, ε, and
composition given) the routine performs a Newton-Rhaphson iteration to determine temperature.

10.2.2 Usage

There are three interfaces to the EOS, reflecting the different modes in which it is used. A block interface
runs the EOS on all the zones in a block, the vector interface runs the EOS on a one-dimensional vector
of zones, and a pointwise interface that updates the thermodynamics for a single zone. All interfaces are
contained in Fortran 90 modules, to provide compile time argument checking.
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10.2.2.0.1 The block interface, eos3d After each update from the hydrodynamics or burning, it is
necessary to update the pressure and temperature for the entire block. The eos3d function is optimized
for updating all of the zones in a single block. This function will always take the internal energy, density,
and temperature as input, and use them to find the temperature, pressure, and adiabatic indices for this
thermodynamical state. This information is obtained through database calls for all of the zones in the block.
eos3d takes three arguments:

use ModuleEos3d

call eos3d(solnData, iblock, iflag)

where solnData is one block of data, iblock is the block number to operate on, and iflag specifies which
region of the block to update. Setting iflag to 0 will update all of the interior zones (i.e. exclude guardcells).
A value of 7 will update all the zones in a block (interior zones + guardcells). Values between 1 and 6 update
the individual regions of guardcells (upper and lower regions in the three coordinate directions).

For some equations of state, it is necessary to perform a Newton-Raphson iteration to find the temperature
and pressure corresponding to the internal energy, density, and composition, because the equation of state
is more naturally state in terms of temperature and density. In these cases, eos3d will do the necessary root
finding up to a tolerance defined in the function (typically 1× 10−8).

10.2.2.1 The vector interface, eos1d

An alternate interface to the equation of state is provided by eos1d. This function operates on a vector
of input, taking density, composition, and either internal energy or temperature as input, and returning
pressure, γc, and either the temperature or internal energy (which ever was not used as input).

In eos1d, all the input is taken from the argument list:

use ModuleEos1d

call eos1d (input, kbegin, kend, rho, tmp, p, ei, gamc, xn, q, qn)

Here, input is an integer flag that specifies how whether the temperature (input = 1) or internal energy
(input = 2) compliment the density and composition as input. Two other integers, kbegin and kend specify
the beginning and ending indices in the input vectors to operate on. The arrays rho, tmp, p, ei, gamc are
of length q, and contain the density, tmperature, pressure, internal energy, and γc respectively. The array
xn(q,qn) contains the composition (for qn fluids) for all of the input zones.

This equation of state interface is useful for use in initializing a problem. The user is given direct control
over where the input comes from, and where it ultimately is stored, since everything is passed through the
argument list. This is more efficient than calling the equation of state routine directly on a point by point
basis, since the pipelining can be taken advantange of for better cache performance.

10.2.2.2 The point interface, eos

The eos interface provides the most information and flexibility. No assumptions about the layout of the data
are made. This function simply takes density, composition, and either temperature or internal energy as
input, and returns a host of thermodynamic quantities. Most of the information provided here is not provided
anywhere else, such as the electron pressure, degeneracy parameter, and thermodynamic derivatives. The
interface is:

use ModuleEos

call eos(dens, temp, pres, ener, xn, abar, zbar, dpt, dpd, det, ded, &

c_v, c_p, gammac, pel, ne, eta, input)

The arguments dens, temp, pres, and ener are the density, temperature, pressure, and internal energy
respectively. xn is a vector containing the composition (the length of this vector is ionmax, supplied by the
common module. abar and zbar are the average atomic mass and proton number, which are returned at the
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end of the call. Four thermodynamic derivatives are provided, pressure with respect to temperature (dpt)
and density (dpd), and energy with respect to temperature (det) and density (ded). The specific heats at
constant volume (c v) and constant pressure (tt c p are also provided. Finally, γc (gammac), the electron
pressure (pel), electron number density (ne), and electron degeneracy pressure (eta) are also returned. The
interger input specifies whether temperature (input = 1) or internal energy (input = 2) are used together
with the density and composition as input.

10.2.2.3 Runtime parameters

There are very few runtime parameters used with these equations of state. The gamma-law EOS takes only
one parameter, the value of gamma used to relate the internal energy and pressure (see table 10.2).

Table 10.2: Runtime parameters used with the eos/gamma module.

Variable Type Default Description
gamma real 1.6667 Ratio of specific heats for the gas (γ)

The helmholtz module also takes a single runtime parameter, whether or not to apply Coulomb cor-
rections. In some regions of the ρ-T plane, the approximations made in the Coulomb corrections may be
invalid, and result in negative pressures. When the parameter coulomb mult is set to zero, the Coulomb
corrections are not applied (see Table 10.3).

Table 10.3: Runtime parameters used with the eos/helmholtz module.

Variable Type Default Description
coulomb mult real 1.0 Multiplication factor for Coulomb corrections.

The helmholtz EOS requires an input file helm table.dat which contains the table for the electron
contributions. This table is currently ASCII for portability purposes. When the table is first read in a
binary version called helm table.bdat is created. This can be used for subsequent restarts on the same
machine, but may not be portable across platforms.

10.3 Compositions

The composition module sets up the different compositions needed by FLASH. In general, there is one
composition for each of the burners located in source/source terms/burn/, as well as a proton and electron
composition used by the radiative losses module, source/source terms/cool/radloss, compositions of ions
of different elements used by the ionization modules in source/source terms/ioniz/, and a generic fuel
and ash composition. You will only need to write your own module if you wish to carry around different
numbers or types of fluid than any of the predefined modules. These modules set up the names of the fluid
(both a long name, recognized by the main FLASH database, and a short name that can be queried through
the multifluid database) as well as their general properties. If you use a burn module, you are required to
use the corresponding composition module.

The Config file in each composition directory specifies the number of fluids. The general syntax is:

NUMSPECIES 2

This example sets up 2 fluids. This file is read by setup and used to initialize the ionmax parameter in
FLASH. This parameter is publically available in the variable database, and can be used to initialize arrays
to the number of fluids tracked by FLASH.

Each composition directory also contains a file named init mat.F90 that sets the properties of each
fluid. This routine is called at the start of program execution by init flash. The general syntax of this file
is:
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subroutine init_materials

use multifluid_database, ONLY: init_mfluid_db,

& add_fluid_to_db, n_fluids

use common, ONLY: ionmax

implicit none

call init_mfluid_db (ionmax)

if (n_fluids == 2) then

call add_fluid_to_db ("fuel", "f", A=1., Z=1., Eb=1.)

call add_fluid_to_db ("ash", "a", A=1., Z=1., Eb=1.)

else

call abort_flash("init_mat: fuel+ash requires two fluids!")

endif

return

end

Here we initialize the multifluid database through the call to init mfluid db. The value of ionmax is
supplied through the common database. Next, each fluid is added to the database through the calls to
add fluid to db, specifying the full name and short name, the atomic mass, proton number, and binding
energy. The atomic mass and proton numbers are used in the equation of states, and are accessed via
multifluid database calls.

The example setup discussed in Subsection 4.1 demonstrates how to setup a problem with two fluids
(using the fuel+ash module). The same accessor methods that are used to store the solution data are used
to store the fluid abundances in each zone.

Below we summarize the different compositions.

10.3.1 Fuel plus ash mixture (fuel+ash)

The fuel+ash composition is not directly associated with any burner, but is intended for problems that wish
to track two fluids, for example to study mixing.

Table 10.4: The fuel+ash composition.

Long name Short name Mass Charge Binding energy
fuel f 1. 1. 1.0
ash a 1. 1. 1.0

10.3.2 Minimal seven-isotope alpha-chain model (iso7)

iso7 provides a very minimal alpha-chain, useful for problems that do not have enough memory to carry a
larger set of isotopes. This is the complement to the iso7 reaction network.
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Table 10.5: The iso7 composition.

Long name Short name Mass Charge Binding energy
helium-4 He4 4. 2. 28.29603
carbon-12 C12 12. 6. 92.16294
oxygen-16 O16 16. 8. 127.62093
neon-20 Ne20 20. 10. 160.64788
magnesium-24 Mg24 24. 12. 198.25790
silicon-28 Si28 28. 14. 236.53790
nickel-56 Ni56 56. 28. 484.00300

10.3.3 Thirteen-isotope alpha-chain model (aprox13)

aprox13 is an alpha-chain composition suitable for helium or carbon burning. It includes all of the alpha
elements up to 56Ni, and it is the required composition for the aprox13 network.

Table 10.6: The aprox13 composition.

Long name Short name Mass Charge Binding energy
helium-4 He4 4. 2. 28.29603
carbon-12 C12 12. 6. 92.16294
oxygen-16 O16 16. 8. 127.62093
neon-20 Ne20 20. 10. 160.64788
magnesium-24 Mg24 24. 12. 198.25790
silicon-28 Si28 28. 14. 236.53790
sulfur-32 S32 32. 16. 271.78250
argon-36 Ar36 36. 18. 306.72020
calcium-40 Ca40 40. 20. 342.05680
titanium-44 Ti44 44. 22. 375.47720
chromium-48 Cr48 48. 24. 411.46900
iron-52 Fe52 52. 26. 447.70800
nickel-56 Ni56 56. 28. 484.00300

10.3.4 Nineteen-isotope alpha-chain model (aprox19)

aprox19 builds on the aprox13 alpha-chain and adds isotopes need for pp burning, CNO and hot CNO
cycles, and photodisintegration. This composition module is required by the aprox19 reaction network.

Table 10.7: The aprox19 composition.

Long name Short name Mass Charge Binding energy
hydrogen-1 H1 1. 1. 0.00000
helium-3 He3 3. 2. 7.71819
helium-4 He4 4. 2. 28.29603
carbon-12 C12 12. 6. 92.16294
nitrogen-14 N14 14. 7. 104.65998
oxygen-16 O16 16. 8. 127.62093
neon-20 Ne20 20. 10. 160.64788
magnesium-24 Mg24 24. 12. 198.25790
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silicon-28 Si28 28. 14. 236.53790
sulfur-32 S32 32. 16. 271.78250
argon-36 Ar36 36. 18. 306.72020
calcium-40 Ca40 40. 20. 342.05680
titanium-44 Ti44 44. 22. 375.47720
chromium-48 Cr48 48. 24. 411.46900
iron-52 Fe52 52. 26. 447.70800
iron-54 Fe54 54. 26. 471.76960
nickel-56 Ni56 56. 28. 484.00300
neutrons n 1. 0. 0.00000
protons p 1. 1. 0.00000

10.3.5 Proton-proton/CNO network model (ppcno)

ppcno is a composition group suitable for pp/CNO reactions. It is required by the ppcno reaction network.

Table 10.8: The ppcno composition.

Long name Short name Mass Charge Binding energy
hydrogen-1 H1 1. 1. 0.00000
hydrogen-2 H2 2. 1. 2.22500
helium-3 He3 3. 2. 7.71819
helium-4 He4 4. 2. 28.29603
lithium-7 Li7 7. 3. 39.24400
beryllium-7 Be7 7. 4. 37.60000
boron-8 B8 8. 5. 37.73800
carbon-12 C12 12. 6. 92.16294
carbon-13 C13 13. 6. 97.10880
nitrogen-13 N13 13. 7. 94.10640
nitrogen-14 N14 14. 7. 104.65998
nitrogen-15 N15 15. 7. 115.49320
oxygen-15 O15 15. 8. 111.95580
oxygen-16 O16 16. 8. 127.62093
oxygen-17 O17 17. 8. 131.76360
oxygen-18 O18 18. 8. 139.80800
fluorine-17 F17 17. 9. 128.22120
fluorine-18 F18 18. 9. 137.37060
fluorine-19 F19 19. 9. 147.80200

10.3.6 Proton-electron plasma composition (prot+elec)

The prot+elec composition is not associated with any burner but is intended for modules that need a
plasma such as the radiative losses module.

Table 10.9: The prot+elec composition.

Long name Short name Mass Charge Binding energy
proton p 1. 1. 1.
electron e 0.000544617 -1. 1.
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Table 10.10: materials/composition/ioniz number of ions for each element.

Element Number of Ions
He 3
C 7
N 8
O 9
Ne 11
Mg 13
Si 15
S 17
Ar 19
Ca 21
Fe 27
Ni 29

10.3.7 Multi-ion plasma composition (ioniz)

The ioniz composition module provides compositions for use with the source/source terms/ionizmodule.
The default is ioniz/all which contains the ions of all of the twelve elements that the module can track.
Several others include just a subset of the elements. For instance, the ioniz/C+O+Ca+Fe module includes
just carbon, oxygen, calcium, and iron.

To use a different subset of elements than the ones included, a new module must be added. The new
module must contain the implementation of a subroutine, sct element(idx()), which takes an integer
array the members of which control whether a given element is included in the composition. Additionally,
the submodule must contain a Config file that includes the NUMSPECIES parameter set equal to the sum of
all the numbers of ions of all of the elements included. Table 10.10 shows how many ions are tracked for each
element. In order to decide the value of NUMSPECIES, add the numbers of ions for each element included,
plus one each for hydrogen and the electrons. For example, if a simulation were to include just nitrogen
and carbon, then NUMSPECIES should be set to 17 = 7 (for C) + 8 (for N) + 1 (for Hydrogen) + 1 (for
electrons). If a simulation were to include all the elements, then NUMSPECIES would have the value 181.

10.4 Thermal conductivity

The conductivity sub-module implements a prescription for computing thermal conductivity coefficients
used by the hydro solver. To use thermal conductivity in a FLASH simulation, the runtime parameter
diffuse therm must be set to .TRUE. See section 9.1.3 in the hydro module documentation for details on
the modules and how the solver uses them.

10.4.1 Stellar thermal conductivity

Internal energy may be transported from warm regions into colder material by collisional and radiative
processes. At large densities and cold temperatures, thermal transport by conduction dominates over the
radiative processes. At small densities and hot temperatures, radiative processes dominate the transport
of thermal energy. At intermediate densities and temperatures, both conductive and radiative processes
contribute. As such, both radiative and conductive transport processes need to be considered.

FLASH provides one module for computing the opacity of stellar material (Timmes 2000; Timmes &
Brown 2002). This module uses analytic fits from Iben (1975) and Christy (1966) for the radiative opacity
when all processes other than electron scattering are considered. An approximation formula from Weaver et
al. (1978) for the Compton opacity, which includes a cutoff for frequencies less than the plasma frequency,
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is then added to form the total radiative opacity. Analytic fits from Iben (1975) are used for the thermal
conductivity in the non-degenerate regime. In the degenerate regime, the thermal conductivity formalism
of Yakovlev & Urpin (1980) is used. A smooth and continuous interpolation function joins the thermal con-
ductivity expressions in the degenerate and non-degenerate regimes in the transition regions. Contributions
from ion-electron, electron-electron, and phonon-electron scattering are summed to form the total thermal
conductivity. Potekhin, Chabrier & Yakovlev (1997) give an approximation formula for the electron-electron
interaction integral J(y), which is more complete than the approximation formula given by Timmes (1992),
has been adopted. The radiative opacity is converted to an equivalent conductivity by σrad = 4acT3/(3ρκrad)
before forming the total thermal conductivity.

10.4.2 Spitzer thermal conductivity

This module implements the thermal conductivity following the formulation of Spitzer (1962):

σ(Xi, ρ, T ) = κTn (10.20)

where n = 5/2, and κ = 9.2×10−7 is the plasma thermal conductivity, here assumed isotropic for simplicity.

10.5 Viscosity

The viscosity sub-module implements a prescription for computing viscosity coefficients used by the hydro
solver. To use viscosity in a FLASH simulation, the runtime parameter diffus visc must be set to .TRUE..
See section 9.1.3 in the hydro module documentation for details on how the solver uses these modules.

10.5.1 Spitzer viscosity

This module implements the coefficient of plasma compressional viscosity according to the classical Spitzer
(1962) prescription:

ν = κTn (10.21)

where n = 5/2, and κ = 1.25 × 10−16 (which corresponds to a Coulomb logarithm lnΛ = 20 at the typical
coronal conditions).

10.6 Magnetic resistivity and viscosity

The magnetic resistivity sub-module (source/materials/magnetic resistivity) provides routines that
compute magnetic resistivity η and viscosity νm for a mixture of fully ionized gases. The default top level
routines return zero values for both resistivity and viscosity. Specific routines for constant and variable
resistivity are provided in const and spitzer subdirectories. By default all routines return results in CGS
units, however they provide an option to return results in SI units. The relationship between magnetic

resistivity and viscosity is νm = c2

4πη in CGS and νm = 1
µ0
η in SI.

10.6.1 Constant resistivity

This submodule returns constant magnetic resistivity and viscosity. The module declares two runtime
variables, resistivity and mvisc, that are respectively the constant resistivity and viscosity. The default
value for both variables is zero. The magnetic resistivity function reads in resistivity and returns it to
the calling routine. The magnetic viscosity routine first checks whether mvisc is given a non-zero value in
the parameter file. In case it is, this non-zero value is returned. In case it is not, the routine further reads
in resistivity and converts it into magnetic viscosity.
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10.6.2 Spitzer resistivity

This submodule implements the resistivity coefficient derived in Spitzer (1962)

η =
e2Z ln Λ(Z)

2meγE(Z)

(πme

2kT

)
3
2

, (10.22)

where Z =
∑

i niZ
2
i /
∑

i niZi is the average ionic charge of the plasma, lnΛ is the Coulomb logarithm, and
γE is the correction factor that corrects the Lorentz gas resistivity to account for electron-electron collisions.
In general, this factor must be computed using detailed kinetic models. We fit tabulated values given in
Spitzer (1962) by

γE(Z) = 0.582 + 0.418 tanh

(

lnZ

2.614

)

, 1 ≤ Z <∞. (10.23)

Magnetic viscosity is computed directly from resistivity.
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Local source terms

Figure 11.1: The source terms module directory.

11.1 The nuclear burning module

The nuclear burning module uses a sparse-matrix semi-implicit ordinary differential equation (ODE) solver
to calculate the nuclear burning rate and update the fluid variables accordingly (Timmes 1999). The primary
interface routines for this module are init burn(), which calls routines to set up the nuclear isotope tables
needed by the module; and burn(), which calls the ODE solver and updates the hydrodynamical variables

113
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Table 11.1: Runtime parameters used with the burn module.

Variable Type Default Description
tnucmin real 1.1× 108 Minimum temperature in K for burning to be al-

lowed
tnucmax real 1.0× 1012 Maximum temperature in K for burning to be al-

lowed
dnucmin real 1.0× 10−10 Minimum density (g/cm3) for burning to be al-

lowed
dnucmax real 1.0× 1014 Maximum density (g/cm3) for burning to be al-

lowed
ni56max real 0.4 Maximum Ni56 mass fraction for burning to be

allowed

in a single row of a single AMR block.

11.1.1 Detecting shocks

For some physical processes (i.e. detonations), it is unphysical for burning to take place in shocks. The
burner module includes a multidimensional shock detection algorithm that can be used to prevent burning
in shocks. If the shock burning parameter is set to .FALSE., then this algorithm is used to detect shocks
in the burn block function, and switch off the burning in shocked zones.

Currently the shock detection supports Cartesian and 2-dimensional cylindrical coordinates. The basic
algorithm is to compare the jump in pressure in the direction of compression (determined by looking at
the velocity field) with a shock parameter (typically 1/3). If the total velocity divergence is negative and
the relative pressure jump across the compression front is larger than the shock parameter, then a zone is
marked as shocked.

This computation is done on a block by block basis. It is important that the velocity and pressure
variables have up-to-date guardcells, so a guardcell call is done for the burners only if we are detecting
shocks (i.e. shock burning = .FALSE.).

11.1.2 Algorithms

Modelling thermonuclear flashes typically requires the energy generation rate due to nuclear burning over a
large range of temperatures, densities and compositions. The average energy generated or lost over a period
of time is found by integrating a system of ordinary differential equations (the nuclear reaction network)
for the abundances of important nuclei and the total energy release. In some contexts, such as Type II
supernova models, the abundances themselves are also of interest. In either case, the coefficients that appear
in the equations typically are extremely sensitive to temperature. The resulting stiffness of the system of
equations requires the use of an implicit time integration scheme.

A user can choose between two implicit integration methods and two linear algebra packages in FLASH.
The runtime parameter ode steper controls which integration method is used in the simulation. The choice
ode steper = 1 is the default choice, and invokes a Bader-Deuflhard scheme. The choice ode steper = 2

invokes a Kaps-Rentrop scheme. The runtime parameter algebra” controls which linear algebra package
is used in the simulation. The choice algebra = 1 is the default choice, and invokes the sparse matrix
MA28 package. The choice algebra = 2 invokes the GIFT linear algebra routines. While any combination
of the integration methods and linear algebra packages will produce correct answers, some combinations
may execute more efficiently than other combinations for certain types of simulations. No general rules
have been found for which combination is the best for a given simulation. Which combination is the most
efficient depends on the time-step being taken, the spatial resolution of the model, the values of the local
thermodynamic variables, and the composition. Experiment with the various combinations!
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Timmes (1999) reviewed several methods for solving stiff nuclear reaction networks, providing the basis
for the reaction network solvers included with FLASH. The scaling properties and behavior of three semi-
implicit time integration algorithms (a traditional first-order accurate Euler method, a fourth-order accurate
Kaps-Rentrop method, and a variable order Bader-Deuflhard method) and eight linear algebra packages
(LAPACK, LUDCMP, LEQS, GIFT, MA28, UMFPACK, and Y12M) were investigated by running each of
these 24 combinations on seven different nuclear reaction networks (hard-wired 13- and 19-isotope networks
and soft-wired networks of 47, 76, 127, 200, and 489 isotopes). Timmes’ analysis suggested that the best
balance of accuracy, overall efficiency, memory footprint, and ease-of-use was provided by the two integration
methods (Bader-Deuflhard and Kaps-Rentrop) and the two linear algebra packages (MA28 and GIFT) that
are provided with the FLASH code.

11.1.2.1 Reaction networks

We begin by describing the equations solved by the nuclear burning module. We consider material which
may be described by a density ρ and a single temperature T and contains a number of isotopes i, each of
which has Zi protons and Ai nucleons (protons + neutrons). Let ni and ρi denote the number and mass
density, respectively, of the ith isotope, and let Xi denote its mass fraction, so that

Xi = ρi/ρ = niAi/(ρNA) , (11.1)

where NA is the Avogadro number. Let the molar abundance of the ith isotope be

Yi = Xi/Ai = ni/(ρNA) . (11.2)

Mass conservation is then expressed by
N
∑

i=1

Xi = 1 (11.3)

At the end of each timestep, FLASH checks that the stored abundances satisfy Equation (11.3) to machine
precision in order to avoid the unphysical buildup (or decay) of the abundances or energy generation rate.
Roundoff errors in this equation can lead to significant problems in some contexts (e.g., classical nova
envelopes) where trace abundances are important.

The general continuity equation for the ith isotope is given in Lagrangian formulation by

dYi
dt

+∇ · (YiVi) = Ṙi . (11.4)

In this equation Ṙi is the total reaction rate due to all binary reactions of the form i(j,k)l,

Ṙi =
∑

j,k

YlYkλkj(l)− YiYjλjk(i) , (11.5)

where λkj and λjk are the reverse (creation) and forward (destruction) nuclear reaction rates, respectively.
Contributions from three-body reactions, such as the triple-α reaction, are easy to append to Equation
(11.5). The mass diffusion velocities Vi in Equation (11.4) are obtained from the solution of a multicompo-
nent diffusion equation (Chapman & Cowling 1970; Burgers 1969; Williams 1988) and reflect the fact that
mass diffusion processes arise from pressure, temperature, and/or abundance gradients as well as external
gravitational or electrical forces.

The case Vi ≡ 0 is important for two reasons. First, mass diffusion is often unimportant when compared
to other transport process such as thermal or viscous diffusion (i.e., large Lewis numbers and/or small
Prandtl numbers). S uch a situation obtains, for example, in the study of laminar flame fronts propagating
through the quiescent interior of a white dwarf. Second, this case permits the decoupling of the reaction
network solver from the hydrodynamical solver through the use of operator splitting, greatly simplifying the
algorithm. This is the method used by the default FLASH distribution. Setting Vi ≡ 0 transforms Equation
(11.4) into

dYi
dt

= Ṙi , (11.6)
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which may be written in the more compact and standard form

ẏ = f (y) . (11.7)

Stated another way, in the absence of mass diffusion or advection, any changes to the fluid composition are
due to local processes.

Because of the highly nonlinear temperature dependence of the nuclear reaction rates, and because the
abundances themselves often range over several orders of magnitu de in value, the values of the coefficients
which appear in Equations (11.6) and (11.7) can vary quite significantly. As a result, the nuclear reaction
network equations are “stiff.” A system of equations is stiff when the ratio of the maximum to the minimum
eigenvalue of the Jacobian matrix J̃ ≡ ∂f/∂y is large and imaginary. This means that at least one of
the isotopic abundances changes on a much shorter timescale than another. Implicit or semi-implicit time
integration methods are generally necessary to avoid following this short-timescale behavior, requiring the
calculation of the Jacobian matrix.

It is instructive at this point to look at an example of how Equation (11.6) and the associated Jacobian
matrix are formed. Consider the 12C(α,γ)16O reaction, which competes with the triple-α reaction during
helium burning in stars. The rate R at which this reaction proceeds is critical for evolutionary models of
massive stars since it determines how much of the core is carbon and how much of the core is oxygen after the
initial helium fuel is exhausted. This reaction sequence contributes to the right-hand side Equation (11.7)
through the terms

Ẏ (4He) = −Y (4He) Y (12C) R+ . . .

Ẏ (12C) = −Y (4He) Y (12C) R + . . . , (11.8)

Ẏ (16O) = +Y (4He) Y (12C) R + . . .

where the ellipsis indicate additional terms coming from other reaction sequences. The minus signs indicate
that helium and carbon are being destroyed, while the plus sign indicates that oxygen is being created. Each
of these three expressions contributes two terms to the Jacobian matrix J̃=∂f/∂y:

J(4He,4He) = −Y (12C) R + . . . J(4He,12 C) = −Y (4He) R + . . .

J(12C,4He) = −Y (12C) R + . . . J(12C,12 C) = −Y (4He) R + . . . . (11.9)

J(16O,4He) = +Y (12C) R + . . . J(16O,12 C) = +Y (4He) R + . . .

Entries in the Jacobian matrix represent the flow, in number of nuclei s−1, into (positive) or out of (negative)
an isotope. All of the temperature and density dependence is included in the reaction rate R. The Jacobian
matrices that arise from nuclear reaction networks are neither positive-definite nor symmetric since the
forward and reverse reaction rates are generally not equal. However, the magnitudes of the matrix entries
change as the abundances, temperature, or density change with time.

The FLASH code distribution includes two reaction networks. The 13-isotope α-chain plus heavy-ion
reaction network is suitable for most multi-dimensional simula tions of stellar phenomena where having a
reasonably accurate energy generation rate is of primary concern. The 19-isotope reaction network has
the same α-chain and heavy-ion reactions as the 13-isotope network, but it includes additional isotopes
to accommodate some types of hydrogen burning (PP chains and steady-state CNO cycles), along with
some aspects of photodisintegration into 54Fe. This 19 isotope reaction network is described in Weaver,
Zimmerman, & Woosley (1978). Both the networks supplied with FLASH are examples of “hard-wired”
reaction networks, where each of the reaction sequences are carefully entered by hand. This approach
is suitable for small networks when minimizing the CPU time required to run the reaction network is a
primary concern, although it suffers the disadvantage of inflexibility.

11.1.2.2 Two linear algebra packages

As we’ve seen in the previous section, the Jacobian matrices of nuclear reaction networks tend to be sparse,
and they become more sparse as the number of isotopes increases. Since implicit or semi-implicit time
integration schemes generally require solving systems of linear equations involving the Jacobian matrix,
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taking advantage of the sparsity can significantly reduce the CPU time required to solve the systems of
linear equations.

The MA28 sparse matrix package used by FLASH is described by Duff, Erisman, & Reid (1986). The
MA28 package, which has been described as the “Coke classic” of sparse linear algebra packages, uses a direct
- as opposed to iterative - method for solving linear systems. Direct methods typically divide the solution
of Ã · x = b into a symbolic LU decomposition, numerical LU decomposition, and a backsubstitution
phase. In the symbolic LU decomposition phase the pivot order of a matrix is determined, and a sequence
of decomposition operations which minimize the amount of fill-in is recorded. Fill-in refers to zero matrix
elements which become nonzero (e.g., a sparse matrix times a sparse matrix is generally a denser matrix). The
matrix is not decomposed; only the steps to do so are stored. Since the nonzero pattern of a chosen nuclear
reaction network does not change, the symbolic LU decomposition is a one-time initialization cost for reaction
networks. In the numerical LU decomposition phase, a matrix with the same pivot order and nonzero pattern
as a previously factorized matrix is numerically decomposed into its lower-upper form. This phase must be
done only once for each set of linear equations. In the backsubstitution phase, a set of linear equations is
solved with the factors calculated from a previous numerical decomposition. The backsubstitution phase
may be performed with as many right-hand sides as needed, and not all of the right-hand sides need to be
known in advance.

MA28 uses a combination of nested dissection and frontal envelope decomposition to minimize fill-in
during the factorization stage. An approximate degree update algorithm that is much faster (asymptotically
and in practice) than computing the exact degrees is employed. One continuous real parameter sets the
amount of searching done to locate the pivot element. When this parameter is set to zero, no searching is
done and the diagonal element is the pivot, while when set to unity, complete partial pivoting is done. Since
the matrices generated by reaction networks are usually diagonally dominant, the routine is set in FLASH
to use the diagonal as the pivot element. Several test cases showed that using partial pivoting did not make
a significant accuracy difference, but were less efficient since a search for an appropriate pivot element had
to be performed. MA28 accepts the nonzero entries of the matrix in the (i, j, ai,j) coordinate system, and
typically uses uses 70−90% less storage than storing the full dense matrix.

GIFT is a program which generates Fortran subroutines for solving a system of linear equations by
Gaussian elimination (Gustafson, Liniger, & Wiiloughby 1970; Müller 1997). The full matrix Ã is reduced
to upper triangular form, and backsubstitution with the right-hand side b yields the solution to Ã · x = b.
GIFT generated routines skip all calculations with matrix elements that are zero; in this restricted sense
GIFT generated routines are sparse, but the storage of a full matrix is still required. It is assumed that
the pivot element is located on the diagonal and no row or column interchanges are performed, so GIFT
generated routines may become unstable if the matrices are not diagonally dominant. These routines must
decompose the matrix for each right-hand side in a set of linear equations. GIFT writes out (in Fortran code)
the sequence of Gaussian elimination and backsubstitution without any do loop constructions on the matrix
A(i, j). As a result, the routines generated by GIFT can be quite large. For the 489 isotope network discussed
by Timmes (1999) GIFT generated ∼ 5.0×107 lines of code! Fortunately, for small reaction networks (less
than about 30 isotopes), GIFT generated routines are much smaller and generally faster than other linear
algebra packages.

As discussed above, but which bears repeating, the FLASH runtime parameter algebra controls which
linear algebra package is used in the simulation. The choice algebra = 1 is the default choice, and invokes
the sparse matrix MA28 package. The choice algebra = 2 invokes the GIFT linear algebra routines.

11.1.2.3 Two time integration methods

One of the time integration methods used by FLASH for evolving the reaction networks is a 4th-order accurate
Kaps-Rentrop method. In essence, this method is an implicit Runge-Kutta algorithm. The reaction network
is advanced over a time step h according to

yn+1 = yn +

4
∑

i=1

bi∆i , (11.10)

where the four vectors ∆i are found from successively solving the four matrix equations
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(1̃/γh− J̃) ·∆1 = f(yn) (11.11)

(1̃/γh− J̃) ·∆2 = f(yn + a21∆1) + c21∆1/h (11.12)

(1̃/γh− J̃) ·∆3 = f(yn + a31∆1 + a32∆2) + (c31∆1 + c32∆2)/h (11.13)

(1̃/γh− J̃) ·∆4 = f(yn + a31∆1 + a32∆2) + (c41∆1 + c42∆2 + c43∆3)/h . (11.14)

bi, γ, aij , and cij are fixed constants of the method. An estimate of the accuracy of the integration step is
made by comparing a third-order solution with a fourth-order solution, which is a significant improvement
over the basic Euler method. The minimum cost of this method − which applies for a single time step that
meets or exceedes a specified integration accuracy − is one Jacobian evaluation, three evaluations of the
right-hand side, one matrix decomposition, and four backsubstitutions. Note that the four matrix equations
represent a staged set of linear equations (∆4 depends on ∆3 . . . depends on ∆1). Not all of the right-hand
sides are known in advance. This general feature of higher-order integration methods impacts the optimal
choice of a linear algebra package. The fourth-order Kaps-Rentrop routine used in FLASH is combination
of the routine GRK4T given by Kaps & Rentrop (1979) and the routine STIFF given by Press et al. (1996).

Another time integration method used by FLASH for evolving the reaction networks is the variable
order Bader-Deuflhard method (e.g., Bader & Deuflhard 1983; Press et al. 1992). The reaction network is
advanced over a large time step H from yn to yn+1 by the following sequence of matrix equations. First,

h = H/m

(1̃− J̃) ·∆0 = hf(yn) (11.15)

y1 = yn +∆0 .

Then from k = 1, 2, . . . ,m− 1

(1̃− J̃) · x = hf(yk)−∆k−1

∆k = ∆k−1 + 2x (11.16)

yk+1 = yk +∆k ,

and closure is obtained by the last stage

(1̃− J̃) ·∆m = h[f(ym)−∆m−1]

yn+1 = ym +∆m . (11.17)

This staged sequence of matrix equations is executed at least twice with m = 2 and m = 6, yielding a
fifth-order method. The sequence may be executed a maximum of seven times, which yields a fifteenth-order
method. The exact number of times the staged sequence is executed depends on the accuracy requirements
(set to one part in 106 in FLASH) and the smoothness of the solution. Estimates of the accuracy of an
integration step are made by comparing the solutions derived from different orders. The minimum cost of
this method — which applies for a single time step that met or exceeded the specified integration accuracy
— is one Jacobian evaluation, eight evaluations of the right-hand side, two matrix decompositions, and ten
backsubstitutions. This minimum cost can be increased at a rate of one decomposition (the expensive part)
and m backsubstitutions (the inexpensive part) for every increase in the order 2k+1. The cost of increasing
the order is compensated for, hopefully, by taking a correspondingly larger (but accurate) time step. The
controls for ord er versus step size are a built-in part of the Bader-Deuflhard method. The cost per step of
this integration method is at least twice as large as the cost per step of either a traditional first-order accurate
Euler method or the fourth-order accurate Kaps-Rentrop discussed above. However, if the Bader-Deuflhard
method can take accurate time steps that are at least twice as large, then this method will be more efficient
globally. Timmes (1999) shows that this is typically (but not always!) the case. Note that in equations
(11.15) — (11.17) not all of the right-hand sides are known in advance since the sequence of linear equations
is staged. This staging feature of the integration method may make some matrix packages, such as MA28,
a more efficient choice.

As discussed above, but which bears repeating, the FLASH runtime parameter ode steper controls
which integration method is used in the simulation. The choice ode steper = 1 is the default choice, and
invokes the variable order Bader-Deuflhard scheme. The choice ode steper = 2 invokes the fourth order
Kaps-Rentrop scheme.
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11.1.3 Energy generation rates and reaction rates

The instantaneous energy generation rate is given by the sum

ε̇nuc = NA

∑

i

dYi
dt

. (11.18)

Note that a nuclear reaction network does not need to be evolved in order to obtain the instantaneous energy
generation rate, since only the right hand sides of the ordinary differential equations need to be evaluated.
It is more appropriate in the FLASH program to use the average nuclear energy generated over a time step

ε̇nuc = NA

∑

i

∆Yi
∆t

. (11.19)

In this case, the nuclear reaction network does need to be evolved. The energy generation rate, after
subtraction of any neutrino losses, is returned to the FLASH program for use with the operator splitting
technique.

The tabulation of Caughlan & Fowler (1988) is used in FLASH for most of the key nuclear reaction rates.
Modern values for some of the reaction rates were taken from the reaction rate library of Hoffman (2001,
priv. comm.). A user can choose between two reaction rate evaluations in FLASH. The runtime parameter
use table controls which reaction rate evaluation method is used in the simulation. The choice use table =

0 is the default choice, and evaluates the reaction rates from analytical expressions. The choice use table =

1 evaluates the reactions rates from table interpolation. The reaction rate tables are formed on-the-fly from
the analytical expressions. Tests on one-dimensional detonations and hydrostatic burnings suggest there are
no major differences in the abundance levels if tables are used instead of the analytic expressions; we find
less than 1% differences at the end of long time-scale runs. Table interpolation is about 10 times faster than
evaluating the analytic expressions, but the speedup to FLASH is more modest, a few percent at best, since
reaction rate evaluation never dominates in a real production run.

Finally, nuclear reaction rate screening effects as formulated by Wallace et al. (1982), and decreases in
the energy generation rate ε̇nuc due to neutrino losses as given by Itoh et al. (1996) are included in FLASH.

11.1.3.1 Temperature-based timestep limiting

The hydrodynamics methods implemented in FLASH are explicit, so a timestep limiter must be used to
ensure the stability of the numerical solution. The standard CFL limiter is always used when a hydrody-
namics module is included in FLASH. This constraint does not allow any information travel more than 1
computational zone per timestep. The timestep is the minimum of

∆t = C ·







|vr|
∆r

+
|vz|
∆z

+ cs ·
√

(

1

∆r

)2

+

(

1

∆z

)2






−1

, (11.20)

computed over all zones. The Courant number C is a prefactor that is set at runtime through the cfl

parameter, and is required to be less than 1.
When coupling burning with the hydrodynamics, the CFL timestep may be so large compared to the

burning timescales, that the nuclear energy release in a zone may exceed the existing internal energy in that
zone. When this happens, the two operations (hydrodynamics and nuclear burning) become decoupled.

To help fix this problem, it is sometimes useful to step along at a timestep determined by the change
in temperature in a zone. FLASH includes a temperature based timestep limiter that tries to constrain
the change in temperature in a zone to be less than a user defined parameter. To use this limiter, set
itemp limit = 1, and specify the fractional temperature change you are willing to tolerate, temp factor.
While there is no guarantee that the temperature change will be smaller than this, since the timestep was
already taken by the time this was computed, this method is successful in restoring coupling between the
hydrodynamics and burning operators. This timestep will be computed as

∆t = temp factor · T

∆T
·∆told (11.21)
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where ∆T is the difference in the temperature of a zone from one timestep to the next, and ∆told is the last
timestep. To prevent the timestep from varying wildly from one step to the next, it is useful to force the
maximum change in timestep to be a small factor over the previous one through the tstep change factor

parameter.

11.2 Ionization

The analysis of UV and X-ray observations, and in particular of spectral lines, is a powerful diagnostic tool
of the physical conditions in astrophysical plasmas (e.g. the outer layers of the solar atmosphere, supernova
remnantes, etc.). Since deviation from equilibrium ionization may have a non-negligible effect on the UV and
X-ray lines, it is crucial to take into account these effects in the modeling of plasmas and in the interpretation
of the relevant observations.

In light of the above observations, FLASH contains the module, source terms/ioniz/nei, capable
of computing the density of each ion species of a given element, taking into account the non-equilibrium
ionization (NEI), by solving a system of equations consisting of the fluid equations of the whole plasma and
the continuity equations of the ionization species of the elements considered. The densities of the twelve
most abundant elements in astrophysical material can be computed by the module: He, C, N, O, Ne, Mg,
Si, S, Ar, Ca, Fe, and Ni, plus fully ionized hydrogen and electrons.

The Euler equations plus the set of advection equations for all the ion species take the following form:

∂ρ

∂t
+∇ · (ρv) = 0 (11.22)

∂ρv

∂t
+∇ · (ρvv) +∇P = ρg (11.23)

∂ρE

∂t
+∇ · [(ρE + P )v] = ρv · g [ + S ] (11.24)

∂nZi
∂t

+∇ · nZi v = RZ
i (i = 1, . . . , Nspec) , (11.25)

where ρ is the fluid density, t is the time, v is the fluid velocity, P is the pressure, E is the sum of the internal
energy and kinetic energy per unit mass, g is the acceleration due to gravity, nZi is the number density of
the ion i of the element Z, Nspec is the total number of species, and

RZ
i = Ne[n

Z
i+1α

Z
i−1 + nZi−1S

Z
i−1 − nZi (α

Z
i + §Zi )] (11.26)

where Ne is the electron number density, αZi ≡ α(Ne, T ) are the collisional and dielectronic recombination
coefficients and SZi ≡ S(Ne, T ) are the collisional ionization coefficients of Summers(1974).

11.2.1 Algorithms

A fractional step method is required to integrate the equations, and in particular to decouple the NEI solver
from the hydro solver. For each time step, the homogeneous hydrodynamic transport equations given by
equations 11.22 - 11.25 are solved setting R = 0; that is accomplished with the FLASH hydro solver. After
each transport step, the “stiff” system of ordinary differential equations for the NEI problem are integrated.
They take the form:

∂nZi
∂t

= RZ
i (i = 1, . . . , Nspec) (11.27)

This step incorporates the reactive source terms. Witin each grid cell, the above equation can be solved
seperately with a standard ODE method. Since this system is “stiff”, it is solved with the solver used by
FLASH for the thermonuclear reactions that is optimized for this class of equations, the Bader-Deuflhard
time integration solver with the MA28 sparse matrix package. Timmes(1999) has shown that these two
algorithms together provide the best balance of accuracy and overall efficiency.

Note, in the present version, the contribution of the ionization and recombination to the energy equation
is not accounted for. Also, it should be noted that the source term in the NEI module is adequate to solve the
problem for optically thin plasma in the “coronal” approximation; just collisional ionization, auto-ionization,
radiative recombination, and dielectronic recombination are considered.
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Table 11.2: Runtime parameters used with the source terms/ioniz module.

Variable Type Default Description
iioniz integer 0 Do we turn on ionization for this run? 1=yes,

0=no
tneimin real 1.0× 104 Min nei temperature
tneimax real 1.0× 107 Max nei temperature
dneimin real 1.0 Min nei electron number density
dneimax real 1.0× 1012 Max nei electron number density

11.2.2 Usage

In order to run a FLASH executable that uses the ionization module, the ionization coefficients of Sum-
mers(1974) must be contained in a file named summers den 1e8.rates in the same directory as the exe-
cutable when the simulation is run. This file can be found in source/source terms/ioniz/ in the FLASH
distribution. Typically, after setup is run and the executable is built, this file will have to be copied to the
location of the executable before it is run.

The source terms/ioniz module supplies the runtime parameters described in Table 11.2. The param-
eter iioniz must be set to 1 in order for the ionization computations to take place.

There are two submodules of source terms/ioniz: the default, source terms/ioniz/nei, and source terms/ioniz/eqi.
The former computes ion species for non-equilibrium ionization, and the latter computes ion species in the
approximation of ionization equilibrium.

The source terms/ioniz module requires that the module materials/composition/ioniz be used.
This module sets up the ion species of the fluid. There are several submodules that include all or a subset
of the possible elements and the ions of those elements. materials/composition/ioniz/all includes all of
the elements and is the default submodule. materials/composition/C+O+Ca+Fe includes carbon, oxygen,
calcium and iron. To use the ioniz module with a different subset of elements, a new submodule should be
added to the compositions directory. See section 10.3.7 that describes how to create a new composition.

11.3 Stirring

The addition of driving terms in a hydrodynamical simulation can be a useful feature, for example, for
generating turbulent flows, or for simulating the addition of power on larger scales (eg, supernova feedback
in the interstellar medium). The stirring module is a module which directly adds a divergence-free, time-
correlated ‘stirring’ velocity at selected modes in the simulation.

The time-correlation is important for modelling realistic driving forces. Most large-scale driving forces are
time-correlated, rather than white-noise; for instance, turbulent stirring from larger scales will be correlated
on timescales related to the lifetime of an eddy on the scale of the simulation domain. This time correlation
will lead to coherent structures in the simulation which will be absent with white-noise driving.

For each mode, at each time steps six seperate phases (real and imaginary in each of the three spacial
dimensions) are evolved by an Ornstein-Uhlenbeck (OU) random process. The OU process is a zero-mean

process which at each step ‘decays’ the previous value by an exponental e(
∆t
τ ) and adds a gaussian random

variable with a given variance. For our purposes, since the OU process represents a velocity, the variance
is chosen to be the square root of the specific energy input rate (set by the runtime parameter st energy)
divided by the decay time, τ (st decay).

By evolving the phases of the stirring modes in Fourier space, imposing a divergence-free condition is
relatively straightforward. At each timestep, the solenoidal component of the velocities is projected out,
leaving only the non-compressional modes to add to the velocities.

The velocities are then converted to physical space by a direct Fourier transform – e.g., actually doing
the sum of sin and cos terms. Since most drivings will involve a fairly small number of modes, this is more
efficient than an FFT since the FFT would involve large numbers of modes (equal to six times the number
of cells in the domain) of which the vast majority would have zero amplitude.
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Table 11.3: Runtime parameters used with the source terms/stirring module.

Variable Type Default Description
istir integer 1 Do we ‘turn on’ stirring for this run? 1=yes, 0=no.
st seed integer 2 Seed for the random number generator.
st energy real .01 (RMS) specific energy/time/mode stirred in.
st decay real .1 Decay time for OU random numbers; correlation

time of the stirring.
st stirmax real 62.8 wavenumber corresponding to the smallest physi-

cal scale that stirring will occur on.
st stirmin real 31.4 wavenumber corresponding to the largest scale

that stirring will occur on.

11.4 Heating

11.4.1 Static + Gaussian heating

The source terms/heat/stat+gauss module implements a phenomenological heating term of the plasma
parametrized as a function of position and time. The specific implementation assumes that the heating
function consists of the sum of two terms: a steady, uniform one, Q0, and a transient heating, Qi(s, t),
prescribed as a separable function of spacial coordinates and time:

Qi(s, t) = H0 × g(s)× f(t) (11.28)

where H0 is the peak value of the heating rate, g(s) is the distribution along the space coordinate s ≡ [x, y, z]
in our case a 3-D gaussian function,

g(s) = exp[−(s− s0)2/2σ2]. (11.29)

and f(t) is prescribed as a step function of time followed by an exponential decrease, i.e.,

f(t) =







0, t ≤ t∗

1, t∗ < t ≤ t0
exp[(t0 − t)/τ ], t > t0

(11.30)

where t∗ is the beginning of the impulsive heating phase.

11.5 Cooling

11.5.1 Radiative losses from an optically thin plasma

The source terms/cool/radloss module implements radiative losses from an optically thin plasma.

The radiative losses per unit emission measured from an optically thin plasma (Raymond and Smith,
1977, Raymond 1978), Λ(T ), have been implemented adopting a piece-wise power law approximation which
provides a reasonable fit to Λ(T ). The expression adopted is the same given by Rosner, Tucker and Vaiana
(1978) to model the energy losses from the transition region and corona,

2× 104 < T < 108K (11.31)

and the one given by Peres et al. (1982) to model the energy losses from the chromosphere

4.44× 103 < T < 2× 104K (11.32)
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Table 11.4: Runtime parameters used with the source terms/heat/stat+gauss module.

Variable Type Default Description
statheat real 1.0× 10−5 Stationary heating (ergcm−3s−1)
qheat real 0.0 Peak value of the transient heating rate (erg cm−3

s−1)
x0heat real 1.0 X location (cm) of the transient heating
y0heat real 1.0 Y location (cm) of the transient heating
z0heat real 1.0 Z location (cm) of the transient heating
sigheat real 1.0 Sigma (cm) of the transient heating
tstar real -1.0 Time (s) of beginning of the impulsive heating

phase
t0heat real -1.0 Switch off time (s) of the transient heating
tau real 1.0 Decay time (s) of the transient heating
theatmin real 1.0× 103 Minimum temperature (K) allowed in the

stat+gauss module

The resulting formulation is as follows:

Λ(T ) =































































(10−5.97T )11.7 103.65 K < T < 103.9 K
(10−7.85T )6.15 103.9 K < T < 104.3 K
10−21.85 104.3 K < T < 104.6 K
10−31T 2 104.6 K < T < 104.9 K
10−21.2 104.9 K < T < 105.4 K
10−10.4T−2 105.4 K < T < 105.75 K
10−21.94 105.75 K < T < 106.3 K
10−17.73T−2/3 106.3 K < T < 107 K
10−18.21T−0.6 107 K < T < 107.6 K
10−26.57T 1/2 107.6 K < T < 108 K

(11.33)

11.5.2 Usage

The runtime parameters used with the radloss module are summarized in Table 11.5.

Table 11.5: Runtime parameters used with the radloss module.

Variable Type Default Description
trademin REAL 4.44E3 Minimum temperature (K) allowed in the radloss

module
tradmax REAL 1.1E8 Maximum temperature (K) allowed in the module
dradmin REAL 1.0E0 Minimum electron number density (cm−3) allowed

in the module
dradmax REAL 1.0E14 Maximum electron number density (cm−3) al-

lowed in the
module

The module requires the use of a fluid composition containing at least protons and electrons. The com-
position module materials/composition/prot+elec and the modules in materials/composition/ioniz

satisfy this condition.
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Chapter 12

Gravity module

12.1 Algorithms

Figure 12.1: The gravity module directory.

The gravity module supplied with FLASH computes gravitational source terms for the code. These
source terms can take the form of the gravitational potential φ(x) or the gravitational acceleration,

g(x) = −∇φ(x) . (12.1)

The gravitational field can be externally imposed or self-consistently computed from the gas density via the
Poisson equation,

∇2φ(x) = 4πGρ(x) , (12.2)

(here G is Newton’s gravitational constant). In the latter case either periodic or isolated boundary conditions
can be applied. In this section we describe the different external field modules distributed with FLASH,
followed by two algorithms for solving the Poisson equation. Coupling of gravity to other modules (e.g.,

125
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hydrodynamics) is the responsibility of those other modules, but we also discuss here the gravitational
coupling method used by the PPM hydrodynamics module distributed with FLASH.

12.1.1 Externally applied fields

As distributed, FLASH includes the following externally applied gravitational fields. Each provides the
acceleration vector g(x) directly, without using the gravitational potential φ(x).

1. Constant gravitational field. The gravitational acceleration is spatially constant and oriented along one
of the coordinate axes.

2. Plane-parallel gravitational field. The acceleration vector is parallel to one of the coordinate axes, and
its magnitude drops off with distance along that axis as the inverse distance squared. Its magnitude
and direction are independent of the other two coordinates.

3. Gravitational field of a point mass. The acceleration falls off with the square of the distance from a
given point. The acceleration vector is everywhere directed toward this point.

12.1.2 Self-gravity algorithms

The self-gravity algorithms supplied with FLASH solve the Poisson equation (12.2) for the gravitational
potential φ(x). The modules implementing these algorithms can also return the acceleration field g(x); this
is computed by finite-differencing the potential using the expressions

gx;ijk =
1

2∆x
(φi−1,jk − φi+1,jk) +O(∆x2)

gy;ijk =
1

2∆y
(φi,j−1,k − φi,j+1,k) +O(∆y2) (12.3)

gz;ijk =
1

2∆z
(φij,k−1 − φij,k+1) +O(∆z2) .

In order to preserve the second-order accuracy of these expressions at jumps in grid refinement, it is important
to use quadratic interpolants when filling guard cells at such locations. Otherwise the truncation error of
the interpolants will produce unphysical forces at these block boundaries.

See Section 15 for information regarding the Poisson solvers which can be used for gravity. Currently
multigrid- and multipole-based solvers are available. Each Poisson solver has a gravity sub-module interface;
for example, gravity/poisson/multipole requires solvers/poisson/multipole.

12.1.2.1 Multipole Poisson solver

The multipole Poisson solver is appropriate for spherical or nearly-spherical mass distributions with isolated
boundary conditions.

12.1.2.2 Multigrid Poisson solver

The multigrid Poisson solver is appropriate for general mass distributions and can solve problems with more
general boundary conditions. The algorithm distributed with FLASH is based on a multilevel refinement
scheme described by Martin and Cartwright (1996). Isolated boundary conditions are implemented via a
method based on James’ (1978) algorithm.

12.1.3 Coupling of gravity with hydrodynamics

The gravitational field couples to the Euler equations only through the momentum and energy equations. If
we define the total energy density as

ρE ≡ 1

2
ρv2 + ρε , (12.4)
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where ε is the specific internal energy, then the gravitational source terms for the momentum and energy
equations are ρg and ρv · g, respectively. Because of the variety of ways in which different hydrodynamics
schemes treat these source terms, in FLASH the gravity module supplies φ and g and leaves the implemen-
tation of the fluid coupling to the hydrodynamics module. Finite-difference and finite-volume hydro schemes
apply the source terms in their advection steps, sometimes at multiple intermediate timesteps and sometimes
using staggered meshes for vector quantities like v and g. For example, the PPM algorithm supplied with
FLASH uses the following update steps to obtain the momentum and energy in zone i at timestep n+ 1:

(ρv)n+1i = (ρv)ni +
∆t

2
gn+1i

(

ρni + ρn+1i

)

(ρE)n+1i = (ρE)ni +
∆t

4
gn+1i

(

ρni + ρn+1i

) (

vni + vn+1i

)

. (12.5)

Here gn+1i is obtained by extrapolation from φn−1i and φni . The poisson gravity sub-module supplies a
variable to contain the potential from the previous timestep; future releases of FLASH will likely permit
the storage of several time levels of this quantity for hydrodynamics algorithms that require more steps.
Currently g is computed at zone centers, but this too is likely to be generalized as FLASH begins to support
alternative discretization strategies. Note that finite-volume schemes do not retain explicit conservation
of momentum and energy when gravity source terms are added. Godunov schemes such as PPM require
an additional step in order to preserve second-order time accuracy. The gravitational acceleration (gni ) is
fitted by interpolants along with the other state variables, and these interpolants are used to construct
characteristic-averaged values of g in each zone. The input velocity states vL,i+1/2 and vR,i+1/2 are then
corrected to account for the acceleration using the following expressions:

vL,i+1/2 → vL,i+1/2 +
∆t

4

(

g+L,i+1/2 + g−L,i+1/2

)

vR,i+1/2 → vR,i+1/2 +
∆t

4

(

g+R,i+1/2 + g−R,i+1/2

)

(12.6)

Here g±X,i+1/2 is the acceleration averaged using the interpolant on the X side of the interface (X = L,R)

for v± c characteristics which bring material to the interface between zones i and i+1 during the timestep.

12.2 Using the gravity modules

To include the effects of gravity in your FLASH executable, include the line

INCLUDE gravity/sub-module[/algorithm]

in your Modules file when you configure the code with setup. The available sub-modules include constant,
planepar, poisson, and ptmass. If you are using the Poisson solver to compute the gravitational field, you
may also specify an algorithm, currently multipole or multigrid. In this case you should also include the
line

INCLUDE solvers/poisson[/algorithm]

in your Modules file. The function and usage of each of the gravity sub-modules are described in the following
sections.

Note that to use any of the gravitational field routines in your code you must use-associate the module
Gravity. Most users will be concerned only with the following routines supplied by Gravity:

• GravPotentialAllBlocks()

Computes the gravitational potential on the entire mesh. For the externally imposed field sub-modules
this currently does nothing. For poisson it calls the Poisson solver using the solution variable dens as
the source of the field. The potential is left in the solution variable gpot, and the previous contents of
gpot are copied to gpol.
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Table 12.1: Runtime parameters used with the constant gravity sub-module.

Variable Type Default Description
gconst real -981 Gravitational acceleration
gdirec string “x” Direction of acceleration vector (“x”, “y”, “z”)

• GravAccelAllBlocks(igpot, igrav, component)

Computes the gravitational acceleration on the entire mesh. The arguments accepted are:
igpot (integer) Key number for the solution variable to use as the potential
igrav (integer) Key number for the solution variable to hold the accelera-

tion
component (integer) Which component of the acceleration to compute (1 = x,

2 = y, 3 = z)

• GravAccelOneBlock(igpot, igrav, component, block)

Computes the gravitational acceleration on a single block. Arguments are as for GravAccelAllBlocks(),
with the addition of the integer argument block specifying which block to update.

• GravAccelOneLevel(igpot, igrav, component, level)

Computes the gravitational acceleration on a single refinement level. Arguments are as for GravAccelAllBlocks(),
with the addition of the integer argument level specifying which level to update.

• GravAccelOneRow(j, k, xyzswp, block no, ivar, grav, nzn8)

Computes the gravitational acceleration for a row of zones in a specified direction in a given block.
The arguments accepted by GravAccelOneRow() are:
j, k (integer) Row indices transverse to the sweep direction
xyzswp (integer) The sweep direction (sweep x, sweep y, sweep z)
block no (integer) The local block identifier
ivar (integer) The solution variable database key to use as the potential,

if applicable.
grav(:) (real) Array to receive the component of the acceleration parallel

to the sweep direction
nzn8 (integer) The number of zones to update in grav()

12.2.1 Constant

The constant sub-module implements a spatially and temporally constant gravitational field parallel to one
of the coordinate axes. The magnitude and direction of this field are set at runtime using the parameters
listed in Table 12.1.

12.2.2 Plane parallel

The planepar sub-module implements a time-constant gravitational field that is parallel to one of the
coordinate axes and falls off with the square of the distance from a fixed location. The field is assumed to
be generated by a point mass. A finite softening length may optionally be applied. This type of field is
useful when the computational domain is large enough in the direction radial to the field source that the
field is not approximately constant, but the domain’s dimension perpendicular to the radial direction is small
compared to the distance to the source, so that the angular variation of the field direction may be ignored.
The planepar field is cheaper to compute than the ptmass field since no fractional powers of the distance
are required. The runtime parameters describing this field are listed in Table 12.2.
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Table 12.2: Runtime parameters used with the planepar gravity sub-module.

Variable Type Default Description
ptmass real 1.E4 Mass of field source
ptxpos real 1 Position of field source in direction ptdirn

gravsoft real 0.0001 Gravitational softening length
ptdirn integer 1 Direction of acceleration vector (1 = x, 2 = y,

3 = z)

Table 12.3: Runtime parameters used with the ptmass gravity sub-module.

Variable Type Default Description
ptmass real 1.E4 Mass of field source
ptxpos real 1 x-position of field source
ptypos real -10 y-position of field source
ptzpos real 0 z-position of field source
gravsoft real 0.0001 Gravitational softening length

12.2.3 Point mass

The ptmass sub-module implements the gravitational field due to a point mass at a fixed location. A
finite softening length may optionally be applied. The runtime parameters describing the field are listed in
Table 12.3.

12.2.4 Poisson

The poisson sub-module computes the gravitational field produced by the matter in a simulation. Currently
only Newtonian gravity is supported; the potential function produced by this sub-module satisfies Poisson’s
equation (12.2). Two different elliptic solvers are supplied with FLASH: a multipole solver, suitable for
approximately spherical matter distributions, and a multigrid solver, which can be used with general matter
distributions. The multipole solver accepts only isolated boundary conditions, whereas the multigrid solver
supports both periodic and isolated boundary conditions (for gravity). Boundary conditions for the Poisson
solver are specified using the grav boundary type parameter described in Table 12.4.

When using potential-based gravity modules it is strongly recommended that you use the second order

(quadratic) interpolants supplied by PARAMESH. This is because the gravitational acceleration is computed
using finite differences. If the interpolants supplied by the mesh are not of at least the same order as the
differencing scheme used, unphysical forces will be produced at refinement boundaries. Also, using constant
or linear interpolants may cause the multigrid solver to fail to converge.

The poisson sub-module supplies three solution variables, listed in Table 12.5 (the multigrid solver adds
several to this total). See page 127 for an explanation of their meaning.

Please see Section 15 for descriptions of the available Poisson solvers and their usage.

Table 12.4: Runtime parameters used with the poisson gravity sub-module.

Variable Type Default Description
grav boundary type string “isolated” Type of boundary conditions for potential (“iso-

lated”, “periodic”)
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Table 12.5: Variables provided by the poisson gravity sub-module.

Variable Attributes Description
gpot NOADVECT

NORENORM
NOCONSERVE

Gravitational potential at the current timestep

gpol NOADVECT
NORENORM
NOCONSERVE

Gravitational potential at the previous timestep

dens ADVECT
NORENORM
CONSERVE

Matter density used as the source of the field
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Particle module

Figure 13.1: The particles module directory.

13.1 Algorithms

Whereas most other physics modules in FLASH work with grid-based quantities, the particles module
follows the motion of Lagrangian mass tracers which may or may not contribute to the dynamics. Particles are
characterized by positions xi, velocities vi, and sometimes other quantities such as masses mi or charges qi.
Their characteristic quantities are considered to be defined at their positions and can be set by interpolation
from the mesh or be used to set mesh quantities by interpolation. They move relative to the mesh and can
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travel from block to block, requiring communication patterns different from those used to transfer boundary
information between processors for mesh-based data.

We divide particles into two types, active and passive. Active particles experience forces and may them-
selves contribute to dynamics (e.g., through long-range forces or through collisions). Solving for the motion
of active particles is also referred to as solving the N -body problem. The equations of motion for the ith
active particle are

dxi
dt

= vi

mi
dvi
dt

= Flr,i + Fsr,i , (13.1)

where Flr,i represents the sum of all long-range forces (coupling all particles) acting on the ith particle and
Fsr,i represents the sum of all short-range forces (coupling only neighboring particles) acting on the particle.
Passive particles acquire their kinematic information (velocities) directly from the mesh. They are meant
to be used as passive flow tracers and do not make sense outside of a hydrodynamical context. Since vi is
externally imposed, only the first of the above equations is relevant.

An excellent introduction to the particle techniques used in FLASH is given by R. W. Hockney and
J. W. Eastwood in Computer Simulation using Particles (IOP Publishing, 1988).

13.1.1 Active particles

Available time integration schemes for active particles include:

• Forward Euler. Particles are advanced in time from tn to tn+1 = tn + ∆tn using the following
difference equations:

xn+1i = xni + vni ∆tn

vn+1i = vni + ani ∆tn (13.2)

Here ai is the particle acceleration.

• Variable-timestep leapfrog. Particles are advanced using the following difference equations:

x1i = x0i + v0i∆t0

v
1/2
i = v0i +

1

2
a0i∆t0 (13.3)

v
n+1/2
i = v

n−1/2
i + Cna

n
i +Dna

n−1
i

xn+1i = xni + v
n+1/2
i ∆tn

ai is the particle acceleration. The coefficients Cn and Dn are given by

Cn =
1

2
∆tn +

1

3
∆tn−1 +

1

6

(

∆t2n
∆tn−1

)

Dn =
1

6

(

∆tn−1 −
∆t2n

∆tn−1

)

. (13.4)

By using time-centered velocities and stored accelerations, this method achieves second-order time
accuracy even with variable timesteps.

• Cosmological variable-timestep leapfrog. The coefficients in the leapfrog update are modified
to take into account the effect of cosmological redshift on the particles. The particle positions x are
interpreted as comoving positions, and the particle velocities v are interpreted as comoving peculiar
velocities (v = ẋ). The resulting update steps are

x1i = x0i + v0i∆t0
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v
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xn+1i = xni + v
n+1/2
i ∆tn .

Here we define A ≡ −2ȧ/a, where a is the scale factor. Note that the acceleration an−1i from the
previous timestep must be retained in order to obtain second-order time accuracy. Note also that
using the leapfrog cosmo time integration scheme only makes sense if the cosmology module is also
used, since otherwise a ≡ 1 and ȧ ≡ 0.

13.1.2 Passive particles

Currently passive particles are advanced using the forward Euler scheme described above for active particles,
with velocities vni obtained using particle-mesh interpolation from the gas grid.

13.2 Using the particle modules

The particles module contains several sub-modules:

• The active sub-module handles active particles, which contribute to or experience dynamics. This
sub-module in turn contains three sub-modules:

– time integration, which collects different time integration schemes;

– long range, which collects different long-range force laws (requiring elliptic solves or the like and
dependent upon all other particles);

– short range, which collects different short-range force laws (directly summed or dependent upon
nearest neighbors only).

• The passive sub-module handles passive tracer particles, which do not contribute or experience dy-
namics but instead obtain their velocities by mapping from the gas grid.

• The communication sub-module handles the redistribution of particles among processors and the ap-
plication of boundary conditions to particles. This sub-module is always required when using particles.

• The mapping sub-module provides different methods for mapping particle quantities onto the mesh
and vice versa. FLASH 2.2 supplies five different mapping schemes: nearest grid point (mapping/ngp),
cloud-in-cell (mapping/cic), triangular-shaped cloud (mapping/tsc), and cloud-in-cell for 1D spher-
ical and 2D axisymmetric cylindrical coordinates (mapping/cic 1dsph and mapping/cic 2dcylaxi,
respectively). Some type of mapping is alway required when using particles (for now).

To include particles in your FLASH setup, it is necessary to include in your Modules file the lines

INCLUDE particles/[active || passive ]
INCLUDE particles/communication

INCLUDE particles/mapping/mapping-scheme

where mapping-scheme is one of the available mesh mapping methods (ngp, cic, tsc, cic 1dsph, or
cic 2dcylaxi). You may also wish to specify the time integration scheme and/or force laws when us-
ing active particles. Note that at this time it is necessary to explicitly specify the maxblocks setting when
configuring the code with setup, e.g.,
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Table 13.1: Runtime parameters used with the particles module.

Variable Type Default Description
ipart integer 0 If nonzero, evolve particles
part dt factor real 0.5 Maximum distance (in zones) a particle is allowed

to travel in one timestep. Should not be set larger
than the number of guard cells.

MaxParticlesPerProc integer 1 Maximum number of particles per processor (sets
size of particle buffers)

MaxParticlesPerBlock integer 10 Maximum number of particles to allow per block
NumXparticles integer 1 For the default initialization routine, sets the num-

ber of particles along the x-dimension of the par-
ticle array

NumYparticles integer 1 For the default initialization routine, sets the num-
ber of particles along the y-dimension of the par-
ticle array

NumZparticles integer 1 For the default initialization routine, sets the num-
ber of particles along the z-dimension of the par-
ticle array

setup orbit -3d -maxblocks=150 -auto

The initial particle positions and velocities are set by the InitParticlePositions() routine. This
routine accepts a single integer argument, the local ID number of the mesh block on which particles are to
be initialized. For passive tracer particles, the mesh refinement pattern is not dependent upon particles,
so generally one can assume that the most recent call to mark grid refinement() will have left the block
refinement flags in an appropriate state. We initialize particles only on blocks which will not be refined again,
are leaf nodes, and have not already been initialized. An example appears in the InitParticlePositions()
routine supplied with the particles/passive module. This version of the routine seeds the grid with a
uniform array of particles and sets their initial velocities by interpolation from the gas grid.

Initial conditions for active particles are more complex. Here the refinement pattern may depend upon the
particles, but we may wish to initialize more particles than can fit in the memory allocated to a single block
(or a single processor). We need some means of predicting where particles will be, refining those regions,
and then initializing particles only after the refined blocks have been set up. We do this by constructing
a mesh-based “guide function” using a version of the init block() routine. Generally this is some simple
approximation of the mesh-mapped particle density field, written to the particle density solution variable
(pden). The AMR package is directed to refine on this variable. After the block refinement pattern has been
set up, the particles are then initialized in the same way as passive particles, and a call to the mesh-mapping
routine is performed to initialize the pden variable with the correct density field (so that it can be included
in the initial checkpoint file). An example of this type of initialization is provided by the orbit test problem
supplied with FLASH. The orbit test problem also supplies an example wr integrals() routine that is
useful for writing individual particle trajectories to disk at every timestep.

The runtime parameters supplied by the particles module are listed in Table 13.1.
Particle attributes are defined for setup in a manner similar to that used for mesh-based solution vari-

ables. To define a particle attribute, add to a Config file a line of the form

PROPERTY property-name [REAL||INTEGER]
The particle attributes defined at the top level of the particle module are listed in Table 13.2.

13.2.1 Active particles

The active sub-module includes sub-modules for different time integration schemes, long-range force laws
(coupling all particles), and short-range force laws (coupling nearby particles). The attributes listed in Table
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Table 13.2: Particle attributes provided by the particles module.

Attribute Type Description
particle x REAL x-coordinate of particle
particle y REAL y-coordinate of particle
particle z REAL z-coordinate of particle
particle x vel REAL x-component of particle velocity
particle y vel REAL y-component of particle velocity
particle z vel REAL z-component of particle velocity
particle tag INTEGER Unique particle tag
particle block INTEGER Current local ID of the mesh block containing the particle

Table 13.3: Particle attributes provided by the particles/active sub-module.

Attribute Type Description
particle mass REAL Particle mass
particle x acc REAL x-component of particle acceleration
particle y acc REAL y-component of particle acceleration
particle z acc REAL z-component of particle acceleration

13.3 are provided by this sub-module.

Available time integration schemes (under active/time integration) include:

• euler - Simple forward Euler integration.

• leapfrog - Variable-timestep leapfrog integration.

• leapfrog cosmo - Cosmological variable-timestep leapfrog integration.

At present these sub-modules do not supply any additional particle attributes or solution variables. To create
new time integration sub-modules, one need specify only an alternative to the existing AdvanceParticles()

subroutines.

At present only one long-range force law (gravitation) with one force method (particle-mesh) is included
with FLASH. Long-range force laws are contained in the particles/active/long range sub-module and are
accessed through the LongRangeForce() interface routine. The pm/gravity long-range force sub-module re-
quires that the gravity module be included in the code and defines the solution variables listed in Table 13.4.
Although the particle density (pden) is defined, note that it is not necessary to use the gravity/poisson

module; externally imposed gravitational fields can also be used. Future releases of FLASH will include
tree-based long-range force solvers as well as other long-range force laws (e.g., Coulomb forces for plasmas).

Table 13.4: Solution variables provided by the particles/active/long range/pm/gravity sub-module.

Name Attributes Description
pden NOADVECT

NORENORM
NOCONSERVE

Mesh-mapped particle density

grav NOADVECT
NORENORM
NOCONSERVE

Gravitational acceleration component



136 CHAPTER 13. PARTICLE MODULE

At present no short-range force laws (particles/active/short range) are supplied with FLASH. The
interface to this sub-module is expressed via the ShortRangeForce() subroutine. In future releases of FLASH
we expect short-range forces such as the particle-particle component of P3M and the local interactions
in smoothed-particle hydrodynamics (SPH) to be implemented as sub-modules of short range. In this
connection note that the adaptive mesh supplied by PARAMESH is useful as a chaining mesh for efficiently
locating nearest neighbors.

13.2.2 Passive particles

Passively advected tracer particles are advanced using forward Euler integration and do not supply or
require any special particle attributes or solution variables (except gas velocity). The passive sub-module
does require that a hydro module be included in the code. Using the default InitParticlePositions(), it
is extremely straightforward to add passive tracer particles to any existing hydrodynamics problem: simply
add to your Modules file the lines

INCLUDE particles/passive

INCLUDE particles/communication

INCLUDE particles/mapping/mapping-scheme

where mapping-scheme is one of the available mesh mapping methods (ngp, cic, tsc, cic 1dsph, or
cic 2dcylaxi). Then run setup with an explicitly specified value for maxblocks, e.g.,

setup sedov -2d -maxblocks=500

and set the MaxParticlesPerProc, MaxParticlesPerBlock, NumXparticles, NumYparticles, and NumZparticles
runtime parameters as desired (see Table 13.1). The tracer particles will be initialized as a uniformly spaced
array that will deform as the hydrodynamical flow evolves.

13.2.3 A note about particle I/O

In FLASH 2.2 particle data are written to and read from checkpoint files by the hdf5 serial and hdf5 parallel

I/O modules (Chapter 7). For more information on the format of particle data written to HDF5 files, see
Section 7.3.2. Particle data are not presently written to plotfiles, nor are they written by the hdf4 I/O
module. A backport of this feature to the hdf4 module is underway and should be available in the next
release.
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Cosmology module

Figure 14.1: The cosmology module directory.

The cosmology module solves the Friedmann equation for the scale factor in an expanding universe,
applies cosmological redshift to the hydrodynamical quantities, and supplies library functions for various
routine cosmological calculations needed by the rest of the code for initializing, performing, and analyzing
cosmological simulations.

14.1 Algorithms and equations

The cosmology module makes several assumptions about the interpretation of physical quantities that enable
any hydrodynamics or materials modules written for a non-expanding universe to work unmodified in a
cosmological context. All calculations are assumed to take place in comoving coordinates x = r/a, where r
is a proper position vector and a(t) is the time-dependent cosmological scale factor. The present epoch is
defined to correspond to a = 1; in the following discussion we use t = t0 to refer to the age of the Universe
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at the present epoch. The gas velocity v is taken to be the comoving peculiar velocity ẋ. The comoving gas
density, pressure, temperature, and internal energy are defined to be

ρ ≡ a3ρ̃

p ≡ ap̃ (14.1)

T ≡ T̃

a2

ρε ≡ aρ̃ε̃ .

The quantities marked with a tilde (ρ̃ etc.) are the corresponding “proper” or physical quantities. Note
that, in terms of comoving quantities, the equation of state has the same form as for the proper quantities
in noncomoving coordinates. For example, the perfect-gas equation of state is

ρε =
p

γ − 1
=

ρkT

(γ − 1)µ
. (14.2)

With these definitions, the Euler equations of hydrodynamics can be written in the form

∂ρ

∂t
+∇ · (ρv) = 0 (14.3)

∂ρv

∂t
+∇ · (ρvv) +∇p+ 2

ȧ

a
ρv + ρ∇φ = 0 (14.4)

∂ρE

∂t
+∇ · [(ρE + p)v] +

ȧ

a
[(3γ − 1)ρε+ 2ρv2] + ρv · ∇φ = 0 (14.5)

∂ρε

∂t
+∇ · [(ρε+ p)v]− v · ∇p+ ȧ

a
(3γ − 1)ρε = 0 . (14.6)

Here E is the specific total energy, ε + 1
2v

2, and γ is the effective ratio of specific heats. The cosmology

module applies the terms involving ȧ via the RedshiftHydro routine.
The comoving potential φ in the above equations is the solution to the Poisson equation in the form

∇2φ =
4πG

a3
(ρ− ρ̄) , (14.7)

where ρ̄ is the comoving mean matter density. Note that because of the presence of a in equation (14.7) the
gravity modules must explicitly divide their source terms by a3. Modules like gravity which require the
scale factor or the redshift z (a = (1+z)−1) can obtain them from the database via the dBasePropertyReal
function (Chapter 5.1.2). Note also that if a collisionless matter component (particles) is also present, its
density must be added to the gas density on the right-hand side of equation (14.7). This is handled by the
gravity module.

The comoving mean matter density is defined in terms of the critical density ρcrit by

ρ̄ ≡ Ωmρcrit

ρcrit ≡
3H2

8πG
. (14.8)

The Hubble parameter H(t) (to be distinguished from the Hubble “constant” H0 ≡ H(t0)) is given by the
Friedman equation:

H2(t) ≡
(

ȧ

a

)2

= H2
0

(

Ωm

a3
+

Ωr

a4
+ΩΛ −

Ωc

a2

)

. (14.9)

Here Ωm, Ωr, and ΩΛ are the present-day densities, respectively, of matter, radiation, and cosmological
constant, divided by ρcrit. The contribution of the overall spatial curvature of the Universe is given by

Ωc ≡ Ωm +Ωr +ΩΛ − 1 . (14.10)
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The SolveFriedmannEquation routine numerically solves the Friedmann equation to obtain the scale fac-
tor and its rate of change as functions of time. In principle any good ODE integrator can be used; the
matter+lambda sub-module uses the fourth-order Runge-Kutta algorithm to integrate the Friedmann equa-
tion under the assumption that Ωr = 0. Sub-modules can also use analytic solutions where appropriate.

Redshift terms for particles are handled separately by the appropriate time integration sub-modules of
the particles module. For an example, see the particles/active/time integration/leapfrog cosmo

sub-module (Chapter 13).

14.2 Using the cosmology module

To include cosmological expansion in your FLASH executable, include the line

INCLUDE cosmology/sub-module

in your Modules file when you configure the code with setup. At present only one sub-module is distributed
with FLASH: matter+lambda. This sub-module assumes the contribution of radiation to be negligible in
comparison with those of matter and the cosmological constant.

The runtime parameters available with the cosmology module are described in Table 14.1. Note that
the total effective mass density is not explicitly specified, but is inferred from the sum of the OmegaMatter,
OmegaRadiation, and CosmologicalConstant parameters. The MaxScaleChange parameter sets the max-
imum allowed fractional change in the scale factor a during a single timestep. This is enforced by the
ExpansionTimestep routine. The default value is set to 1099 to avoid interfering with non-cosmological
simulations.

Table 14.1: Runtime parameters used with the cosmology module.

Parameter Type Default Description
OmegaMatter real 0.3 Ratio of total mass density to critical density at

the present epoch (Ωm)
OmegaBaryon real 0.05 Ratio of baryonic (gas) mass density to crit-

ical density at the present epoch; must be
≤ OmegaMatter (Ωb)

CosmologicalConstant real 0.7 Ratio of the mass density equivalent in the cos-
mological constant to the critical density at the
present epoch (ΩΛ)

OmegaRadiation real 5.E-5 Ratio of the mass density equivalent in radiation
to the critical density at the present epoch (Ωr)

HubbleConstant real 2.1065E-18 Value of the Hubble constant H0 in sec−1

MaxScaleChange real 1.E99 Maximum permitted fractional change in the scale
factor during each timestep

The Fortran 90 module CosmologicalFunctions supplies a number of functions and routines that are
helpful in initializing, performing, and analyzing cosmological simulations. They can be used in your own
init block routine to help in writing code that is not restricted to a single cosmological model. (The current
list of routines is expected to grow with time.) The cosmological functions and routines are:

• MassToLength(M, lambda)

(subroutine) Given a mass scale M, return the corresponding comoving diameter lambda of a sphere
containing the given amount of mass. Obtain the values of cosmological parameters from the runtime
parameter database.

• MassToLengthConversion(M, lambda, N, Omega0, H0, G)

(subroutine) Given an array of mass scales M(N), compute the comoving diameters lambda(N) of spheres
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containing these masses. Compute the comoving critical density using the supplied values of H0 and G,
and assume Omega0 to be the present-day mass density parameter value.

• CDMPowerSpectrum(k, Anorm, znorm, n, Omega0, h, Lambda0)

(real function) Return the present-day cold dark matter power spectrum at a given wavenumber k, given
the normalization Anorm, the normalization redshift znorm, the primordial spectral index n, the present
mass density Omega0, and the Hubble constant in units of 100 km s−1 Mpc−1. The wavenumber and
normalization must use length units of Mpc, and the result is expressed in Mpc3. The matter+lambda
sub-module provides a fit to this power spectrum from Bardeen et al. (1986) that assumes baryons
do not make a significant contribution to the mass density. Better fits are available; see, e.g., Hu and
Sugiyama (1996) or Bunn and White (1997).

• TopHatFilter(k, r)

(real function) Given a wavenumber k and the characteristic length scale r (cutoff radius for the top
hat filter in real space), return the Fourier transform of the top hat filter.

• ComputeVariance(lambda, Mass, Delta0, dDelta0dM, N, f, PwrSpc, Filter, Anorm, znorm,

npspc, Omega0, h, Lambda0)

(subroutine) Given an array of comoving length scales lambda(N) and a processed power spectrum
function PwrSpc, compute the linear variance (δM/M)2 at the present epoch. The factor f is multiplied
by the mass scale in applying the smoothing kernel. Filter is a Fourier-space filter function with the
same interface as TopHatFilter. Anorm, znorm, npspc, Omega0, h, and Lambda0 are passed to PwrSpc

and have the same interpretations as in CDMPowerSpectrum. The linear variance is returned in the
array Delta0(N), and its derivative with respect to mass is returned in dDelta0dM(N). The masses
corresponding to the lengths lambda are returned in the array Mass(N).

• RedshiftToTime(z, t)

(subroutine) Compute the age of the Universe t corresponding to a redshift z. Obtain the values of
cosmological parameters from the runtime parameter database.

• RedshiftToTimeConversion(z, t, dtdz, N, Omega0, H0, Lambda0, c, Omegatot)

(subroutine) Given an array of ages t(N), compute the corresponding redshifts z(N) and first derivatives
dtdz(N) given a present-day mass density parameter Omega0, a Hubble constant H0, a cosmological
constant density parameter Lambda0, the speed of light c, and the total present-day density parameter
Omegatot.

• ComputeDeltaCrit(z, dcrit, dcritdz, D, N, Omega0, H0, Lambda0, Omegatot)

(subroutine) Compute the linear overdensity at turnaround in the spherical collapse model at the given
redshifts z(N). dcrit(N) and dcritdz(N) return the critical overdensity and its redshift derivative,
respectively. D(N) returns the growth factor for linear perturbations at the given redshifts. The
remaining arguments are interpreted as for RedshiftToTimeConversion. For more details, see the
appendix of Lacey and Cole (1993).
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Solvers module

Figure 15.1: The solvers module directory.

15.1 Ordinary differential equations (ODE)

Some source terms need to solve systems of ordinary differential equations (e.g. burn). There are many
standard packages available for integrating systems of first order differential equations, that can handle both
stiff and non-stiff systems. We include the VODE packages as a FLASH modules, so it can readily be used
in FLASH. This are identical to the version available at netlib (http://www.netlib.org), but they have been
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converted to free-form Fortran 90, through the ftof90 program in tools/scripts/text formatting. In
all cases, the single precision routines were obtained, since FLASH relies on the compiler to promote the
precision of all floating point variables and constants.

15.1.1 The VODE package

The VODE package (Brown et al. 1989) solves an initial value problem of the form

dyi
dt

= fi(t, y1, ..., yN ) (15.1)

The main interface to VODE is svode, which takes a pointer to a function that evaluates the right hand
side of the ODEs, the initial value of all of the yi’s, and various parameters specifying the tolerance to reach
when solving the ODEs, whether or not the system is stiff, and whether there is a user-supplied jacobian
to aid in the solution. The full details of how to use the VODE integrator are contained in the extensive
comments at the top of svode.F90, and are not repeated here.

15.2 Poisson equation

The solvers/poisson module supplies different algorithms for solving the general Poisson equation for a
potential φ(x) given a source ρ(x):

∇2φ(x) = αρ(x) . (15.2)

Here α is a constant which depends upon the application. For example, when the gravitational Poisson
equation is being solved, ρ(x) is the mass density, φ(x) is the gravitational potential, and α = 4πG, where
G is Newton’s gravitational constant.

15.2.1 Multipole Poisson solver

The multipole Poisson solver is appropriate for spherical or nearly-spherical source distributions, and it only
accepts isolated boundary conditions. It currently works in 1D spherical, 2D axisymmetric cylindrical (r−z),
and 3D Cartesian geometries. Because of the imposed symmetries, in the first case only the monopole term
(` = 0) makes sense, while in the second case only the m = 0 moments are used (ie., the basis functions are
Legendre polynomials).

The multipole algorithm consists of the following steps. First, find the center of mass xcm:

xcm =

∫

d3xxρ(x)
∫

d3x ρ(x)
. (15.3)

We will take xcm as our origin. In integral form, Poisson’s equation (15.2) is

φ(x) = − α

4π

∫

d3x′
ρ(x′)

|x− x′| . (15.4)

The Green’s function for this equation satisfies the relationship

1

|x− x′| = 4π

∞
∑

`=0

∑̀

m=−`

1

2`+ 1

r`<
r`+1>

Y ∗`m(θ′, ϕ′)Y`m(θ, ϕ) , (15.5)

where the components of x and x′ are expressed in spherical coordinates (r, θ, ϕ) about xcm, and

r< ≡ min{|x|, |x′|} (15.6)

r> ≡ max{|x|, |x′|} .

Here Y`m(θ, ϕ) are the spherical harmonic functions:

Y`m(θ, ϕ) ≡ (−1)m
√

2`+ 1

4π

(`−m)!

(`+m)!
P`m(cos θ)eimϕ . (15.7)
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P`m(x) are Legendre polynomials. Substituting Equation (15.5) into Equation (15.4), we obtain

φ(x) = −α
∞
∑

`=0

∑̀

m=−`

1

2`+ 1

{

Y`m(θ, ϕ)× (15.8)

[

r`
∫

r<r′
d3x′

ρ(x′)Y ∗`m(θ′, ϕ′)

r′`+1
+

1

r`+1

∫

r>r′
d3x′ρ(x′)Y ∗`m(θ′, ϕ′)r′

`
]

}

.

In practice we carry out the first summation up to some limiting multipole `max. By taking spherical harmonic
expansions about the center of mass, we ensure that the expansions are dominated by low-multipole terms,
so that for a given value of `max the error created by neglecting high-multipole terms is minimized. Note
that the product of spherical harmonics in Equation (15.8) is real-valued:

∑̀

m=−`

Y ∗`m(θ′, ϕ′)Y`m(θ, ϕ) =
2`+ 1

4π

[

P`0(cos θ)P`0(cos θ
′) + (15.9)

2
∑̀

m=1

(`−m)!

(`+m)!
P`m(cos θ)P`m(cos θ′) cos (m(ϕ− ϕ′))

]

.

Using a trigonometric identity to split up the last cosine in this expression, and substituting for the inner
sums in Equation (15.8), we obtain

φ(x) = − α

4π

∞
∑

`=0

P`0(cos θ)

[

r`µeo`0(r) +
1

r`+1
µei`0(r)

]

−

α

2π

∞
∑

`=1

∑̀

m=1

P`m(cos θ)

[

(r` cosmϕ)µeo`m(r) + (r` sinmϕ)µoo`m(r) + (15.10)

cosmϕ

r`+1
µei`m(r) +

sinmϕ

r`+1
µoi`m(r)

]

.

The even (e)/odd (o), inner (i)/outer (o) source moments in this expression are defined to be

µei`m(r) ≡ (`−m)!

(`+m)!

∫

r>r′
d3x′ r′

`
ρ(x′)P`m(cos θ′) cosmϕ′ (15.11)

µoi`m(r) ≡ (`−m)!

(`+m)!

∫

r>r′
d3x′ r′

`
ρ(x′)P`m(cos θ′) sinmϕ′ (15.12)

µeo`m(r) ≡ (`−m)!

(`+m)!

∫

r<r′
d3x′

ρ(x′)

r′`+1
P`m(cos θ′) cosmϕ′ (15.13)

µoo`m(r) ≡ (`−m)!

(`+m)!

∫

r<r′
d3x′

ρ(x′)

r′`+1
P`m(cos θ′) sinmϕ′ . (15.14)

The procedure is thus to compute the moment integrals (15.11) − (15.14) for a given source field ρ(x), then
to use these moments in Equation (15.10) to compute the potential.

In practice the above procedure must take account of the fact that the source and the potential are
assumed to be zone-averaged quantities, discretized on a block-structured mesh with varying zone size.
Also, because of the radial dependence of the multipole moments of the source function, these moments
must be tabulated as functions of distance from xcm, with an implied discretization. The solver allocates
storage for moment samples spaced a distance ∆ apart in radius:

µei`m,q ≡ µei`m(q∆) µeo`m,q ≡ µeo`m((q − 1)∆) (15.15)

µoi`m,q ≡ µoi`m(q∆) µoo`m,q ≡ µoo`m((q − 1)∆) . (15.16)

The sample index q varies from 0 to Nq (µeo`m,0 and µoo`m,0 are not used). The sample spacing ∆ is chosen to
be one-half the geometric mean of the x, y, and z zone spacings at the highest level of refinement, and Nq

is chosen to be large enough to span the diagonal of the computational volume with samples.
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Determining the contribution of individual zones to the tabulated moments requires some care. To reduce
the error caused by the grid geometry, in each zone ijk we establish a subgrid consisting of N ′ points at the
locations x′i′j′k′ , where

x′i′ = xi + (i′ − 0.5(N ′ − 1))
∆xi
N ′

, i′ = 0 . . . N ′ − 1 (15.17)

y′j′ = yj + (j′ − 0.5(N ′ − 1))
∆yj
N ′

, j′ = 0 . . . N ′ − 1 (15.18)

z′k′ = zk + (k′ − 0.5(N ′ − 1))
∆zk
N ′

, k′ = 0 . . . N ′ − 1 , (15.19)

and where xijk is the center of zone ijk. (For clarity we have omitted ijk indices on x′, as well as all block
indices.) For each subzone, we assume ρ(x′i′j′k′) ≈ ρijk and then apply

µei`m,q≥q′ ← µei`m,q≥q′ +
(`−m)!

(`+m)!

∆xi∆yj∆zk

N ′3
r′i′j′k′

`
ρ(x′i′j′k′)P`m(cos θ′i′j′k′) cosmϕ

′
i′j′k′ (15.20)

µoi`m,q≥q′ ← µoi`m,q≥q′ +
(`−m)!

(`+m)!

∆xi∆yj∆zk

N ′3
r′
`
i′j′k′ρ(x

′
i′j′k′)P`m(cos θ′i′j′k′) sinmϕ

′
i′j′k′ (15.21)

µeo`m,q≤q′ ← µeo`m,q≤q′ +
(`−m)!

(`+m)!

∆xi∆yj∆zk

N ′3
ρ(x′i′j′k′)

r′`+1i′j′k′

P`m(cos θ′i′j′k′) cosmϕ
′
i′j′k′ (15.22)

µoo`m,q≤q′ ← µoo`m,q≤q′ +
(`−m)!

(`+m)!

∆xi∆yj∆zk

N ′3
ρ(x′i′j′k′)

r′`+1i′j′k′

P`m(cos θ′i′j′k′) sinmϕ
′
i′j′k′ . (15.23)

where

q′ =

⌊ |x′i′j′k′ |
∆

⌋

+ 1 (15.24)

is the index of the radial sample within which the subzone center lies. These expressions introduce (hopefully)
small errors when compared to equations (15.11) − (15.14) because the subgrid volume elements are not
spherical. These errors are greatest when r′ ∼ ∆x; hence using a subgrid reduces the amount of source
affected by these errors. An error of order ∆2 is also introduced by assuming the source profile within each
zone to be flat. Note that the total source computed by this method (µei`m,Nq

) is exactly equal to the total
implied by ρijk.

Another way to reduce grid geometry errors when using the multipole solver is to modify the AMR
refinement criterion to refine all blocks containing the center of mass (in addition to other criteria that may
be used, such as the second-derivative criterion supplied with PARAMESH). This ensures that the center-
of-mass point is maximally refined at all times, further restricting the volume which contributes errors to
the moments because r′ ∼ ∆x.

The default value of N ′ is 2; note that large values of this parameter very quickly increase the amount of
time required to evaluate the multipole moments (as N ′3). In order to speed up the moment summations,
the sines and cosines in equations (15.20) − (15.23) are evaluated using trigonometric recurrence relations,
and the factorials are pre-computed and stored at the beginning of the run.

When computing the zone-averaged potential, we again employ a subgrid, but here the subgrid points
fall on zone boundaries to improve the continuity of the result. Using N ′′ + 1 subgrid points per dimension,
we have

x′′i′′ = xi + (i′′ − 0.5N ′′))
∆xi
N ′′

, i′′ = 0 . . . N ′′ (15.25)

y′′j′′ = yj + (j′′ − 0.5N ′′))
∆yj
N ′′

, j′′ = 0 . . . N ′′ (15.26)

z′′k′′ = zk + (k′′ − 0.5N ′′))
∆zk
N ′′

, k′′ = 0 . . . N ′′ . (15.27)

The default value of N ′′ is 6. The zone-averaged potential in zone ijk is then

φijk =
1

N ′′3

∑

i′′j′′k′′

φ(x′′i′′j′′k′′) , (15.28)
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where the terms in the sum are evaluated via equation (15.10) up to the limiting multipole order `max.

15.2.2 Multigrid Poisson solver

The multigrid Poisson solver is appropriate for general source distributions and can solve problems with
periodic, isolated, Dirichlet, Neumann, or given-value boundary conditions. The algorithm distributed with
FLASH is based on a multilevel refinement scheme described by Martin and Cartwright (1996). Isolated
boundary conditions are implemented via a method based on James’ (1978) algorithm.

Multilevel refinement algorithms (Brandt 1977; Trottenberg, Oosterlee, & Schüller 2001) solve elliptic
equations such as the Poisson equation by accelerating the convergence of relaxation methods. The latter
(e.g., Jacobi, Gauss-Seidel, SOR) are straightforward but converge very slowly because they accomplish the
global coupling implied by an elliptic equation by a series of iterations that communicate information from
one side of the grid to the other one zone at a time. Hence their convergence rate (fractional reduction in
error per iteration) decreases with increasing grid size. Modal analysis shows that the longest-wavelength
components of the error require the most iterations to decrease to a given level. By performing iterations on
a sequence of increasingly coarser grids, multigrid algorithms bring all wavelengths into convergence at the
same rate. This works because long wavelengths on a fine mesh appear to be short wavelengths on a coarse
mesh.

Adaptive mesh refinement (AMR) provides many benefits in conjunction with a multigrid solver. Where
errors are unlikely to have short-wavelength components it makes sense to avoid using fine grids, thus
reducing storage requirements and the cost of relaxations on fine levels. The AMR package manages the
multilevel mesh data structures and can handle all parallel communication, freeing the multigrid solver from
such details. The AMR package supplies many of the basic functions required by multigrid algorithms in
addition to the mesh data structure, including prolongation, restriction, and boundary condition updates.
Therefore we use a mesh hierarchy defined by the AMR package. Note that, whereas with hydrodynamics it is
preferable to refine regions containing fluid discontinuities, with the Poisson equation it is instead preferable
to refine narrow peaks in the source field, since the Poisson equation (15.2) requires the curvature of the
solution (the potential) to undergo the largest small-scale fluctuations at such peaks. Discontinuities can
be detected using the second-derivative criterion supplied with PARAMESH. However, when solving elliptic
problems using the multigrid module, it may be desirable to add to this criterion one which refines blocks
based on their mean source contrast with respect to a fixed reference density. This is illustrated by the
jeans problem setup.

AMR does introduce complications, however. Because the mesh hierarchy contains jumps in refinement,
it is necessary to interpolate when setting guard cell values for fine blocks adjoining coarser blocks. As Martin
and Cartwright point out, this requires an interpolation scheme with at least the same order of accuracy as
the finite differencing scheme used. Thus quadratic interpolants must be used with the Poisson equation.
However, unless the first derivative of the solution is also matched across jumps in refinement, unphysical
forces will be produced at such boundaries, and the multigrid solver will fail to converge. Since we regard the
solution on the finer level as being of higher quality than the solution on the coarser level, in such situations
we allow the fine grid to determine the value of the first derivative on the boundary.

Before describing the algorithm, let us first define some terms. We work with approximations φ̃(x) to
the solution φ(x). The residual is a measure of the error in φ̃(x); it is given by

R(x) ≡ ∇2φ(x)−∇2φ̃(x) (15.29)

= αρ(x)−∇2φ̃(x) .

The first term on the right-hand side is the source S(x); it is computed outside of the multigrid solver and
then is passed in. Since the Poisson equation is linear, the residual satisfies the equation

∇2C(x) = R(x) , (15.30)

whose solution C(x) is the correction:
C(x) ≡ φ(x)− φ̃(x) . (15.31)

The source, solution, residual, and correction are all approximated by zone-averaged values on a hierarchy of
meshes, each level of which consists of a number of blocks or patches of zones as prescribed by the adaptive
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mesh package. Where a given mesh block is not a “leaf node” – ie., it is overlain by another block at a higher
level of refinement – only the residual and correction are defined (though storage may be allocated for the
other variables as well). When discussing discretized quantities such as the solution φ, we will refer to them
in the form φb`ijk, where b is the block number, ` is its level of refinement (` = 1 being the coarsest level), and
ijk are zone indices within the block b. The notation P(b) will refer to the parent (coarser) block containing
block b, while C(b) will refer collectively to the child (finer) blocks associated with b. N (b,±x/y/z) will refer
to the block(s) neighboring block b in the ±x, y, or z directions. For conciseness, where a given neighbor
is at a higher level of refinement, N will be understood to refer collectively to all of the neighboring blocks
in its direction, with zone indices running from one to the product of the refinement factor with the size of
block b in each dimension. Zone indices are assumed to run between 1 . . . nx, 1 . . . ny, and 1 . . . nz in each
block, with a factor of 2 refinement between levels. The generalization to different block/patch sizes and
different refinement factors should be fairly straightforward.

Difference operators approximating ∇2 on each grid level are defined for relaxation and for computing
the residual. On level `, which has zone spacings ∆x`, ∆y`, and ∆z` in the x-, y-, and z-directions, we use

D2`φb`ijk ≡ 1

∆x`

(

D1x` φb`i+1/2,jk −D1x` φb`i−1/2,jk

)

+ (15.32)

1

∆y`

(

D1y` φb`i,j+1/2,k −D1y` φb`i,j−1/2,k

)

+ (15.33)

1

∆z`

(

D1z` φb`ij,k+1/2 −D1z` φb`ij,k−1/2

)

, (15.34)

where

D1x` φb`i+1/2,jk ≡ 1

∆x`

(

φb`i+1,jk − φb`i−1,jk
)

(15.35)

D1y` φb`i,j+1/2,k ≡ 1

∆y`

(

φb`i,j+1,k − φb`i,j−1,k
)

(15.36)

D1z` φb`ij,k+1/2 ≡ 1

∆z`

(

φb`ij,k+1 − φb`ij,k−1
)

. (15.37)

In cases in which the required values of φ lie outside of a block, they are obtained from ‘guard cells’ that
are filled by the AMR package, possibly through restriction or prolongation from neighboring blocks. The
derivative-matching procedure outlined above is applied only when computing the residual. In this case we
replace the D1 operators at jumps in refinement with the following operators:

D′1x` φb`nx+1/2,jk ≡ R`

[

D1x`+1φN (b,+x),`+1
1/2,2j−1,2k−1

]

(15.38)

D′1x` φb`1/2,jk ≡ R`

[

D1x`+1φN (b,−x),`+1
nx+1/2,2j−1,2k−1

]

(15.39)

D′1y` φb`i,ny+1/2,k ≡ R`

[

D1y`+1φ
N (b,+y),`+1
2i−1,1/2,2k−1

]

(15.40)

D′1y` φb`i,1/2,k ≡ R`

[

D1y`+1φ
N (b,−y),`+1
2i−1,ny+1/2,2k−1

]

(15.41)

D′1z` φb`ij,nz+1/2 ≡ R`

[

D1z`+1φN (b,+z),`+1
2i−1,2j−1,1/2

]

(15.42)

D′1z` φb`ij,1/2 ≡ R`

[

D1z`+1φN (b,−z),`+1
2i−1,2j−1,nz+1/2

]

. (15.43)

The D′1 operators are used only where the neighboring block is at the next higher level of refinement. In these
expressions R` denotes the restriction operator which operates between levels ` and `+ 1. This is supplied
along with the prolongation operator I` by the AMR package. The relaxation operator is simple weighted
Jacobi iteration with adjustable weighting, while the coarse-grid solver applies the relaxation operator until
convergence to within some threshold is attained.

Here are the steps in the multigrid algorithm:

1. Begin by initializing the solution, correction, and residual arrays to zero if this is the first time the
solver has been called. Otherwise use the previous solution as our initial guess.
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2. Compute the residual Rb`
ijk = Sb`ijk − D2`φb`ijk on all leaf blocks. Compute the discrete L2 norm of the

residual and the source.

3. Repeat the following steps until the ratio of the residual and source norms drops below some threshold
or we have repeated some number of times.

4. Zero the correction C on the highest level of refinement, `max.

5. For each level ` from `max down to 2:

(a) Copy the solution φb`ijk to a temporary variable τ b`ijk.

(b) Zero the correction variable Cb,`−1
ijk .

(c) Apply the relaxation operator several times to the correction equation on level `: D2`Cb`
ijk = Rb`

ijk.

(d) Add the correction Cb`
ijk to the solution φb`ijk.

(e) Compute the residual of the correction equation on all blocks (leaf or not) on level `. Restrict

this residual to Rb,`−1
ijk .

(f) Compute the residual of the source equation on all leaf blocks of level ` − 1 and leave the result

in Rb,`−1
ijk .

6. Solve the correction equation on the coarsest level, applying the external boundary conditions. Correct
the solution on the coarsest level.

7. For each level ` from 2 up to `max:

(a) Prolongate the correction from level `− 1 and add the result to Cb`
ijk.

(b) Replace Rb`
ijk with the residual of the correction equation.

(c) Zero a second temporary variable υb`ijk on levels `− 1 and `.

(d) Apply the relaxation operator several times to D2`υb`ijk = Rb`
ijk.

(e) Add υb`ijk to the correction Cb`
ijk.

(f) Copy τ b`ijk back into φb`ijk on all leaf blocks.

(g) Add the correction Cb`
ijk to the solution φb`ijk on all leaf blocks.

8. Compute the residual Rb`
ijk = Sb`ijk − D2`φb`ijk on all leaf blocks. Compute the discrete L2 norm of the

residual.

The external boundary conditions accepted by the multigrid algorithm are Dirichlet, given-value, Neu-
mann, and periodic boundaries. However, often isolated boundary conditions are desired. This means that
the source ρ is assumed to be zero outside of the computational volume, and that the potential φ tends
smoothly to zero at arbitrarily large distances. In order to accomodate this type of boundary condition we
use a variant of James’ (1978) method. The steps are as follows:

1. Using the multigrid solver, compute a solution to the Poisson equation with Dirichlet boundaries. Call
the solution φzb.

2. Assume that φzb = 0 everywhere outside the computational domain. Compute the image source
distribution implied by φzb under the assumption that no image source exists outside the surface of
the domain. The image source lies on the surface of the domain and has a surface density σ(xs) =
n(xs) · ∇φzb(xs), where xs is a point on the surface and n(xs) is a unit vector normal to the surface.
For example, on the +x boundary, the image surface density is (accounting for the fact that φzb is a
zone-averaged quantity) σ+xjk = [7(φzb)

b1
nx,jk

− (φzb)
b1
nx−1,jk

]/2∆x1.

3. Using a variant of the multipole Poisson solver, compute the boundary face averages (not zone averages)
of the image potential. The image source distribution is treated as a source field S(x) = σ(x)δ(x−xs).
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Table 15.1: Runtime parameters used with the poisson/multipole solvers sub-module.

Variable Type Default Description
mpole lmax integer 10 Maximum multipole moment
quadrant logical .false. Use symmetry to solve a single quadrant in 2D ax-

isymmetric cylindrical (r, z) coordinates, instead
of a half domain.

4. Using the multigrid solver, compute a solution to the Laplace equation with the boundary values
computed in the previous step. Call this solution φim.

5. The solution φ = φzb − φim.

15.2.3 Using the Poisson solvers

The poisson sub-module solves the Poisson equation (15.2). Two different elliptic solvers are supplied with
FLASH: a multipole solver, suitable for approximately spherical source distributions, and a multigrid solver,
which can be used with general source distributions. The multipole solver accepts only isolated boundary
conditions, whereas the multigrid solver supports Dirichlet, given-value, Neumann, periodic, and isolated
boundary conditions. Boundary conditions for the Poisson solver are specified using an argument to the
poisson() routine which can be set from different runtime parameters depending on the physical context
in which the Poisson equation is being solved. The poisson() routine is the primary entry point to the
Poisson solver module and has the following interface:

call poisson (pot var, src var, bnd cond, alpha)

pot var and src var are the integer-valued database key numbers of the solution and source (density) variables,
respectively. bnd cond is an integer specifying the type of boundary conditions to employ. The following
values are accepted:

bnd cond Type of boundary condition
0 Isolated boundaries
1 Periodic boundaries
2 Dirichlet boundaries
3 Neumann boundaries
4 Given-value boundaries

Not all boundary types are supported by all solvers. Given-value boundaries are treated as Dirichlet bound-
aries with the boundary values subtracted from the outermost interior zones of the source; for this case
the solution variable should contain the boundary values in its first layer of boundary zones on input to
poisson(). Finally, alpha is real-valued and indicates the value of α multiplying the source function in
equation (15.2).

When solutions found using the Poisson solvers are to be differenced (e.g., in computing the gravitational
acceleration), it is strongly recommended that you use the second order (quadratic) interpolants supplied
by PARAMESH. If the interpolants supplied by the mesh are not of at least the same order as the differencing
scheme used, unphysical forces will be produced at refinement boundaries. Also, using constant or linear
interpolants may cause the multigrid solver to fail to converge.

15.2.3.1 Multipole

The poisson/multipole sub-module takes two runtime parameters, listed in Table 15.1. Note that storage
and CPU costs scale roughly as the square of mpole lmax, so it is best to use this module only for nearly
spherical matter distributions.
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Table 15.2: Runtime parameters used with the poisson/multigrid sub-module.

Variable Type Default Description
mgrid max residual norm real 1.E-6 Maximum ratio of the norm of the

residual to that of the right-hand side
mgrid max iter change real 1.E-3 Maximum change in the norm of the

residual from one iteration to the next
mgrid max vcycles integer 100 Maximum number of V-cycles to take
mgrid nsmooth integer 4 Number of smoothing iterations to

perform on each level
mgrid smooth tol real 1.E-6 Convergence criterion for the

smoother
mgrid jacobi weight real 0.6666666666667 Weighting factor for damped Jacobi

iteration (1 yields plain Jacobi)
mgrid solve max iter integer 5000 Maximum number of iterations for so-

lution on coarse grid

15.2.3.2 Multigrid

The poisson/multigrid sub-module is appropriate for general source distributions (ie., not necessarily
spherical). In FLASH 2.2 the multigrid solver supports Dirichlet, Neumann, given-value, periodic, and
isolated boundary conditions. All boundary conditions must be the same, though this is more a limitation
of the interface than of the solver itself. The solver works in one, two, or three dimensions with Cartesian
geometry.

The poisson/multigrid sub-module has two sub-modules of its own, fftcg and isobnd mpole. The
fftcg sub-module implements a Fast Fourier Transform (FFT)-based coarse-grid solver that can be more
than an order of magnitude faster than the relax-to-convergence coarse-grid solver used by default. However,
it requires that there be only one top-level block, as it relies on a serial transform library. The library used is
Takuya Ooura’s serial FFT package; it may be necessary to obtain the source for this package from his web
site (http://momonga.t.u-tokyo.ac.jp/~ooura/fft.html). If more than one top-level block is used, the
modified Jacobi relaxation solver is used on the coarse grid. Note that alternative coarse-grid solvers can be
implemented by changing the mg solve() routine and including the modified version in a new sub-module
of poisson/multigrid.

The isobnd mpole sub-module is actually a modified version of the multipole Poisson solver. It computes
the boundary values of the image potential used when solving problems with isolated boundary conditions
via the poisson image boundary() routine. As with the regular multipole solver, it accepts the mpole lmax

runtime parameter (Table 15.1).
In FLASH 2.2, the parts of the multigrid solver that are not specific to the Poisson equation have become

part of the mesh module, specifically mesh/solvers/multigrid. This module must be included when you
use the solvers/poisson/multigrid module. The Config file for the multigrid Poisson solver is set up
to enforce this requirement, so if you execute setup with the -auto flag, the multigrid mesh sub-module
should be included automatically. For example, to use the multigrid Poisson solver together with the FFT-
based coarse-grid solver and isolated boundaries using multipole moments to solve the gravitational Poisson
equation, your Modules file should include the following lines:

INCLUDE gravity/poisson/multigrid

INCLUDE solvers/poisson/multigrid

INCLUDE solvers/poisson/multigrid/fftcg

INCLUDE solvers/poisson/multigrid/isobnd_mpole

INCLUDE mesh/solvers/multigrid

The runtime parameters which control the multigrid solver are summarized in Table 15.2. If you wish
to increase the accuracy (and hence the execution time) of the solver, the first parameters to change are
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Table 15.3: Variables provided by the poisson/multigrid sub-module.

Variable Attributes Description
mgw1 NOADVECT NORENORM NOCONSERVE Work array (adjusted source)
mgw2 NOADVECT NORENORM NOCONSERVE Work array (residual)
mgw3 NOADVECT NORENORM NOCONSERVE Work array (correction)
mgw4 NOADVECT NORENORM NOCONSERVE Work array (temporary)
mgw5 NOADVECT NORENORM NOCONSERVE Work array (temporary)
mgw6 NOADVECT NORENORM NOCONSERVE Work array (image potential)
mgw7 NOADVECT NORENORM NOCONSERVE Work array (image mass)

mgrid max residual norm, which sets the termination condition for V-cycles, and mgrid smooth tol, which
sets the termination condition for the coarse-grid iteration (if the FFT coarse-grid solver is not being used).
Changing the other parameters from their default values is unlikely to help, and may increase execution time.
Also, if changing only mgrid max iter change changes the answers you obtain, then either you have set the
maximum residual norm too low (comparable to roundoff error on your computer) or there is a problem with
the multigrid solver. This is because each successive V-cycle (if implemented correctly) reduces the norm of
the residual by roughly the same factor until roundoff is reached. The default settings should be suitable for
most applications.

Note that the multigrid solver uses the contents of the solution variable on entry as the initial guess
for the iteration. For problems in which the solver is called for one purpose (e.g., gravity) during each
timestep, the potential may change very little from timestep to timestep, particularly on large scales. Thus
the potential calculation for subsequent steps should take much less time than for the first step.

The multigrid solver requires several additional temporary solution variables, which are listed in Ta-
ble 15.3. Most of these are of no interest to the end user, but it may occasionally be helpful to inspect mgw2,
as this contains the residual on exit from the solver.
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Runtime visualization module

FLASH contains a small module for the purposes of visualizing data in 2d simulations. If used, the master
processor will write PNG files to disk as the the simulation advances. The flexibility and image quality is
much less than that of fidlr (see chapter 20), but as the module’s only requirement is the widely installed
libpng, it can be easily used on most platforms. The module includes a copy of the gd graphics library
(http://www.boutell.com/gd/ ).

16.1 Using the visualization module

The module (source/visualization/native) is not built into FLASH by default: to include it simply add
it to your Modules file. It uses the gd library, distributed with FLASH in lib/gd; as this is built by setup
independently of FLASH you may have to edit lib/gd/source/Makefile.

The output is determined entirely by runtime parameters, listed in table 16.1. To draw more than one
variable or domain at a time, every parameter name except vis freq has a subscript, corresponding to a
“visualization context”. There are 10 such contexts available, numbered 0 through 9.

If the user does not specify certain parameters for a visualization context, reasonable defaults are used.
For example, if no domain is specified, then the entire computational domain is plotted, unless the user has
already defined a domain for a previous context. Likewise, if the user does not set a range for the variable
to plot, we use the min/max of the variable at the beginning of the run. Currently, variables can only be
mapped linearly onto the color table.
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Variable Type Default Description
vis freq integer 1 Do visualization every vis freq timesteps
vis var # string “” If not null, specify which variable in the database

to draw. If null, the visualization context is not
used. vis var 0 defaults to “dens”.

vis colortable # integer 0 Index in the range [0-6] specifying a colormap de-
fined in colortables.h. These colormaps are the
same as those available in fidlr.

vis drawblocks # integer 0 If nonzero, draw block boundaries.
vis xmin # real 0. Sets lower x range of domain.
vis xmax # real 0. Sets upper x range of domain.
vis ymin # real 0. Sets lower y range of domain.
vis ymax # real 0. Sets upper y range of domain.
vis min # real 0. Lower range of linear interpolation.
vis max # real 0. Upper range of linear interpolation.

Table 16.1: Runtime parameters used with the visualization module. # is the visualization context
number, in the range [0-9]

Figure 16.1: Density in the windtunnel setup, as rendered by the runtime visualization module



Chapter 17

Utilities module

Figure 17.1: The util module directory.

The util module is a collection of reusable high-level utility functions that simplify programming in
FLASH. Currently, these include problem initialization, temperature perturbation, wrapping, and interpo-
lation.
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17.1 Initialization

There are several routines available to assist you in initializing a problem. These are intended to be used
in an init block.F90 to read in a 1-d initial model to be mapped onto the FLASH grid. The sample map

problem (see §18.4.1) illustrates how to use the 1d initialization routine.

17.1.1 Reading one-dimensional initial models (1d)

The 1d module is a tool that reads a 1-d initial model from a file and passes it onto the caller. This model
file is required to specify the number of variables and their names in addition to the data for each point in
the following format:

# comment first -- this is my input data

number of variables = 24

dens

temp

.

.

Ni56

1.e-4 1.e8 1.e9 . . . .83

2.e-4 1.e8 1.1e9 . . . .82

.

.

.

The first line of this file is a comment, and is ignored by the reader. The second line specifies the number of
variables contained in the input file—this does not have to equal the number of variables in FLASH. Next,
we list the variable names, one per line, using the same names that FLASH recognizes (i.e. any of the names
that appear in VARIABLE lines in the Config files). When the model is read in, these names are compared
to the names of the variables that FLASH understands. Any variables contained in FLASH that are absent
from the input file will be initialized to 0 (a warning will be printed to stdout). Any variables contained in
the input file that are not defined in FLASH will be ignored.

The variables can appear in any order in the input file. init 1d will use the order of the variable name
lines to determine which variable is which. After the variable name lines comes the data. Each line represents
one point in the initial model. The coordinate is given in the first column, followed by the variables in the
same order as their declaration above. The initial model will be read until an EOF is encountered.

The data is passed through the argument list to the caller:

integer, parameter :: n1d_max = 16384

integer :: n1d_model

real :: xzn(n1d_max), model_1d(n1d_max,nvar)

call init_1d(n1d_max, n1d_model, xzn, model_1d)

n1d max is the maximum number of points in the initial model that you’ve allocated space for. If the initial
model contains more points than this, an error will result, and FLASH will abort. n1d model is the actual
number of points read in, and is returned to the caller.

The data is returned through xzn and model 1d. xzn(i) contains the coordinate of point i in the initial
model. model 1d(i,j) contains the value of variable j for point i in the initial model. The variables are
mapped from the order that they are stored in the initial model file to the order that they are stored in the
data structures in FLASH. Therefore, we can use dBaseKeyNumber to access a particular variable from the
model file. For example, provided density is defined in FLASH,

idens = dBaseKeyNumber(’dens’)

zone_dens = model_1d(i, idens)

stores the density in point i of the initial model in zone dens. This allows you to initialize the solution
variable in your init block from your initial model. See the sample map problem for examples.
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17.1.2 Reading hydrostatic 1D initial models (hse)

The hse initialization routine is a variant of 1d. It has basically the same job—read in an initial model and
return the data to the caller in a manner consistent with the data layout of FLASH. The difference is that
hse understands hydrostatic equilibrium and will restore hydrostatic equilibrium to the initial model before
returning the data to the caller. This will only work with the constant gravity modules (basically anything
that provides a GravAccelOneZone function).

The data is read in as above, and mapped to the same ordering as FLASH. Once the file is read in, we
interpolate it onto a new grid whose zone spacing is equivalent to the finest FLASH zone. This is important,
as it eliminates errors from mapping the newly HSEd 1-d model onto a grid. If subsample factor is set,
then map onto a grid that it subsample factor times larger than the finest uniform grid. This is useful for
averaging the result onto the FLASH grid to better approximate cell averaged quantities.

Next we tweak the structure of the density to yield a model that is in HSE on this grid with the EOS
used by FLASH. There are several ways we can force the model into HSE. Remember that PPM is a finite
volume scheme, and thus carries around cell averaged quantities, the unknowns are not associated with a
particular point in the zone. One point in the initial model needs to be defined as the reference point—we
take its density, temperature, and composition as correct and use it as the basis for putting the other points
into HSE. If reference zone is set to ’base’, then the bottommost zone is the reference. If it is set to
’fuel’, then we use the bottom-most point of the fuel layer as the reference zone. The fuel layer is defined
by the point where the composition specified by fuel marker first goes above the value fuel threshold.

The density structure is adjusted by integrating the equation of hydrostatic equilibrium outward from
this reference point. A first order method:

〈P 〉+1 − 〈P 〉0 =
gδ

2

(

〈ρ〉+1 + 〈ρ〉0
)

, (17.1)

is used if hse method = 1. A second order differencing:

〈P 〉+1 − 〈P 〉0 =
gδ

12

(

5 〈ρ〉+1 + 8 〈ρ〉0 − 〈ρ〉−1
)

. (17.2)

is used if hse method = 4. Derivations and further explanations of this procedure is contained in Zingale et
al. (2002).

17.2 Introducing temperature perturbations (perturb)

The perturb module allows the user to put a temperature perturbation on the grid to initiate nuclear
burning. The perturbation can be done either a constant density or isobarically, and in several different
shapes (currently Gaussian, tophat, and a truncated Gaussian perturbation).

The general usage of the perturb module to apply a perturbation to the grid is

use perturbLib

call perturbTemp(xctr, yctr, zctr, radius_x, radius_y, radius_z, &

temp_perturb, pert_shape, &

pert_type, block_no)

where xctr, yctr, and zctr are the coordinates of the center of the perturbation. radius x, radius y, and
radius z are the radius of the perturbation in each coordinate direction—allowing you to create a sphere
(all lengths equal) or and generalize ellipsoid. The perturbation temperature is specified by temp perturb

and is shaped according to pert shape which can be set equal to any one of the following:

• gaussianPert:
T = Tperturb exp{−[(x/Rx)

2 + (y/Ry)
2 + (z/Rz)

2]} (17.3)
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• tophatPert:

T =

{

Tperturb; if (x/Rx)
2 + (y/Ry)

2 + (z/Rz)
2 ≤ 1

Tambient; if (x/Rx)
2 + (y/Ry)

2 + (z/Rz)
2 > 1

(17.4)

• truncGaussPert:

T = max{min{1.1 · exp{−[(x/Rx)
2 + (y/Ry)

2 + (z/Rz)
2]}, Tperturb}, Tambient} (17.5)

These integer keys are publicly available through the module.
The perturbation is done with out modifying the temperature if perturb type is set to tempOnly. To

modify the temperature field at a constant pressure (therefore, adjusting the density), perturb type should
be set to isobaric.

17.3 Wrapping Fortran functions to be called from C (wrapping)

The function of the wrapping module is to create the ”glue” necessary to call Fortran functions and subrou-
tines from C. The bulk of the module is a python script named int2API.py which, given a file describing the
Fortran functions to be wrapped, generates the necessary Fortran and C code. This description file (with
extension .int) has to be written by hand; it essentially looks like a list of C function prototypes. For a
more detailed description of the syntax see the usage message for int2API.

Int2API.py is normally called by gmake at compile-time as we’ve used pattern rules to make it look like
any other compiler. Given a foo.int file, it will create fooAPI-bridges.F90, fooAPI.c and fooAPI.h.

This last header file is all that needs to be included by C programs in order to call the wrapped Fortran
functions.

Currently, there are prototypes (and therefore a C interface) for most of the default database functions
(see source/database/amr/paramesh2.0/dBase.int) and a few of the runtime parameter accessors. For
examples of the wrapped functions in action, see the init block.c files in the sod, shu osher and windtunnel
setups : they provide exactly the same functionality as their init block.F90 counterparts and are used as
a test of int2API.py. As these wrapped functions have not been heavily tested, they may well behave
strangely on some platforms, although they should be sufficient for simple tasks.
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Test Cases
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Chapter 18

The supplied problems

To verify that FLASH works as expected, and to debug changes in the code, we have created a suite of
standard test problems. Most of these problems have analytical solutions which can be used to test the
accuracy of the code. The remaining problems do not have analytical solutions, but they produce well-
defined flow features which have been verified by experiments and are stringent tests of the code. The test
suite configuration code is included with the FLASH source tree (in the setups/ directory), so it is easy to
configure and run FLASH with any of these problems ‘out of the box.’ Sample runtime parameter files are
also included.

18.1 Hydrodynamics test problems

18.1.1 The Sod shock-tube problem

The Sod problem (Sod 1978) is an essentially one-dimensional flow discontinuity problem which provides a
good test of a compressible code’s ability to capture shocks and contact discontinuities with a small number
of zones and to produce the correct density profile in a rarefaction. It also tests a code’s ability to correctly
satisfy the Rankine-Hugoniot shock jump conditions. When implemented at an angle to a multidimensional
grid, it can also be used to detect irregularities in planar discontinuities produced by grid geometry or
operator splitting effects.

We construct the initial conditions for the Sod problem by establishing a planar interface at some angle
to the x and y axes. The fluid is initially at rest on either side of the interface, and the density and pressure
jumps are chosen so that all three types of flow discontinuity (shock, contact, and rarefaction) develop. To
the “left” and “right” of the interface we have

ρL = 1 ρR = 0.125
pL = 1 pR = 0.1

(18.1)

The ratio of specific heats γ is chosen to be 1.4 on both sides of the interface.
In FLASH, the Sod problem (sod) uses the runtime parameters listed in Table 18.1 in addition to the

regular ones supplied with the code. For this problem we use the gamma equation of state module and set
the value of the parameter gamma supplied by this module to 1.4. The default values listed in Table 18.1
are appropriate to a shock with normal parallel to the x-axis which initially intersects that axis at x = 0.5
(halfway across a box with unit dimensions).

Figure 18.1 shows the result of running the Sod problem with FLASH on a two-dimensional grid, with
the analytical solution shown for comparison. The hydrodynamical algorithm used here is the directionally
split piecewise-parabolic method (PPM) included with FLASH. In this run the shock normal is chosen to
be parallel to the x-axis. With six levels of refinement, the effective grid size at the finest level is 2562, so
the finest zones have width 0.00390625. At t = 0.2 three different nonlinear waves are present: a rarefaction
between x ≈ 0.25 and x ≈ 0.5, a contact discontinuity at x ≈ 0.68, and a shock at x ≈ 0.85. The two
sharp discontinuities are each resolved with approximately three zones at the highest level of refinement,
demonstrating the ability of PPM to handle sharp flow features well. Near the contact discontinuity and
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Figure 18.1: Comparison of numerical and analytical solutions to the Sod problem. A 2D grid with six levels
of refinement is used. The shock normal is parallel to the x-axis.
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Figure 18.2: Comparison of numerical solutions to the Sod problem for two different angles (θ) of the shock
normal relative to the x-axis. A 2D grid with six levels of refinement is used.
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Table 18.1: Runtime parameters used with the sod test problem.

Variable Type Default Description
rho left real 1 Initial density to the left of the interface (ρL)
rho right real 0.125 Initial density to the right (ρR)
p left real 1 Initial pressure to the left (pL)
p right real 0.1 Initial pressure to the right (pR)
u left real 0 Initial velocity (perpendicular to interface) to the

left (uL)
u right real 0 Initial velocity (perpendicular to interface) to the

right (uR)
xangle real 0 Angle made by interface normal with the x-axis

(degrees)
yangle real 90 Angle made by interface normal with the y-axis

(degrees)
posn real 0.5 Point of intersection between the interface plane

and the x-axis

in the rarefaction we find small errors of about 1 − 2% in the density and specific internal energy, with
similar errors in the velocity inside the rarefaction. Elsewhere the numerical solution is exact; no oscillation
is present.

Figure 18.2 shows the result of running the Sod problem on the same two-dimensional grid with different
shock normals: parallel to the x-axis (θ = 0◦) and along the box diagonal (θ = 45◦). For the diagonal
solution we have interpolated values of density, specific internal energy, and velocity to a set of 256 points
spaced exactly as in the x-axis solution. This comparison shows the effects of the second-order directional
splitting used with FLASH on the resolution of shocks. At the right side of the rarefaction and at the contact
discontinuity the diagonal solution undergoes slightly larger oscillations (on the order of a few percent) than
the x-axis solution. Also, the value of each variable inside the discontinuity regions differs between the two
solutions by up to 10% in most cases. However, the location and thickness of the discontinuities is the same
between the two solutions. In general shocks at an angle to the grid are resolved with approximately the
same number of zones as shocks parallel to a coordinate axis.

Figure 18.3 presents a grayscale map of the density at t = 0.2 in the diagonal solution together with
the block structure of the AMR grid in this case. Note that regions surrounding the discontinuities are
maximally refined, while behind the shock and discontinuity the grid has de-refined as the second derivative
of the density has decreased in magnitude. Because zero-gradient outflow boundaries were used for this test,
some reflections are present at the upper left and lower right corners, but at t = 0.2 these have not yet
propagated to the center of the grid.

18.1.2 The Woodward-Colella interacting blast-wave problem

This problem was originally used by Woodward and Colella (1984) to compare the performance of several
different hydrodynamical methods on problems involving strong, thin shock structures. It has no analytical
solution, but since it is one-dimensional, it is easy to produce a converged solution by running the code with
a very large number of zones, permitting an estimate of the self-convergence rate when narrow, interacting
discontinuities are present. For FLASH it also provides a good test of the adaptive mesh refinement scheme.

The initial conditions consist of two parallel, planar flow discontinuities. Reflecting boundary conditions
are used. The density in the left, middle, and right portions of the grid (ρL, ρM, and ρR, respectively) is
unity; everywhere the velocity is zero. The pressure is large to the left and right and small in the center:

pL = 1000 pM = 0.01 pR = 100 . (18.2)

The equation of state is that of a perfect gas with γ = 1.4.
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Figure 18.3: Density in the diagonal 2D Sod problem with six levels of refinement at t = 0.2. The outlines
of AMR blocks are shown (each block contains 8× 8 zones).

Figure 18.4 shows the density and velocity profiles at several different times in the converged solution,
demonstrating the complexity inherent in this problem. The initial pressure discontinuities drive shocks into
the middle part of the grid; behind them, rarefactions form and propagate toward the outer boundaries,
where they are reflected back onto the grid and interact with themselves. By the time the shocks collide at
t = 0.028, the reflected rarefactions have caught up to them, weakening them and making their post-shock
structure more complex. Because the right-hand shock is initially weaker, the rarefaction on that side reflects
from the wall later, so the resulting shock structures going into the collision from the left and right are quite
different. Behind each shock is a contact discontinuity left over from the initial conditions (at x ≈ 0.50
and 0.73). The shock collision produces an extremely high and narrow density peak; in the Woodward and
Colella calculation the peak density is slightly less than 30. Even with ten levels of refinement, FLASH
obtains a value of only 18 for this peak. Reflected shocks travel back into the colliding material, leaving a
complex series of contact discontinuities and rarefactions between them. A new contact discontinuity has
formed at the point of the collision (x ≈ 0.69). By t = 0.032 the right-hand reflected shock has met the
original right-hand contact discontinuity, producing a strong rarefaction which meets the central contact
discontinuity at t = 0.034. Between t = 0.034 and t = 0.038 the slope of the density behind the left-hand
shock changes as the shock moves into a region of constant entropy near the left-hand contact discontinuity.

Figure 18.5 shows the self-convergence of density and pressure when FLASH is run on this problem. For
several runs with different maximum refinement levels, we compare the density, pressure, and total specific
energy at t = 0.038 to the solution obtained using FLASH with ten levels of refinement. This figure plots
the L1 error norm for each variable u, defined using

E(Nref ;u) ≡
1

N(Nref)

N(Nref )
∑

i=1

∣

∣

∣

∣

ui(Nref)− ui(10)

ui(10)

∣

∣

∣

∣

, (18.3)

against the effective number of zones (N(Nref)) at the highest level of refinement Nref . In computing this
norm, both the ‘converged’ solution u(10) and the test solution u(Nref) are interpolated onto a uniform mesh
having N(Nref) zones. Values of Nref between 2 (corresponding to cell size ∆x = 1/16) and 9 (∆x = 1/2048)
are shown. Although PPM is formally a second-order method, one sees from this plot that, for the interacting
blast-wave problem, the convergence rate is only linear. Indeed, in their comparison of the performance of
seven nominally second-order hydrodynamic methods on this problem, Woodward and Colella found that
only PPM achieved even linear convergence; the other methods were worse. The error norm is very sensitive
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Figure 18.4: Density and velocity profiles in the Woodward-Colella interacting blast-wave problem, as com-
puted by FLASH using ten levels of refinement.



18.1. HYDRODYNAMICS TEST PROBLEMS 165

Figure 18.5: Self-convergence of the density, pressure, and total specific energy in the 2blast test problem.

to the correct position and shape of the strong, narrow shocks generated in this problem.
The additional runtime parameters supplied with the 2blast problem are listed in Table 18.2. This

problem is configured to use the perfect-gas equation of state (gamma), and it is run in a two-dimensional
unit box with gamma set to 1.4. Boundary conditions in the y direction (transverse to the shock normals)
are taken to be periodic.

18.1.3 The Sedov explosion problem

The Sedov explosion problem (Sedov 1959) is another purely hydrodynamical test in which we check the
code’s ability to deal with strong shocks and non-planar symmetry. The problem involves the self-similar
evolution of a cylindrical or spherical blast wave from a delta-function initial pressure perturbation in an
otherwise homogeneous medium. To initialize the code, we deposit a quantity of energy E = 1 into a small
region of radius δr at the center of the grid. The pressure inside this volume, p′0, is given by

p′0 =
3(γ − 1)E

(ν + 1)π δrν
, (18.4)

where ν = 2 for cylindrical geometry and ν = 3 for spherical geometry. We set γ = 1.4. (In running this
problem we choose δr to be 3.5 times as large as the finest adaptive mesh resolution in order to minimize
effects due to the Cartesian geometry of our grid.) Everywhere the density is set equal to ρ0 = 1, and
everywhere but the center of the grid the pressure is set to a small value, p0 = 10−5. The fluid is initially at
rest. In the self-similar blast wave which develops for t > 0, the density, pressure, and radial velocity are all
functions of ξ ≡ r/R(t), where

R(t) = Cν(γ)

(

Et2

ρ0

)1/(ν+2)

. (18.5)

Here Cν is a dimensionless constant depending only on ν and γ; for γ = 1.4, C2 ≈ C3 ≈ 1 to within a few
percent. Just behind the shock front at ξ = 1 we have

ρ = ρ1 ≡
γ + 1

γ − 1
ρ0
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Table 18.2: Runtime parameters used with the 2blast test problem.

Variable Type Default Description
rho left real 1 Initial density to the left of the left interface (ρL)
rho mid real 1 Initial density between the interfaces (ρM)
rho right real 1 Initial density to the right of the right interface

(ρR)
p left real 1000 Initial pressure to the left (pL)
p mid real 0.01 Initial pressure in the middle (pM)
p right real 100 Initial pressure to the right (pR)
u left real 0 Initial velocity (perpendicular to interface) to the

left (uL)
u mid real 0 Initial velocity (perpendicular to interface) in the

middle (uL)
u right real 0 Initial velocity (perpendicular to interface) to the

right (uR)
xangle real 0 Angle made by interface normal with the x-axis

(degrees)
yangle real 90 Angle made by interface normal with the y-axis

(degrees)
posnL real 0.1 Point of intersection between the left interface

plane and the x-axis
posnR real 0.9 Point of intersection between the right interface

plane and the x-axis

p = p1 ≡
2

γ + 1
ρ0u

2 (18.6)

v = v1 ≡
2

γ + 1
u ,

where u ≡ dR/dt is the speed of the shock wave. Near the center of the grid,

ρ(ξ)/ρ1 ∝ ξν/(γ−1)

p(ξ)/p1 = constant . (18.7)

v(ξ)/v1 ∝ ξ

Figure 18.6 shows density, pressure, and velocity profiles in the two-dimensional Sedov problem at t =
0.05. Solutions obtained with FLASH on grids with 2, 4, 6, and 8 levels of refinement are shown in comparison
with the analytical solution. In this figure we have computed average radial profiles in the following way.
We interpolated solution values from the adaptively gridded mesh used by FLASH onto a uniform mesh
having the same resolution as the finest AMR blocks in each run. Then, using radial bins with the same
width as the zones in the uniform mesh, we binned the interpolated solution values, computing the average
value in each bin. At low resolutions, errors show up as density and velocity overestimates behind the shock,
underestimates of each variable within the shock, and a numerical precursor spanning 1–2 zones in front of
the shock. However, the central pressure is accurately determined, even for two levels of refinement; because
the density goes to a finite value rather than its correct limit of zero, this corresponds to a finite truncation
of the temperature (which should go to infinity as r → 0). As resolution improves, the artificial finite density
limit decreases; by Nref = 6 it is less than 0.2% of the peak density. Except for the Nref = 2 case, which
does not show a well-defined peak in any variable, the shock itself is always captured with about two zones.
The region behind the shock containing 90% of the swept-up material is represented by four zones in the
Nref = 4 case, 17 zones in the Nref = 6 case, and 69 zones for Nref = 8. However, because the solution is
self-similar, for any given maximum refinement level the shock will be four zones wide at a sufficiently early
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Figure 18.6: Comparison of numerical and analytical solutions to the Sedov problem in two dimensions.
Numerical solution values are averages in radial bins at the finest AMR grid resolution in each run.
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Figure 18.7: Pressure field in the 2D Sedov explosion problem with 8 levels of refinement at t = 0.05.
Overlaid on the pressure colormap are the outlines of the AMR blocks.

Table 18.3: Runtime parameters used with the sedov test problem.

Variable Type Default Description
p ambient real 10−5 Initial ambient pressure (p0)
rho ambient real 1 Initial ambient density (ρ0)
exp energy real 1 Explosion energy (E)
r init real 0.05 Radius of initial pressure perturbation (δr)
xctr real 0.5 x-coordinate of explosion center
yctr real 0.5 y-coordinate of explosion center
zctr real 0.5 z-coordinate of explosion center

time. The behavior when the shock is underresolved is to underestimate the peak value of each variable,
particularly the density and pressure.

Figure 18.7 shows the pressure field in the 8-level calculation at t = 0.05 together with the block refinement
pattern. Note that a relatively small fraction of the grid is maximally refined in this problem. Although the
pressure gradient at the center of the grid is small, this region is refined because of the large temperature
gradient there. This illustrates the ability of PARAMESH to refine grids using several different variables at
once.

We have also run FLASH on the spherically symmetric Sedov problem in order to verify the code’s
performance in three dimensions. The results at t = 0.05 using five levels of grid refinement are shown in
Figure 18.8. In this figure we have plotted the root-mean-square (RMS) numerical solution values in addition
to the average values. As in the two-dimensional runs, the shock is spread over about two zones at the finest
AMR resolution in this run. The width of the pressure peak in the analytical solution is about 1 1/2 zones
at this time, so the maximum pressure is not captured in the numerical solution. Behind the shock the
numerical solution average tracks the analytical solution quite well, although the Cartesian grid geometry
produces RMS deviations of up to 40% in the density and velocity in the derefined region well behind the
shock. This behavior is similar to that exhibited in the two-dimensional problem at comparable resolution.

The additional runtime parameters supplied with the sedov problem are listed in Table 18.3. This
problem is configured to use the perfect-gas equation of state (gamma), and it is run in a unit box with gamma

set to 1.4.
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Figure 18.8: Comparison of numerical and analytical solutions to the spherically symmetric Sedov problem.
A 3D grid with five levels of refinement is used.
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Table 18.4: Runtime parameters used with the advect test problem.

Variable Type Default Description
rhoin real 1 Characteristic density inside the advected pulse

(ρ1)
rhoout real 10−5 Ambient density (ρ0)
pressure real 1 Ambient pressure (p0)
velocity real 10 Ambient velocity (u0)
width real 0.1 Characteristic width of advected pulse (w)
pulse fctn integer 1 Pulse shape function to use: 1=square wave,

2=Gaussian
xangle real 0 Angle made by pulse plane with x-axis (degrees)
yangle real 90 Angle made by pulse plane with y-axis (degrees)
posn real 0.25 Point of intersection between pulse midplane and

x-axis

18.1.4 The advection problem

In this problem we create a planar density pulse in a region of uniform pressure p0 and velocity u0, with the
velocity normal to the pulse plane. The density pulse is defined via

ρ(s) = ρ1φ(s/w) + ρ0 [1− φ(s/w)] , (18.8)

where s is the distance of a point from the pulse midplane, w is the characteristic width of the pulse, and
the pulse shape function φ is, for a square pulse,

φSP(ξ) =

{

1 |ξ| < 1
0 |ξ| > 1

, (18.9)

and for a Gaussian pulse,

φGP(ξ) = e−ξ
2

. (18.10)

For these initial conditions the Euler equations reduce to a single wave equation with wave speed u0; hence
the density pulse should move across the computational volume at this speed without changing shape.
Advection problems similar to this were first proposed by Boris and Book (1973) and Forester (1977).

The advection problem tests the ability of the code to handle planar geometry, as does the Sod problem.
It is also like the Sod problem in that it tests the code’s treatment of flow discontinuities which move at one
of the characteristic speeds of the hydrodynamical equations. (This is difficult because noise generated at
a sharp interface, such as the contact discontinuity in the Sod problem, tends to move with the interface,
accumulating there as the calculation advances.) However, unlike the Sod problem it compares the code’s
treatment of leading and trailing contact discontinuities (for the square pulse), and it tests the treatment
of narrow flow features (for both the square and Gaussian pulse shapes). Many hydrodynamical methods
have a tendency to clip narrow features or to distort pulse shapes by introducing artificial dispersion and
dissipation (Zalesak 1987).

The additional runtime parameters supplied with the advect problem are listed in Table 18.4. This
problem is configured to use the perfect-gas equation of state (gamma), and it is run in a unit box with gamma

set to 1.4. (The value of γ does not affect the analytical solution, but it does affect the timestep.)
To demonstrate the performance of FLASH on the advection problem, we have performed tests of both

the square and Gaussian pulse profiles with the pulse normal parallel to the x-axis (θ = 0◦) and at an angle
to the x-axis (θ = 45◦) in two dimensions. The square pulse used ρ1 = 1, ρ0 = 10−3, p0 = 10−6, u0 = 1,
and w = 0.1. With six levels of refinement in the domain [0, 1]× [0, 1], this value of w corresponds to having
about 52 zones across the pulse width. The Gaussian pulse tests used the same values of ρ1, ρ0, p0, and u0,
but with w = 0.015625. This value of w corresponds to about 8 zones across the pulse width at six levels
of refinement. For each test we performed runs at two, four, and six levels of refinement to examine the
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quality of the numerical solution as the resolution of the advected pulse improves. The runs with θ = 0◦

used zero-gradient (outflow) boundary conditions, while the runs performed at an angle to the x-axis used
periodic boundaries.

Figure 18.9 shows, for each test, the advected density profile at t = 0.4 in comparison with the analytical
solution. The upper two frames of this figure depict the square pulse with θ = 0◦ and θ = 45◦, while
the lower two frames depict the Gaussian pulse results. In each case the analytical density pulse has been
advected a distance u0t = 0.4, and in the figure the axis parallel to the pulse normal has been translated by
this amount, permitting comparison of the pulse displacement in the numerical solutions with that of the
analytical solution.

The advection results show the expected improvement with increasing AMR refinement level Nref . In-
accuracies appear as diffusive spreading, rounding of sharp corners, and clipping. In both the square pulse
and Gaussian pulse tests, diffusive spreading is limited to about one zone on either side of the pulse. For
Nref = 2 the rounding of the square pulse and the clipping of the Gaussian pulse are quite severe; in the
latter case the pulse itself spans about two zones, which is the approximate smoothing length in PPM for a
single discontinuity. For Nref = 4 the treatment of the square pulse is significantly better, but the amplitude
of the Gaussian is still reduced by about 50%. In this case the square pulse discontinuities are still being
resolved with 2–3 zones, but the zones are now a factor of 25 smaller than the pulse width. With six levels
of refinement the same behavior is observed for the square pulse, while the amplitude of the Gaussian pulse
is now 93% of its initial value. The absence of dispersive effects (ie. oscillation) despite the high order of the
PPM interpolants is due to the enforcement of monotonicity in the PPM algorithm.

The diagonal runs are consistent with the runs which were parallel to the x-axis, with the possibility of
a slight amount of extra spreading behind the pulse. However, note that we have determined density values
for the diagonal runs by interpolation along the grid diagonal. The interpolation points are not centered on
the pulses, so the density does not always take on its maximum value (particularly in the lowest-resolution
case).

These results are consistent with earlier studies of linear advection with PPM (e.g., Zalesak 1987). They
suggest that, in order to preserve narrow flow features in FLASH, the maximum AMR refinement level should
be chosen so that zones in refined regions are at least a factor 5–10 smaller than the narrowest features of
interest. In cases in which the features are generated by shocks (rather than moving with the fluid), the
resolution requirement is not as severe, as errors generated in the preshock region are driven into the shock
rather than accumulating as it propagates.

18.1.5 The isentropic vortex problem

The two-dimensional isentropic vortex problem is often used as a benchmark for comparing numerical meth-
ods for fluid dynamics.The flowfield is smooth (there are no shocks or contact discontinuities) and contains
no steep gradients, and the exact solution is known. It was studied by Yee, Vinokur, and Djomehri (2000),
and Shu (1998). In this subsection the problem is described, the FLASH control parameters are explained,
and some results demonstrating how the problem can be used are presented.

The simulation domain is a square and the center of the vortex is located at (xctr, yctr). The flowfield is

defined in coordinates centered on the vortex center, (x′ = x− xctr, y
′ = y − yctr), and r2 = x′

2
+ y′

2
. The

domain is periodic, but it is assumed that off-domain vortices do not interact with the primary, on-domain
vortex; practically, this assumption can be satisfied by ensuring the simulation domain is large enough for
a particular vortex strength. We find that a domain size of 10 × 10 (specified through the driver runtime
parameters xmin, xmax, ymin, and ymax) is sufficiently large for a vortex strength (defined below) of 5.0.
In the initialization below, x′ and y′ are the coordinates with respect to the nearest vortex in the periodic
sense.

The ambient conditions are given by ρ∞, u∞, v∞, and p∞, and the nondimensional ambient temperature
is T ∗∞ = 1.0. Using the equation of state, the (dimensional) T∞ is computed from p∞ and ρ∞. Perturbations
are added to the velocity and nondimensionalized temperature, u = u∞+δu, v = v∞+δv, and T ∗ = T ∗∞+δT ∗:

δu = −y′ β
2π

exp

(

1− r2

2

)

(18.11)
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Figure 18.9: Density pulse in the advection tests for 2D grids at t = 0.4. Symbols represent numerical results
using grids with different levels of refinement Nref (2, 4, and 6).
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Table 18.5: Runtime parameters used with the isentropic vortex test problem.

Variable Type Default Description
p ambient real 1.0 Initial ambient pressure (p∞)
rho ambient real 1.0 Initial ambient density (ρ∞)
u ambient real 1.0 Initial ambient x-velocity (u∞)
v ambient real 1.0 Initial ambient y-velocity (v∞)
vortex strength real 5.0 Non-dimensional vortex strength
xctr real 0.0 x-coordinate of vortex center
yctr real 0.0 y-coordinate of vortex center
nx subint integer 10 number of subintervals in x-direction
ny subint integer 10 number of subintervals in y-direction

δv = x′
β

2π
exp

(

1− r2

2

)

(18.12)

δT ∗ = − (γ − 1)β

8γπ2
exp

(

1− r2
)

(18.13)

where γ is the ratio of specific heats and β = 5.0 is a measure of the vortex strength. The temperature and
density are then given by

T =
T∞
T ∗∞

T ∗ (18.14)

ρ = ρ∞

(

T

T∞

)
1

γ−1

(18.15)

At any location in space, the conserved variables (density, x- and y-momentum, and total energy) can be
computed from the above quantities. The flowfield is initialized by computing cell averages of the conserved
variables; in each cell, the average is approximated by averaging over nx subint × ny subint subintervals.
The runtime parameters for the isentropic vortex problem are listed in Table 18.5.

A Figure 18.10 shows the exact density distribution on −5.0 ≤ x, y ≤ 5.0, represented on a 40×40 uniform
grid. The borders of each grid block (8×8 cells) are superimposed. In addition to the shaded representation,
contour lines are shown for ρ = 0.95, 0.85, 0.75, and 0.65. The density distribution is radially symmetric,
and the minimum density is ρmin = 0.510287. Because the exact solution of the isentropic vortex problem
is the initial solution shifted by (u∞t, v∞t), numerical phase (dispersion) and amplitude (dissipation) errors
are easy to identify. Dispersive errors distort the shape of the vortex, breaking its symmetry. Dissipative
errors smooth the solution and flatten extrema; for the vortex, the minimum in density at the vortex core
will increase.

A numerical simulation using the PPM scheme was run to illustrate such errors. The simulation used the
same grid shown in Figure 18.10, and the contour levels and color values are also the same in the following
plots. The grid is intentionally coarse and the evolution time long to make numerical errors visible. The
vortex is represented by approximately 8 grid points in each coordinate direction, and is advected diagonally
with respect to the grid. At solution times of t = 10, 20, . . ., etc., the vortex should be back at its initial
location.

Figure 18.11 shows the solution at t = 50.0; only slight differences are observed. The density distribution
is almost radially symmetric, although the minimum density has risen to 0.0537360. As shown in Figure 18.12,
accumulating dispersion error is clearly visible at t = 100.0, and the minimum density is 0.601786.

Figure 18.13 shows the density near y = 0.0 at three simulation times. The black line shows the initial
condition. The red line corresponds to t = 50.0 and the blue line to t = 100.0. For the later two times the
density is not radially symmetric, and the lines plotted are just representative profiles for those times; they
are shown to give an idea of the magnitude and character of the error.
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Figure 18.10: Density at t = 0.0 for the isentropic vortex problem. This is the initial condition and the exact
solution at t = 10.0, 20.0, . . ..

Figure 18.11: Density at t = 50.0 for the isentropic vortex problem.
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Figure 18.12: Density at t = 100.0 for the isentropic vortex problem.

Figure 18.13: Representative density profiles for the isentropic vortex near y = 0.0 at t = 0.0 (black), t = 50.0
(red), and t = 100.0 (blue).
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18.1.6 The problem of a wind tunnel with a step

The problem of a wind tunnel containing a step was first described by Emery (1968), who used it to compare
several hydrodynamical methods which are only of historical interest now. Woodward and Colella (1984)
later used it to compare several more advanced methods, including PPM. Although it has no analytical
solution, this problem is useful because it exercises a code’s ability to handle unsteady shock interactions
in multiple dimensions. It also provides an example of the use of FLASH to solve problems with irregular
boundaries.

The problem uses a two-dimensional rectangular domain three units wide and one unit high. Between
x = 0.6 and x = 3 along the x-axis is a step 0.2 units high. The step is treated as a reflecting boundary,
as are the lower and upper boundaries in the y direction. For the right-hand x boundary we use an outflow
(zero gradient) boundary condition, while on the left-hand side we use an inflow boundary. In the inflow
boundary zones we set the density to ρ0, the pressure to p0, and the velocity to u0, with the latter directed
parallel to the x-axis. The domain itself is also initialized with these values. For the Emery problem we use

ρ0 = 1.4 p0 = 1 γ = 1.4 u0 = 3 , (18.16)

which corresponds to a Mach 3 flow. Because the outflow is supersonic throughout the calculation, we do
not expect reflections from the right-hand boundary.

The additional runtime parameters supplied with the windtunnel problem are listed in Table 18.6. This
problem is configured to use the perfect-gas equation of state (gamma) with gamma set to 1.4. We also set
xmax = 3, ymax = 1, Nblockx = 15, and Nblocky = 4 in order to create a grid with the correct dimensions.
The version of divide domain supplied with this problem adds three top-level blocks along the lower left-
hand corner of the grid to cover the region in front of the step. Finally, we use xlboundary = −23 (user
boundary condition) and xrboundary = −21 (outflow boundary) to instruct FLASH to use the correct
boundary conditions in the x direction. Boundaries in the y direction are reflecting (−20).

Until t = 12 the flow is unsteady, exhibiting multiple shock reflections and interactions between different
types of discontinuity. Figure 18.14 shows the evolution of density and velocity between t = 0 and t = 4
(the period considered by Woodward and Colella). Immediately a shock forms directly in front of the step
and begins to move slowly away from it. Simultaneously the shock curves around the corner of the step,
extending farther downstream and growing in size until it strikes the upper boundary just after t = 0.5. The
corner of the step becomes a singular point, with a rarefaction fan connecting the still gas just above the step
to the shocked gas in front of it. Entropy errors generated in the vicinity of this singular point produce a
numerical boundary layer about one zone thick along the surface of the step. Woodward and Colella reduce
this effect by resetting the zones immediately behind the corner to conserve entropy and the sum of enthalpy
and specific kinetic energy through the rarefaction. However, we are less interested here in reproducing the
exact solution than in verifying the code and examining the behavior of such numerical effects as resolution
is increased, so we do not apply this additional boundary condition. The errors near the corner result in a
slight overexpansion of the gas there and a weak oblique shock where this gas flows back toward the step.
At all resolutions we also see interactions between the numerical boundary layer and the reflected shocks
which appear later in the calculation.

By t = 1 the shock reflected from the upper wall has moved downward and has almost struck the top of
the step. The intersection between the primary and reflected shocks begins at x ≈ 1.45 when the reflection
first forms at t ≈ 0.65, then moves to the left, reaching x ≈ 0.95 at t = 1. As it moves, the angle between
the incident shock and the wall increases until t = 1.5, at which point it exceeds the maximum angle for
regular reflection (40◦ for γ = 1.4) and begins to form a Mach stem. Meanwhile the reflected shock has itself
reflected from the top of the step, and here too the point of intersection moves leftward, reaching x ≈ 1.65
by t = 2. The second reflection propagates back toward the top of the grid, reaching it at t = 2.5 and
forming a third reflection. By this time in low-resolution runs we see a second Mach stem forming at the
shock reflection from the top of the step; this results from the interaction of the shock with the numerical
boundary layer, which causes the angle of incidence to increase faster than in the converged solution. Figure
18.15 compares the density field at t = 4 as computed by FLASH using several different maximum levels of
refinement. Note that the size of the artificial Mach reflection diminishes as resolution improves.

The shear zone behind the first (“real”) Mach stem produces another interesting numerical effect, visible
at t = 3 and t = 4: Kelvin-Helmholtz amplification of numerical errors generated at the shock intersection.
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Figure 18.14: Density and velocity in the Emery wind tunnel test problem, as computed with FLASH. A
2D grid with five levels of refinement is used.
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Figure 18.14: Density and velocity in the Emery wind tunnel test problem (continued).
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Figure 18.15: Density at t = 4 in the Emery wind tunnel test problem, as computed with FLASH using
several different levels of refinement.
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Figure 18.16: Detail of the Kelvin-Helmholtz instability seen at t = 3 in the Emery wind tunnel test problem
for several different levels of refinement.
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Table 18.6: Runtime parameters used with the windtunnel test problem.

Variable Type Default Description
p ambient real 1 Ambient pressure (p0)
rho ambient real 1.4 Ambient density (ρ0)
wind vel real 3 Inflow velocity (u0)

The wave thus generated propagates downstream and is refracted by the second and third reflected shocks.
This effect is also seen in the calculations of Woodward and Colella, although their resolution was too low
to capture the detailed eddy structure we see. Figure 18.16 shows the detail of this structure at t = 3 on
grids with several different levels of refinement. The effect does not disappear with increasing resolution, for
two reasons. First, the instability amplifies numerical errors generated at the shock intersection, no matter
how small. Second, PPM captures the slowly moving, nearly vertical Mach stem with only 1–2 zones on
any grid, so as it moves from one column of zones to the next, artificial kinks form near the intersection,
providing the seed perturbation for the instability. This effect can be reduced by using a small amount of
extra dissipation to smear out the shock, as discussed by Colella and Woodward (1984). This tendency
of physical instabilities to amplify numerical noise vividly demonstrates the need to exercise caution when
interpreting features in supposedly converged calculations.

Finally, we note that in high-resolution runs with FLASH we also see some Kelvin-Helmholtz rollup at
the numerical boundary layer along the top of the step. This is not present in Woodward and Colella’s
calculation, presumably because their grid resolution is lower (corresponding to two levels of refinement for
us) and because of their special treatment of the singular point.

18.1.7 The Shu-Osher problem

The Shu-Osher problem (Shu and Osher, 1989) tests a shock-capturing scheme’s ability to resolve small-
scale flow features. It gives a good indication of the numerical (artificial) viscosity of a method. Since it is
designed to test shock-capturing schemes, the equations of interest are the one-dimensional Euler equations
for a single-species perfect gas.

In the problem, a (nominally) Mach 3 shock wave propagates into a sinusoidal density field. As the shock
advances, two sets of density features appear behind the shock. One set has the same spatial frequency as
the unshocked perturbations, but for the second set the frequency is doubled. Furthermore, the second set
follows more closely behind the shock None of these features are spurious. The test of the numerical method
is to accurately resolve the dynamics and strengths of the oscillations behind the shock.

The shu osher problem is initialized as follows. On the domain −4.5 ≤ x ≤ 4.5, the shock is at x = xs

at t = 0.0. On either side of the shock,

x ≤ xs x > xs
ρ(x) ρL ρR (1.0 + aρ sin(fρx))
p(x) pL pR
u(x) uL uR

(18.17)

where aρ is the amplitude and fρ is the frequency of the density perturbations. The gamma equation of state
module is used and we set the value of the parameter gamma supplied by this module to 1.4. The runtime
parameters and their default values are listed in table 18.7. The initial density, x-velocity, and pressure
distributions are shown in Fig. 18.17.

The problem is strictly one-dimensional; building 2d or 3d executables should give the same results along
each x-direction grid line. For this problem, special boundary conditions are applied. The initial conditions
should not change at the boundaries, and if they do, errors at the boundaries can contaminate the results.
To avoid this possibility, a boundary condition subroutine was written to set the boundary values to their
initial values.

The purpose of the tests is to determine how much resolution, in terms of mesh cells per feature, a
particular method requires to accurately represent small scale flow features. Therefore all computations
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Figure 18.17: Initial density, x-velocity, and pressure for the Shu-Osher problem.
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Table 18.7: Runtime parameters used with the shu osher test problem.

Variable Type Default Description
posn real -4.0 Initial shock location (xs)
rho left real 3.857143 Initial density to the left of the shock (ρL)
rho right real 1.0 Nominal initial density to the right (ρR)
p left real 10.33333 Initial pressure to the left (pL)
p right real 1.0 Initial pressure to the right (pR)
u left real 2.629369 Initial velocity to the left (uL)
u right real 0.0 Initial velocity to the right (uR)
a rho real 0.2 Amplitude of the density perturbations
f rho real 5.0 Frequency of the density perturbations

are carried out on equispaced meshes without adaptive refinement. Solutions are obtained at t = 1.8. The
reference solution, using 3200 mesh cells, is shown in Fig. 18.18. This solution was computed using PPM and
Strang splitting (the default hydro and driver modules) at a CFL number of 0.8. Note the shock located at
x ' 2.4, and the high frequency density oscillations just to the left of the shock. When the grid resolution is
insufficient, shock-capturing schemes underpredict the amplitude of these oscillations and may distort their
shape.

Figure 18.19 show the density field for the same scheme at 400 mesh cells and at 200 mesh cells. With
400 cells, the amplitudes are only slightly reduced compared to the reference solution; however, the shapes
of the oscillations have been distorted. The slopes are steeper and the peaks and troughs are broader, which
is most likely the result of overcompression from the contact-steepening part of the PPM algorithm. For the
solution on 200 mesh cells, the amplitudes of the high-frequency oscillations are significantly underpredicted.

18.1.8 The odd-even decoupling problem

The odd even setup is designed to illustrate an odd-even decoupling phenomena in grid-aligned shocks. The
problem (and solution) was first pointed out by Quirk (1997), and our test case is taken from LeVeque
(1998).

The problem setup is simple. The domain has a uniform density (ρ = 1) and pressure (P = 1), with
the flow in the left half of the domain (x < 0.5) given a velocity of 20, and the flow in the right half of the
domain given a velocity of -20. A single zone in the center of the domain is given a 1% density perturbation.
The PPM hydrodynamics solver is used for the evolution. The converging flow creates two planar shocks
that move outward from the center of the domain in the x-direction. The density perturbation seeded the
odd-even instability, and using the normal Riemann solver, large y-velocities result. The solution is to use
the hybrid Riemann solver, described in §9.1.1. Quirk (1997) showed that an HLLE solver is effective in
eliminating this instability.

Figure 18.20 shows the y-velocity at the end of the calculation, with and without the hybrid solver. In the
run without the hybrid Riemann solver, the velocity is large, and dominates the flow. In the case with the
hydrid Riemann solver, the y-velocity is much smaller, and the reflections off the top and bottom boundaries
can clearly be seen.

18.1.9 The Brio-Wu MHD shock tube problem

The Brio-WuMHD shock tube problem (Brio andWu, 1988) is a coplanar magnetohydrodynamic counterpart
of the hydrodynamic Sod problem (section 18.1.1). The initial left and right states are, respectively, ρl = 1,
ul = vl = 0, pl = 1, (By)l = 1; and ρr = 0.125, ur = vr = 0, pr = 0.1, (By)r = −1. In addition, Bx = 0.75
and γ = 2. This is a good problem to test wave properties of a particular MHD solver, because it involves
two fast rarefaction waves, a slow compound wave, a contact discontinuity and a slow shock wave.

The conventional 800 point solution to this problem computed with the FLASH 2.0 code is presented in
Figures 18.21, 18.22, 18.23, 18.24, 18.25 . The figures show the distribution of density, normal and tangential
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Figure 18.18: Density, x-velocity, and pressure for the reference solution at t = 1.8.
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Figure 18.19: Density fields on 400 and 200 mesh cells from the PPM scheme.
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Figure 18.20: odd-even decoupling instability, without (left) and with (right) the hybrid Riemann solver
enabled.

velocity components, tangential magnetic field component and pressure at t = 0.1 (in non-dimensional units).
As can bee seen, the code accurately and sharply resolves all waves present in the solution. There is a small
undershoot in the solution at x ≈ 0.44, which results from a discontinuity-enhancing monotonized centered
gradient limiting function (LeVeque 1997). This undershoot can be easily removed if a less aggressive limiter,
for example minmod or van Leer limiter, is used instead. This, however, will degrade the sharp resolution
of other discontinuities.

18.1.10 The Orszag-Tang MHD vortex problem

The Orszag-Tang MHD vortex problem (Orszag and Tang, 1979) is a simple two-dimensional problem that
has become a classic test for MHD codes. In this problem a simple, non-random initial condition is imposed
at time t = 0:

V = V0 (− sin(2πy), sin(2πx), 0) , B = B0 (− sin(2πy), sin(4πx), 0) , (x, y) =∈ [0, 1]2, (18.18)

where B0 is chosen so that the ratio of the gas pressure to the rms magnetic pressure is equal to 2γ. In this
setup the initial density, the speed of sound and V0 are set to unity; therefore, the initial pressure p0 = 1/γ
and B0 = 1/γ.

As evolution time increases, the vortex flow pattern becomes increasingly complicated due to nonlinear
interactions of waves. A highly resolved simulation of this problem should produce two-dimensional MHD
turbulence. Figures 18.26 and 18.27 shows density and magnetic field contours at t = 0.5. As one can
observe the flow pattern at this time is already quite complicated. A number of strong waves have already
formed and passed through each other creating turbulent flow features at all spatial scales.
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Figure 18.21: Density profile for the Brio-Wu shock tube problem.

Figure 18.22: Pressure profile for the Brio-Wu shock tube problem.
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Figure 18.23: Tangential magnetic field profile for the Brio-Wu shock tube problem.

Figure 18.24: Normal velocity profile for the Brio-Wu shock tube problem.
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Figure 18.25: Tangential velocity profile for the Brio-Wu shock tube problem.

Figure 18.26: Density contours in the Oszag-Tang MHD vortex problem at t = 0.5.
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Figure 18.27: Magnetic field contours in the Oszag-Tang MHD vortex problem at t = 0.5.

18.2 Gravity test problems

18.2.1 The Jeans instability problem

The linear instability of self-gravitating fluids was first explored by Jeans (1902) in connection with the prob-
lem of star formation. The nonlinear phase of the instability is of greatest astrophysical interest nowadays,
but the linear instability provides a very useful test of the coupling of gravity to hydrodynamics in FLASH.

The jeans problem allows one to examine the behavior of sinusoidal, adiabatic density perturbations in
both the pressure-dominated and gravity-dominated limits. This problem uses periodic boundary conditions.
The equation of state is that of a perfect gas. The initial conditions at t = 0 are

ρ(x) = ρ0 [1 + δ cos(k · x)]
p(x) = p0 [1 + γδ cos(k · x)] (18.19)

v(x) = 0 ,

where the perturbation amplitude δ ¿ 1. The stability of the perturbation is determined by the relationship
between the wavenumber k ≡ |k| and the Jeans wavenumber kJ , where kJ is given by

kJ ≡
√
4πGρ0
c0

, (18.20)

and where c0 is the unperturbed sound speed:

c0 =

√

γp0
ρ0

(18.21)

(Chandrasekhar 1961). If k > kJ , the perturbation is stable and oscillates with frequency

ω =
√

c20k
2 − 4πGρ0 ; (18.22)

otherwise it grows exponentially, with a characteristic timescale given by τ = (iω)−1.
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Figure 18.28: Kinetic, internal, and potential energy versus time for a stable Jeans mode with k = 10.984.
Points indicate numerical values found using FLASH 2.0 with a four-level uniform grid. The analytic solution
for each form of energy is shown using a solid line.

We checked the dispersion relation (18.22) for stable perturbations with γ = 5/3 by fixing ρ0 and p0 and
performing several runs with different k. We followed each case for roughly five oscillation periods using a
uniform grid in the box [0, L]2. We used ρ0 = 1.5 × 107 g cm−3 and p0 = 1.5 × 107 dyn cm−2, yielding
kJ = 2.747 cm−1. The perturbation amplitude δ was fixed at 10−3. The box size L is chosen so that kJ is
smaller than the smallest nonzero wavenumber which can be resolved on the grid:

L =
1

2

√

πγp0
Gρ20

. (18.23)

This prevents roundoff errors at wavenumbers less than kJ from being amplified by the physical Jeans
instability. We used wavevectors k parallel to and at 45 degrees to the x-axis. Each test calculation used
the multigrid Poisson solver together with its default settings.

The resulting kinetic, thermal, and potential energies as functions of time for one choice of k are shown
in Figure 18.28 together with the analytic solution, which is given in two dimensions by

T (t) =
ρ0δ

2|ω|2L2
8k2

[1− cos(2ωt)]

U(t)− U(0) = −1

8
ρ0c

2
0δ
2L2 [1− cos(2ωt)] (18.24)

W (t) = −πGρ
2
0δ
2L2

2k2
[1 + cos(2ωt)] . (18.25)

The figure shows that FLASH obtains the correct amplitude and frequency of oscillation in this case. We
computed the average oscillation frequency for each run by measuring the time interval required for the
kinetic energy to undergo exactly ten oscillations. Figure 18.29 compares the resulting dispersion relation to
equation (18.22). It can be seen from this plot that FLASH correctly reproduces equation (18.22). At the
highest wavenumber (k = 100), each oscillation is resolved using only about 14 zones on a six-level uniform
grid, and the average timestep (which depends on c0, ∆x, and ∆y, and has nothing to do with k) turns
out to be comparable to the oscillation period. Hence the frequency determined from the numerical solution
for this value of k is somewhat more poorly determined than for the other runs. At lower wavenumbers,
however, the frequencies are correct to less than 1%.

The additional runtime parameters supplied with the jeans problem are listed in Table 18.8. This
problem is configured to use the perfect-gas equation of state (gamma), and it is run in a two-dimensional
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Figure 18.29: Computed versus expected Jeans dispersion relation (for stable modes) found using FLASH
1.62 with a six-level uniform grid.

unit box with gamma set to 1.67. The refinement marking routine (ref marking.F90) supplied with this
problem refines blocks whose mean density exceeds a given threshold. Since the problem is not spherically
symmetric, the multigrid Poisson solver should be used.

18.2.2 The homologous dust collapse problem

The homologous dust collapse problem is used to test the ability of the code to solve self-gravitating problems
in which the flow geometry is spherical and gas pressure is negligible. The problem was first described by
Colgate and White (1966) and has been used by Mönchmeyer and Müller (1989) to test hydrodynamical
schemes in curvilinear coordinates. As the Poisson solvers currently included with FLASH do not yet work
in curvilinear coordinates, we solve this problem using a 3D Cartesian grid.

The initial conditions consist of a uniform sphere of radius r0 and density ρ0 at rest. The pressure p0 is
taken to be constant and very small:

p0 ¿
4πG

γ
ρ20r

2
0 . (18.27)

We refer to such a nearly pressureless fluid as ‘dust’. A perfect-gas equation of state is used, but the value
of γ is not significant. Outflow boundary conditions are used for the gas, while isolated boundary conditions
are used for the gravitational field.

The collapse of the dust sphere is self-similar; the cloud should remain spherical and uniform as it
collapses. The radius of the cloud, r(t), should satisfy

(

8πG

3
ρ0

)1/2

t =

(

1− r(t)

r0

)1/2(
r(t)

r0

)1/2

+ sin−1
(

1− r(t)

r0

)1/2

(18.28)

(Colgate & White 1966). Thus we expect to test three things with this problem: the ability of the code
to maintain spherical symmetry during an implosion (in particular, no block boundary effects should be
evident); the ability of the code to keep the density profile constant within the cloud; and the ability of the
code to obtain the correct collapse factor. The second of these is particularly difficult, because the edge of
the cloud is very sharp and because the Cartesian grid breaks spherical symmetry most dramatically at the
center of the cloud, which is where all of the matter ultimately ends up.

Results of a dust coll run using FLASH 1.62 appear in Figure 18.30. This run used 43 top-level
blocks and seven levels of refinement, for an effective resolution of 20483 at the center of the grid. The



18.2. GRAVITY TEST PROBLEMS 193

Table 18.8: Runtime parameters used with the jeans test problem.

Variable Type Default Description
rho0 real 1 Initial unperturbed density (ρ0)
p0 real 1 Initial unperturbed pressure (p0)
amplitude real 0.01 Perturbation amplitude (δ)
lambdax real 1 Perturbation wavelength in x direction (λx =

2π/kx)
lambday real 1 Perturbation wavelength in y direction (λy =

2π/ky)
lambdaz real 1 Perturbation wavelength in z direction (λz =

2π/kz)
delta ref real 0.1 Refine a block if the maximum density contrast

relative to ρref is greater than this
delta deref real 0.1 Derefine a block if the maximum density contrast

relative to ρref is less than this
reference density real 1 Reference density for grid refinement (ρref). Den-

sity contrast is used to determine which blocks to
refine; it is defined as

max
block

{
∣

∣

∣

∣

ρijk
ρref
− 1

∣

∣

∣

∣

}

(18.26)

multipole Poisson solver was used with a maximum multipole moment ` = 0. The initial conditions used
ρ0 = 109 g cm−3 and r0 = 6.5× 108 cm. In Figure 18.30a, the density, pressure, and velocity are scaled by
2.43 × 109 g cm−3, 2.08 × 1017 dyn cm−2, and 7.30 × 109 cm s−1, respectively. In Figure 18.30b they are
scaled by 1.96× 1011 g cm−3, 2.08× 1017 dyn cm−2, and 2.90× 1010 cm s−1. Note that within the cloud the
profiles are very isotropic, as indicated by the small dispersion in each profile. Significant anisotropy is only
present for ‘fluff’ material flowing in through the Cartesian boundaries. In particular, it is encouraging that
the velocity field remains isotropic all the way into the center of the grid; this shows the usefulness of refining
spherically symmetric problems near r = 0. However, as material flows inward past refinement boundaries,
small ripples develop in the density profile due to interpolation errors. These remain spherically symmetric
but increase in amplitude as they are compressed. Nevertheless, they are still only a few percent in relative
magnitude by the second frame. The other numerical effect of note is a slight spreading at the edge of the
cloud. This does not appear to worsen significantly with time. If one takes the radius at which the density
drops to one-half its central value as the radius of the cloud, then the observed collapse factor agrees with
our expectation from equation (18.28). Overall our results, including the numerical effects, agree well with
those of Mönchmeyer and Müller (1989).

The additional runtime parameters supplied with the dust coll problem are listed in Table 18.9. This
problem is configured to use the perfect-gas equation of state (gamma), and it is run in a three-dimensional
box with gamma set to 1.67. The refinement marking routine (ref marking.F90) supplied with this problem
refines blocks containing the center of the cloud. Since the problem is spherically symmetric, either the
multigrid or multipole solvers can be used.

18.2.3 The Huang-Greengard Poisson test problem

The poistest problem tests the convergence properties of the multigrid Poisson solver on a multidimensional,
highly (locally) refined grid. This problem is described by Huang and Greengard (2000). The source function
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(a) (b)

Figure 18.30: Density (black), pressure (red), and velocity (blue) profiles in the homologous dust collapse
problem at (a) t = 0.0368 sec and (b) t = 0.0637 sec. The density, pressure, and velocity are scaled as
discussed in the text.

Table 18.9: Runtime parameters used with the dust coll test problem.

Variable Type Default Description
rho0 real 1 Initial cloud density (ρ0)
R init real 0.05 Initial cloud radius (r0)
T ambient real 1 Initial ambient temperature
xctr real 0.5 x-coordinate of cloud center
yctr real 0.5 y-coordinate of cloud center
zctr real 0.5 z-coordinate of cloud center

consists of a sum of thirteen two-dimensional Gaussians:

ρ(x, y) =
13
∑

i=1

e−σi[(x−xi)
2+(y−yi)

2] , (18.29)

where the constants σi, xi, and yi are given in Table 18.10. The very large range of widths and ellipticities
of these peaks forces the mesh structure to be highly refined in some places. The density field and block
structure are shown for a 14-level mesh in Figure 18.31.

The poistest problem uses no additional runtime parameters beyond those required by the rest of the
code.

18.3 Particle test problems

18.3.1 The two-particle orbit problem

The orbit problem tests the mapping of particle positions to gridded density fields, the mapping of gridded
potentials onto particle positions to obtain particle forces, and the time integration of particle motion. The
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Figure 18.31: Density field and block structure for a 14-level mesh applied to the Huang-Greengard test
problem. The effective resolution of the mesh is 65, 5362.

Table 18.10: Constants used in the poistest problem.

i 1 2 3 4 5 6 7
xi 0 -1 -1 0.28125 0.5 0.3046875 0.3046875
yi 0 0.09375 1 0.53125 0.53125 0.1875 0.125
σi 0.01 4000 20000 80000 16 360000 400000

i 8 9 10 11 12 13
xi 0.375 0.5625 -0.5 -0.125 0.296875 0.5234375
yi 0.15625 -0.125 -0.703125 -0.703125 -0.609375 -0.78125
σi 2000 18200 128 49000 37000 18900
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Figure 18.32: Typical particle trajectories in the orbit test problem, superimposed upon the log of the
particles’ mutual potential (colormap). The AMR block structure is also shown. A 3D grid with five levels
of refinement was used.

initial conditions consist of two particles of unit mass and separation r0 located at positions (x, y, z) =
(0.5(Lx± r0), 0.5Ly, 0.5Lz), where (Lx, Ly, Lz) are the dimensions of the computational volume. The initial
particle velocity vectors are parallel to the y-axis and have magnitude

|v| =
√

2GM

r0
(18.30)

if a constant gravitational field due to a point mass M at (0.5Lx, 0.5Ly, 0.5Lz) is employed, or

|v| = 1

2

√

2G

r0
(18.31)

if the particles are self-gravitating. The correct behavior is for the particles to orbit the center of the grid in
a circle with constant velocity.

Figure 18.32 shows a typical pair of particle trajectories for this problem, together with the AMR
block structure at the ending time. The refinement marking routine supplied with this problem performs
the PARAMESH-standard second-derivative refinement plus particle-based refinement, in which a block
is derefined if it contains fewer than particle deref thresh particles or refined if it contains more than
particle ref thresh. It is important to apply the second-derivative criterion to the gridded particle density
variable (pden) to ensure that particle clouds not lie on fine-coarse block boundaries. When particle clouds
do intersect refinement boundaries, the particles experience self-forces, and momentum is not conserved.

The two-particle orbit problem uses the runtime parameters listed in Table 18.11 in addition to the regular
ones supplied with the code. Although it is not explicitly required by the configuration file for this problem,
orbit should be run using conservative, quadratic interpolants (e.g., mesh/amr/paramesh2.0/second order)
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Table 18.11: Runtime parameters used with the orbit test problem.

Variable Type Default Description
separation real 0.5 Initial particle separation (r0)
ext field logical .false. Whether to make the particles self-gravitating or

to have them orbit in an external potential. In the
former case gravity/poisson should be used; in
the latter, gravity/ptmass.

particle ref thresh integer 1 Refine blocks containing more than this many par-
ticles

particle deref thresh integer 0 Derefine blocks containing fewer than this many
particles

with monotonicity enforcement off (monotone = .false.). It is necessary to turn off monotonicity enforce-
ment because the small number of particles makes the gridded particle density field fairly discontinuous. If
the particles are to orbit in an external field (ext field = .true.), the field is assumed to be a central
point-mass field (gravity/ptmass), and the parameters for that module should be assigned appropriate
values. If the particles are self-gravitating (ext field = .false.), the gravity/poisson module should
be included in the code, and a Poisson solver that supports isolated boundary conditions should be used
(grav boundary type = "isolated"). As of FLASH 2.1 both the multigrid and multipole solvers support
isolated boundary conditions. This problem should be run in three dimensions.

18.4 Other test problems

18.4.1 The sample map problem

Frequently when doing simulations, one needs to initialize the computational domain with a one-dimensional
model from a stellar evolution (or other) code. A simple framework for accomplishing this task is provided
by the sample map problem. This is intended to be a template for users to modify to suit their needs.

This problem is composed of two main routines, init 1d and the familiar init block. The init 1d we
use is provided by the util/initialization/1d module. It reads the initial model from disk, determines
which variables are present and how they map into the variables defined in FLASH, and stores the initial
model in arrays that are then used by init block. The general format of an initial model file is a single
comment line, a line giving the number of variables contained in the initial model, the 4-character names of
each variable (one per line), followed by the data (spatial coordinate first), with the variables in the same
order as the list of names. An example of this format follows.

# sample 1-d model

number of variables = 7

dens

pres

ener

gamc

game

fuel

ash

0.01 10. 100. 25. 1.4 1.4 1.0 0.0

0.02 9.5. 95. 25. 1.4 1.4 0.99 0.0
...

In the above sample file, we define seven variables. The first zone starts with the coordinate of the zone
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center (0.01) and then lists the density (10.), pressure (100.), and so forth, with one entry for each variable
per line. The next zone of the initial model is listed immediately below this line. init 1d will continue to
read in zones for the initial model until it encounters the end of the file.

FLASH contains more variables than the seven defined in this input file, and it will initialize any variables
not specified in the input file to zero. Additionally, sometimes a variable is specified in the input file, but
there is no corresponding variable defined in FLASH. In this case, init 1d will produce a warning, listing
the variables it does not know about. Finally, there is no need for the variables to be listed in the same
order as they are stored in the FLASH data structures—they will be sorted as each zone is read from the
initial model.

The inital model is stored in two data structures: xzn(N1D MAX) contains the coordinates of the initial
model zone centers, and model 1d(N1D MAX, nvar) contains the values of the variables defined in the initial
model. These are stored in the same order as the variables in the solution array unk maintained by FLASH.
N1D MAX is a parameter specifying the maximum number of zones in the initial model (currently set to 2048).

These data structures are passed to the init block function which loops over all of the zones in the
current block, determines the x-, y-, and z-coordinates of the zone, and performs an interpolation to find the
values of the initial variables in the current zone. This interpolation attempt to construct as zone average
from the values of the initial model at the zone edges and center.

There are two parameters for this problem, model file is a string that gives the name of the input file
to read the initial model from. imap dir is an integer the specifies the direction to map the initial model
along, imap dir = 1 maps along the x-direction, 2 maps along the y direction, and 0 maps it in a circle in
the x-y plane.

18.4.2 The non-equilibrium ionization test problem

The neitest problem tests the ability of FLASH to calculate non-equilibrium ionization (NEI) ion abun-
dances. It simulates a stationary plasma flow through a temperature step profile. The solutions were checked
using an independent stationary code based on a fifth order Runge–Kutta method with adaptive stepsize
control (by step–doubling; see Press et al. 1986), already used by Orlando et al. (1999).
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Figure 18.33: Temperature profile assumed for the test.
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The test assumes a plasma with a mass density of 2 × 10−16 gm cm−3 flowing with a constant uniform
velocity of 3×105 cm s−1 through a temperature step between 104 K and 106 K (cf. 18.33). The plasma is in
ionization equilibrium before going through the jump in the region at T = 104 K. The population fractions
in equilibrium are obtained from the equations

[nZi ]eqS
Z
i = [nZi+1]eqα

Z
i+1 (i = 1, ..., lZ − 1) (18.32)

lZ
∑

i=1

[nZi ]eq = AZnp (18.33)

The presence of a temperature jump causes a strong pressure difference which in turn should cause significant
plasma motions. Since the purpose is to test the NEI module, it is imposed that the pressure difference does
not induce any plasma motion and, to this end, the hydro variables (namely, T , ρ, v) are not updated. In
practice, the energy and momentum equations are not solved, and the continuity equations with uniform
density and velocity are solved.

Figure 18.34 shows the population fractions for the 12 most abundant elements in astrophysical plasmas
derived with the stationary code (Orlando et al. 1999). The out of equilibrium ionization conditions are
evident for all the elements just after the flow goes through the temperature jump.

The same problem was solved with the NEI module of the FLASH code, assuming that the plasma is
initially in conditions of ionization equilibrium at t = t0 over all the spatial domain. After a transient
lasting approximately 700 s in which the population fractions evolve due to the plasma flow through the
temperature jump, the system reaches the stationary configuration. Outflow boundary conditions (zero-
gradient) are assumed at both the left and right boundaries. Fig. 18.35 shows the population fraction vs.
space after 700 s, in stationary conditions.
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Figure 18.34: Numerical solutions of the stationary code. The figure shows the population fractions vs.
space for the 12 elements most abundant in astrophysical plasmas assuming a stationary flow through a
temperature jump.
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Figure 18.34: ... continued ...
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Figure 18.35: As in Fig. 18.34 for the solutions of the FLASH code.
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Figure 18.35: ... continued ...
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Chapter 19

Serial FLASH Output Comparison
Utility (sfocu)

Sfocu (Serial Flash Output Comparison Utility) is intended as a replacement for focu, which was available
in previous versions of FLASH, and is mainly used as part of an automated testing suite called flash test.

Sfocu is a serial utility which examines two FLASH checkpoint files and decides whether or not they are
“equal” to ensure that any changes made to FLASH do not adversely affect subsequent simulation output.
By “equal”, we mean that:

• The leaf-block structure matches: each leaf block must have the same position and size in both datasets.

• The data arrays in the leaf blocks (dens, pres...) are identical.

Thus, sfocu ignores information such as the particular numbering of the blocks, the timestamp, the build
information, and so on.

Sfocu can read both HDF4 and HDF5 FLASH checkpoint files. It has not been tested with FLASH
checkpoints that span multiple files. Although sfocu is a serial program, it is able to do comparisons on the
output of large parallel simulations. Sfocu has been used on irix, linux, AIX and OSF1.

19.1 Building sfocu

The process is entirely manual, although Makefiles for certain machines have been provided. There are a
few compile-time options which you set via the following preprocessor definitions in the Makefile (in the
CDEFINES macro):

NO HDF4 build without HDF4 support

NO HDF5 build without HDF5 support

NEED MPI certain parallel versions of HDF5 need to be linked with the MPI library. This adds the necessary
MPI Init, MPI Finalize calls to sfocu. There is no advantage to running sfocu on more than one
processor, it will only give you multiple copies of the same report.

19.2 Using sfocu

There are no command line options. Simply run the command sfocu <file1> <file2>. You will most
likely need to widen your terminal to view the output as it is well over 80 columns. Sample output follows:

207
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sfocu: comparing advect_2d_45deg_sqr_4lev_hdf_chk_0002 and advect_2d_45deg_gau_4lev_hdf_chk_0002

Min Error: inf(2|a-b| / max(|a+b|, 1e-99) )

Max Error: sup(2|a-b| / max(|a+b|, 1e-99) )

Abs Error: sup|a-b|

Mag Error: sup|a-b| / max(sup|a|, sup|b|, 1e-99)

advect_2d_45deg_sqr_4lev_hdf_chk_0002 has 2 leaf blocks that don’t exist in advect_2d_45deg_gau_4lev_hdf_chk_0002

advect_2d_45deg_gau_4lev_hdf_chk_0002 has 8 leaf blocks that don’t exist in advect_2d_45deg_sqr_4lev_hdf_chk_0002

Total leaf blocks compared: 53 (all other blocks are ignored)

-----+------------+-----------+-----------+-----------+-----------++-----------+-----------+-----------++-----------+-----------+-----------+

Var | Bad Blocks | Min Error | Max Error | Abs Error | Mag Error || Sum | Max | Min || Sum | Max | Min |

-----+------------+-----------+-----------+-----------+-----------++-----------+-----------+-----------++-----------+-----------+-----------+

pres | 53 | 1.11e-16 | 3.234e-13 | 3.234e-13 | 3.234e-13 || 3.39e+03 | 1 | 1 || 3.39e+03 | 1 | 1 |

gamc | 0 | 0 | 0 | 0 | 0 || 4.75e+03 | 1.4 | 1.4 || 4.75e+03 | 1.4 | 1.4 |

game | 0 | 0 | 0 | 0 | 0 || 4.75e+03 | 1.4 | 1.4 || 4.75e+03 | 1.4 | 1.4 |

dens | 53 | 1.694e-16 | 1.998 | 0.6311 | 0.6311 || 714 | 1 | 1e-05 || 619 | 0.958 | 1e-05 |

velx | 53 | 1.256e-16 | 2.373e-13 | 1.678e-12 | 2.373e-13 || 2.4e+04 | 7.07 | 7.07 || 2.4e+04 | 7.07 | 7.07 |

temp | 53 | 1.803e-16 | 1.998 | 0.001194 | 0.9932 || 2.43 | 0.0012 | 1.2e-08 || 1.5 | 0.0012 | 1.26e-08 |

velz | 0 | 0 | 0 | 0 | 0 || 0 | 0 | 0 || 0 | 0 | 0 |

ener | 53 | 1.164e-16 | 1.997 | 2.483e+05 | 0.993 || 5.05e+08 | 2.5e+05 | 52.5 || 3.12e+08 | 2.5e+05 | 52.6 |

vely | 53 | 1.256e-16 | 2.007e-13 | 1.419e-12 | 2.007e-13 || 2.4e+04 | 7.07 | 7.07 || 2.4e+04 | 7.07 | 7.07 |

1 | 53 | 1.11e-16 | 2.499e-09 | 2.499e-09 | 2.499e-09 || 3.39e+03 | 1 | 1 || 3.39e+03 | 1 | 1 |

-----+------------+-----------+-----------+-----------+-----------++-----------+-----------+-----------++-----------+-----------+-----------+

FAILURE

“Bad Blocks” is the number of leaf blocks where the data was found to differ between datasets; four
different error measures (min/max/abs/mag) are defined in the output above. In addition, the last six
columns report the sum, maximum and minimum of the variables in the two files. Note that the sum is
physically meaningless as it’s not volume-weighted. Finally, the last line is so other programs can parse the
sfocu output easily: when the files are identical, the line will instead read SUCCESS.

It’s possible for sfocu to miss machine-precision variations in the data on certain machines because of
compiler or library issues. Or possibly even bugs (!). This has only been observed on one platform, where
the compiler produced code that ignored IEEE rules until the right flag was found.



Chapter 20

FLASH IDL routines (fidlr2)

fidlr2 is a set of routines, written in the IDL, that can read and plot data files produced by FLASH. These
routines have been rewritten from previous versions of FLASH to provide more features and expandability.
The routines include programs which can be run from the IDL command line to read 1D, 2D, or 3D FLASH
datasets, interactively analyze datasets, and interpolate them onto uniform grids. A graphical interface to
these routines (xflash) is provided, which enables users to read FLASH AMR datasets or global integral files
(flash.dat) and make plots and histograms of the data. It is assumed that the user have some familiarity
with IDL. The examples discussed below will use the sedov data generated in the quickstart at the beginning
of this manual.

The fidlr2 routines support 1, 2, and 3-dimensional datasets in the FLASH HDF or HDF5 formats.
Both plotfiles and checkpoint files are supported, as they differ only in the number of variables stored and
the numerical precision. Additionally, 1-d plots from the flash.dat files can be made as well. Since present
versions IDL do not directly support HDF5, the call external function is used to interface with a set of
C routines that read in the HDF5 data (see section 7). Using these routines requires that the HDF5 library
be installed on your system and that the shared-object wrapper library be compiled before reading in data.
Since the call external function is used, the demo version of IDL will not run the routines.

20.1 Installing and running fidlr2

fidlr2 is distributed with FLASH and contained in the tools/fidlr2/ directory. In addition to the IDL
procedures, a README file is present which will contain up-to-date information on changes and installation
requirements.

These routines were written and tested using IDL v5.4 for Linux. They should work without difficulty on
any UNIX machine with IDL installed—any functionality of fidlr2 under Windows is purely coincidental.
Later versions of IDL no longer support GIF files due to copyright difficulties, so PNG images will be
outputted in their place. Most graphics packages, like xv or the GIMP should be able to convert between these
formats. It is possible to run IDL in a ‘demo’ mode if there are not enough licenses available. Unfortunately,
some parts of fidlr2 will not function in this mode, as certain features of IDL are disabled. In particular,
the call external function is disabled, making the HDF5 wrappers inoperable. This guide assumes that
you are running the full version of IDL.

Installation of fidlr2 requires defining some environment variables, making sure your IDL path is prop-
erly set, and compiling the support for HDF5 files. These procedures are described below.

20.1.1 Setting up fidlr2 environment variables

The FLASH IDL routines are located in the tools/fidlr2/ subdirectory of the FLASH root directory. To
use them you must set two environment variables. First set the value of XFLASH DIR to the location of the
FLASH IDL routines; for example, under csh, use

setenv XFLASH DIR flash-root-path/tools/fidlr2

209
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where flash-root-path is the absolute path of the FLASH root directory. This variable is used in the plotting
routines to find the customized color table for xflash, as well as to identify the location of the shared-object
libraries compiled for HDF5 support.

Next, make sure you have an IDL DIR environment variable set. Ths should point to the directory in
which the IDL distribution is installed. For example, if IDL is installed in idl-root-path, then you would
define:

setenv IDL DIR idl-root-path

Finally, you need to tell IDL where to find the fidlr2 routines. This is accomplished through the
IDL PATH environment variable:

setenv IDL PATH ${XFLASH DIR}:${IDL DIR}:${IDL DIR}/lib
If you already have an IDL PATH environment variable defined, just add XFLASH DIR to the beginning of
it. You may wish to include these commands in your .cshrc (or the analogous versions in your .profile
file, depending on your shell) to avoid having to reissue them every time you log in. It is important that
the ${XFLASH DIR} come before the IDL directories in the path, and that the ${IDL DIR}/lib directory be
included as well (otherwise the compound widget procedures, cw *.pro, will not be found).

20.1.2 Setting up the HDF5 routines

For fidlr2 to read HDF5 files, you need to install the HDF5 library on your machine and compile the
wrapper routines. The HDF5 libraries can be obtained in either source or binary form for most Unix
platforms from http://hdf.ncsa.uiuc.edu. Two sample Makefiles are provided. Makefile.sgi will build
the shared-object library on an SGI. Makefile.linux will build the library on a Linux machine. In both
cases, the Makefile will need to be editted to point to the directories where IDL and HDF5 is installed on
the local machine. The compiler flags for a shared-object library for different versions of Unix can be found
in

${IDL DIR}/external/call external/C/callext unix.txt

The compilation flags in the Makefile should be modified according to the instructions in that file. Again,
the path to the HDF5 library needs to be supplied so the header files can be used in the compilation process,
and for the linking stage. The path to the IDL header export.h is needed as well, to deal with IDL strings.
IDL defines strings as structures, with a field of the IDL STRING structure giving the length of the string.
The datatype of this field has changed from version to version, so we need to get the actual definition from
the IDL header files.

It is important that you compile the shared-object to conform to the same application binary interface
(ABI) that IDL was compiled with. This is mainly an issue on an SGI, where IDL version 5.2.1 and later
use the n32 ABI, while versions before this are o32. The HDF library will also need to be compiled in the
same format. You can check the format of the HDF5 library and your version of IDL with the UNIX file

command.
IDL interacts with external programs through the call external function. Any arguments are passed

by reference through the standard C command line argument interface, argc and argv. These are recast
into pointers of the proper type in the C routines. The C wrappers call the appropriate HDF functions to
read the data and return it through the argc pointers.

Finally, if the HDF5 library was installed as a shared-object, then the library must be in your shell’s
library search path. This can be set by definig the LD LIBRARY PATH environment variable to point to the
HDF5 lib/ subdirectory.

20.1.3 Running IDL

fidlr2 uses 8-bit color tables for all of its plotting. On displays with higher color depths, it may be necessary
to use color overlays to get the proper colors on your display. For SGI machines, launching IDL with the
start.pro script with enable 8-bit pseudocolor overlays. For Linux boxes, setting the X color depth to
24-bits per pixel and launching IDL with the start linux.pro script usually produces proper colors.
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Table 20.1: Fields in the tree structure.

Field Description
lrefine Refinement level of the block.

nodeType Node type of the block. tree[blk].nodeType = 1 if block blk is
a leaf block.

gid[ngid] The global ID information for the current block, giving the (1-
based) block numbers for the neighbors, parent, and children of
the current block.

coord[ndim] The coordinates of the block center in each direction.

size[ndim] The size of the block in each direction.

bndBox[2,ndim] The lower (tree[blk].bndBox[0,*]) and upper
(tree[blk].bndBox[1,*]) coordinate of the block in each
direction.

20.2 fidlr2 data structures

For basic plotting operations, the easiest way to generate plots of FLASH data is to use the widget interface,
xflash. For more advanced analysis, the read routines can be used to read the data into IDL, where it
can be manipulated on the command line. In contrast to previous versions of fidlr, fidlr2 does not use
common blocks to share the data, but rather passes everything though the argument lists. The tree and
dataset parameters are returned as structures, the data itself is returned as a multidimensional array. The
general way to read a FLASH HDF5 dataset is:

IDL> read_amr_new, ’sedov_2d_6lev_hdf_chk_0000’, $

TREE=tree, PARAMETERS=params, DATA=data, STORED_VARS=vars

The layout of the data reflects how it is stored in FLASH. It is assumed that the user is familiar with the
block structured AMR format employed by FLASH (refer to §7 for full details of the output format). The
optional arguments TREE, PARAMETERS, DATA, and STORED VARS provide all of the information needed to
interpret a dataset.

The tree structure array provides fields used to interpret the grid struture. tree takes an argument
indicating the block number (zero based in IDL), and provides multiple fields giving the various parts of the
tree. For example, tree[0].lrefine gives the refinement level of block 0. A full list of the tree fields is
provided in table 20.1.

The params structure provides some basic information describing the dataset, including the total num-
ber of blocks (params.totBlocks), and the number of zones in each coordinate direction (params.nxb,
params.nyb, and params.nzb). Table 20.2 lists the fields in the params structure.

All of the unknowns are stored together in the data array, which mirrors the unk array in FLASH. The
list of variable names is contained in the string array vars through the STORED VAR optional argument. The
loaddata function provides a wrapper to read a single variable from a datafile and merge it onto a uniform
grid (2- and 3-d datasets.) or return a 1-d vector of data (1-d dataset). The coordinates are optionally
returned.

Examples of using the fidlr2 routines from the command line are provided in §20.5. Additionally, some
scripts demonstrating how to analyze FLASH data using the fidlr2 routines are described in Section 20.4
(see for example radial.pro).

The driver routines provided with fidlr2 visualize the AMR data by first converting it to a uniform
mesh. This allows for ease of plotting and manipulation, including contour plotting, but it is less efficient



212 CHAPTER 20. FLASH IDL ROUTINES (FIDLR2)

Table 20.2: Fields in the params structure.

Field Description
totBlocks The total number of blocks in the dataset.

corners A logical variable specifying whether the data was interpolated to
corners before storage.

ndim The number of dimensions of the simulation.

nxb The number of zones per block in the x-direction.

nyb The number of zones per block in the y-direction.

nzb The number of zones per block in the z-direction.

ntopx The number of top level blocks in the x-direction. This is equal to
the Nblocksx FLASH runtime parameter.

ntopy The number of top level blocks in the y-direction. This is equal to
the Nblocksy FLASH runtime parameter.

ntopz The number of top level blocks in the z-direction. This is equal to
the Nblocksz FLASH runtime parameter.

time The simulation time of the current dataset.

dt The timestep used for the last step in the simulation.
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than plotting the native AMR structure. Efficiency is gained by recognizing that the data is restricted up
the tree before output, so it is valid at all levels. If the dataset is much larger than the plot device, then
we ignore those levels which are finer than the device resolution, and produce the plot using blocks closer to
the root of the tree. In 3-d, slices through the dataset are made by putting only the 2-d slice itself onto a
uniform grid. Analysis can still be performed directly on the native data through the command line.

20.3 xflash: widget interface to plotting FLASH datasets

The main interface to the fidlr2 routines for plotting FLASH datasets is xflash. Typing xflash at the
IDL command prompt will launch the main xflash widget, shown in Figure 20.1. xflash produces colormap
plots of FLASH data with optional velocity vectors, contours, and the AMR block structure overlaid, and
histogram plots showing the distribution of data. The basic operation of xflash is to specify a single file in
the dataset as a prototype for the FLASH simulation. The prototype is probed for the list of variables it
contains, and then the remaining plot options become active.

xflash can output to the screen, postscript, or an image file (GIF/PNG). If the data is significantly
higher resolution than the output device, then xflash (through xplot amr.pro) will sub-sample the image
by one or more levels of refinement before plotting.

Once the image is plotted, the query (2-d data only) and 1-d slice (1 and 2-d data only) buttons will
become active. Pressing query and then clicking anywhere in the domain will pop up a window containing
the values of all the FLASH variables in the zone nearest the cursor. The query function uses the actual
FLASH data—not the interpolated/uniformly gridded data generated for the plots. Pressing 1-d slice and
then left-clicking on the plot will produce a 1-d slice vertically through the point. Right-clicking on the
domain produces a horizontal slice through the data.

The widget is broken into several sections, with some features initially disabled. Not all options are
available in all dimensions. These sections are explained below.

File Menu

The file to be visualized is composed of the path, the basename (the same base name used in the flash.par)
plus any file type information appended to it (ex. ’hdf chk ’) and the range of suffices to loop through.
By default, xflash sets the path to the working directory that IDL was started from. xflash requires a
prototype file to work on a dataset. The protottype can be any of the files in the dataset that has the same
name structure (i.e. everything is the same but the suffix), and contains the same variables.

File/Open prototype...

The Open prototype... menu option will bring up the file selection dialog box (see Figure 20.2). Once a
prototype is selected, the remaining options on the xflash widget become active, and the variable list is
populated with the list of variables in the file (see Figure 20.3).

xflash will automatically determine if the file is an HDF or HDF5 file, and read the ‘unknown names’
record to get the variable list. This will work for both plotfiles and checkpoint files generated by FLASH.
Some derived variables will also appear on the list (for example, sound speed), if the dependent variables
are contained in the datafile. These derived variables are currently inoperable in 3-d.

File/Information

The Information menu option becomes active once a prototype is defined. This will display a list of file
information for the prototype file, showing the build information, runtime comment, number of variables,
precision of the data, and FLASH version. Figure 20.4 shows the file information widget. This information
is also available from the IDL command line through the file information procedure.

Defaults Menu
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Figure 20.1: The main xflash widget.

The defaults menu allows you to select one of the predefined problem defaults. This is provided soley
for convienence, as users frequently want to plot the same problem using the same data ranges. This will
load the options (data ranges, velocity parameters, and contour options) for the problem as specified in the
xflash defaults procedure. When xflash is started, xflash defaults is executed to read in the known
problem names. The data ranges and velocity defaults are then updated. To add a problem to xflash, only
the xflash defaults procedure needs to be modified. The details of this procedure are provided in the
comment header in xflash defaults. It is not necessary to add a problem in order to plot a dataset, as all
default values can be overridden through the widget.

Colormap Menu

The colormap menu lists the available colormaps to xflash. These colormaps are stored in flash colors.tbl

in the fidlr2 directory, and differ from the standard IDL colormaps. The first 12 colors in the colormaps
are reserved by xflash to hold the primary colors used for different aspects of the plotting. Additional
colormaps can be created by using the xpalette function in IDL. It is suggested that new colormaps use
one of the existing colormaps as a template, to preserve the primary FLASH colors. These colormaps are
used for 2-d and 3-d data only. At present, there is no control over the line color in 1-d.

X/Y plot count
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Figure 20.2: The xflash file selection dialog.

The X/Y plot count menu specifies how many plots to put on a single page when looping over suffices
in a dataset. At present, this only works for 2-d data. Note, the query and 1-d slice operations will not work
if there are multiple plots per page.

File Options

The first section below the menu bar specifies the file options. This allows you to specify the range of
files in the dataset (though the suffices) to loop over. The optional step parameter can be used to skip over
files when looping through the dataset.

Output Options

A plot can be output to the screen (default), a Postscript file, or a GIF/PNG file. The output filenames are
composed from the basename + variable name + suffix. For outputs to the screen or GIF/PNG, the plot
size options allow you to specify the image size in pixels. For Postscript output, xflash chooses portrait
or landscape orientation depending on the aspect ratio of the domain. Note a GIF or PNG bitmap will be
created, depending on the version of IDL.

Variables

The variables dropbox lists the variables stored in the ‘unknown names’ record in the data file, and any
derived variables that xflash knows how to construct from these variables (ex: sound speed). This allows
you to choose the variable to be plotted. By default, xflash reads all the variables in a file in 1 and 2-d
datasets, so switching the variable to plot can be done without rereading. At present, there is no easy way
to add a derived variable. Both the widget routine (xflash.pro) and the plotting backend (xplot amr.pro)
will need to be told about any new derived variables. Users wishing to add derived variables should look at
how the total velocity (tot vel) is computed.

Options

The options block allows you to toggle various options on/off. Table 20.3 lists the various options avail-
able.

Data Range

These fields allow you to specify the range of the variable to plot. Data outside of the range will be
scaled to the minimum and maximum values of the colormap respectively. If the auto box is checked, the
limits will be ignored, and the data will be scaled to the minimum and maximum values of the variable in
the dataset.
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Figure 20.3: The xflash main window after a prototype has been selected, showing the variable list.
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Figure 20.4: The xflash file information widget for the current prototype.

Table 20.3: xflash options

log Plot the log of the variable.

max When looping over a sequence of files, plot the max of the
variable in each zone over all the files.

annotate Toggle the title and time information.

abs value Plot the absolute value of the dataset. This operation is
performed before taking the log.

show blocks Draw the block boundaries on the plot.

colorbar Plot the colorbar legend for the data range.

show ticks Show the axis/tick marks on the plot.
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Slice plane

The slice plane group is only active for 3-d datasets. This allows you to pick the plane that the plot is
created in (x-y, x-z, y-z).

Zoom

The zoom options allow you to set the domain limits for the plot. A value of -1 uses the actual limit
of the domain. For 3-d plots, only one field will be available in the direction perpendicular to the slice plane.

The zoom box button puts a box cursor on the plot and allows you to select a region to zoom in on by
positioning and resizing the box with the mouse. The reset button will reset the zoom limits.

Contour Options

This launches a dialog box that allows you to select up to 4 contour lines to overplot of the data (see
figure 20.5). The variable, value, and color are specified for each reference contour. To plot a contour, select
the check box next to the contour number. This will allow you to set the variable to make the contour from,
the value of the contour, and the color. This is available in 2-d only at present.

Figure 20.5: The xflash contour option subwidget.

Velocity Options

This launches a dialog box that allows you to set the velocity options used to plot velocity vectors on
the plot (see figure 20.6). The plotting of velocity vectors is controlled by the partvelvec.pro procedure.
xskip and yskip allow you to thin out the arrows. typical velocity sets the velocity to scale the vectors to, and
minimum velocity and maximum velocity specify the range of velocities to plot vectors for. This is available
in 2-d only.

Histogram Options

Pop up a dialog box (Figure 20.8 that allows you to set the histogram options. Currently, only the number
of bins and the scale of the y-axis can be set.
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Figure 20.6: The xflash velocity option subwidget.

Plot

Create the colormap plot. The status of the plot will appear on the status bar at the bottom.

Histogram

Create a histogram of the data.

Query

The query button becomes active once the plot is created. Clicking on query and then clicking somewhere
in the domain lists the data values at the cursor location (see Figure 20.7).

1-d Slice

This is available for 2-d datasets only. Clicking on 1-d Slice and then left-clicking in the domain will
plot a 1-d slice of the currently variable vertically through the point selected. A right-click will produce a
horizontal slice. This function inherits the options chosen in the Options block.

20.4 The fidlr2 routines

Table 20.4 lists all of the fidlr2 routines, grouped by function. Most of these routines rely on the common
blocks to get the tree structure necessary to interpret a FLASH dataset. Command line analysis of FLASH
data requires that the common blocks be defined, usually by executing def common.pro.

Table 20.4: Description of the fidlr2 routines

FLASH data readers
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Table 20.4: fidlr2 routines—continued

file information.pro Dump out some basic information about the file, such as the num-
ber of variables store, the runtime comment, the precision of the
data, etc.

get dimensionality.pro Given a filename, return the dimensionality of the dataset.

get particle number.pro Look at the particle records in the datafile, and return the total
number of particles in the dataset.

get var list.pro Read the variable names record from a datafile and return the list
of variables stored.

openflashfile.pro Simple wrapper routine that reads a dataset block by block.

read amr.pro Read in FLASH data in HDF v 4.x format. This routine takes
the filename and an optional variable argument and returns then
tree, parameters, and unknown information through optional ar-
guments. If the DOUBLE parameter is set, then the data is returned
as double precision. Otherwise, it is returned as single precision
floats, regardless of how it is stored on disk.

read amr hdf5.pro The HDF5 version of read amr.pro. This routine uses the
call external function to access C wrappers of the HDF functions
stored in h5 wrappers.so. The shared library must be compiled
before using this routine. The options and arguments are the same
as the read amr routine.

Driver routines

flame profile 1d.pro A script that reads in a 1-d FLASH dataset and writes out a 1d
slice of data to an ASCII file. The format of the output file is
identical to that required by the sample map setup.

flame speed.pro Read in two FLASH files and compute the speed of a planar front
by differencing.

hist driver.pro Driver routine for hist.pro. Loop over a range of files and produce
histograms of the data.

xcontour.pro The contour options widget. This allows you to select up to 4
reference contours to be overplotted on a 2d plot. This widget is
launched by xflash.pro.

xfile info.pro Widget interface to file information.pro that reports the basic
file information for xflash.pro.
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Table 20.4: fidlr2 routines—continued

xflash.pro The main driver for 2d datasets. xflash provides a widget interface
to select the variable, data range, contour options, output type,
etc. This routine uses xflash defaults.pro to define some default
problem types and their options. Once the options are selected,
xplot amr.pro is used to create the plot.

xflash defaults.pro The problem default initialization file. Standard problems are given
an entry in this file, defining the default values for the plot options.
This file is read in by xflash.

xhist.pro Widget interface to set the histogram options for xflash.

xvelocity.pro The velocity options widget. This allows you to select the mini-
mum, maximum, and typical velocities, and the number of zones
to skip when thinning out the vector field. This widget is launched
by xflash.pro.

xparticle.pro The particle options widget. This widget is launched by
xflash.pro.

HDF routines

determine file type.pro IDL procedure to determine if a file is in HDF 4 format (return 1),
HDF5 format (return 2), or neither (return -1). This routine uses
the built in IDL HDF 4 implementation and some of the HDF5
wrappers in h5 wrappers.so.

fhdf read.pro Wrapper around IDL HDF 4 routines to read in a dataset given
the file handle and dataset name.

h5 file interface.c HDF5 file open and close routines from the FLASH serial HDF5
implementation.

h5 read.c Part of the serial HDF5 FLASH routines, used to read in the header
information from the data file.

h5 wrappers.c Wrappers around the HDF5 library to read in the different records
from the FLASH HDF5 file.

h5 wrappers.so Shared-object library produced from the above routines. The IDL
routines interface with this object through the call external func-
tion.

hdf5 idl interface.h Header file for the C wrappers.

Makefile.sgi, Makefile.linux Makefile for compiling the HDF5 support on an SGI IRIX or Linux
box respectively. Other machines should behave similarly, but some
of the compilation flags may differ.

Merging routines
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Table 20.4: fidlr2 routines—continued

extract line.pro Extract a 1-d line through a 2-d dataset given the line direction (x
or y), and a point it passes through.

loaddata.pro Wrapper around the read and merge routine for 1, 2, and 3-d data.
Given a filename and variable name, return a uniformly gridded
array of data and (optionally) the coordinate information. 1-d
data is returned as a vector, and not uniformly gridded.

merge amr.pro Take a 2-d or 3-d FLASH variable and associated parameter and
tree structures and merge it onto a uniform grid (or 2-d slice of
a 3-d volume if desired). A double precision slice can be made if
the DOUBLE keyword is set, and the data was read in with double
precision.

Plotting routines

colorbar2.pro Create a horizontal colorbar.

color index.pro Return the names of the colortables available.

draw blocks.pro Draw the AMR block boundaries on the plot. This routine is called
from xflash.

hist.pro Make a histogram plot of a single variable from a single file.

readtab.pro Given a columnar ASCII file containing floating point data, return
a array containing that data. This routine automatically deter-
mines the number of rows and columns.

partvelvec.pro Overplot the velocity vectors, for velocities that fall within a spec-
ified minimum and maximum velocity. The vectors are scaled to
a typical velocity. This routine also handles the plotting of the
particle data.

vcolorbar.pro Create a vertical colorbar given the data range and color bounds.

xplot1d amr.pro Back end to xflash—create a plot of a 1d FLASH dataset, using
the options selected in the widget.

xplot3d amr.pro Back end to xflash—plot a slice through a 3d FLASH dataset.

xplot amr.pro Back end to xflash—plot a 2d dataset.

Utility routines

add var.pro add var is used to add a derived variable to the list of variables
recognized by the xflash routines.

color.pro color returns the index into the color table of a color specified by
a string name.

color gif.pro Create a gif of the current plot window.
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Table 20.4: fidlr2 routines—continued

courant.pro Loop over the blocks and return the block number where the
Courant condition is set.

def common.pro Define the common blocks that hold the variables read in from the
read routines. This routine can be used on the IDL command line
so the FLASH data can be analyzed interactively.

flash colors.tbl Replacement color table with the standard FLASH colormaps.

nolabel.pro A hack used to plot an axis w/o numbers.

query.pro A widget routine called by xflash that displays the data in a cell
of the current plot.

query1d.pro Query routine for the 1d data, called from xflash.

scale3d amr.pro Scale a uniformly gridded 3d dataset into a single byte.

scale color.pro Scale a dataset into a single byte.

sci notat.pro Print a number out in scientific notation.

start.pro, start linux.pro A script used to initialize IDL on the SGIs and Linux boxes.

tvimage.pro Replacement for tv that will write to postscript or the screen in
device independent manner.

undefine.pro Free up the memory used by a variable.

var index.pro Return the index into the unk array of the variable label passed as
an argument.

write brick f77.pro Write a block of data out to a file in f77 binary format.

20.5 fidlr2 command line examples

Most of the fidlr2 routines can be used directly from the command line to perform analysis not offered by
the different widget interfaces. This section provides an example of using the fidlr2 routines.

Example. Report on the basic information about a FLASH data file.

IDL> file_information, ’sedov_2d_6lev_hdf_chk_0000’

-------------------------------------------------------------------------------

file = sedov_2d_6lev_hdf_chk_0000

FLASH version: FLASH 2.0.20010802

file format: HDF 4
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Figure 20.7: The xflash query widget, displaying information for a zone.

Figure 20.8: The xflash histogram options widget.

execution date: 08-03-2001 12:59.20

run comment: 2D Sedov explosion, from t=0 with r_init = 3.5dx_min

dimension: 2

geometry detected: Cartesian (assumed)

type of file: checkpoint

number of variables: 12

variable precision: DFNT_FLOAT64

number of particles: 0

nxb, nyb, nzb: 8 8 1

corners stored: no

IDL>
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Example. Read in the pressure field from a file and put it on a uniform grid, and make a contour plot.

IDL> spres = loaddata(’sedov_2d_6lev_hdf_chk_0000’, ’pres’, XCOORDS=x, YCOORDS=y)

IDL> help, spres

SPRES FLOAT = Array[256, 256]

IDL> contour, spres, x, y
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Adding new solvers

Adding new solvers (either for new or existing physics) to FLASH is similar in some ways to adding a problem
configuration. In general one creates a subdirectory for the solver, placing it under the source subdirectory for
the parent module if the solver implements currently supported physics, or creating a new module subdirec-
tory if it does not. Put the source files required by the solver into this directory, then create the following files:

Makefile: The make include file for the module should set a macro with the name of the module equal to a
list of the object files in the module. Optionally (recommended), add a list of dependencies for each of the
source files in the module. For example, the source terms module’s make include file is

# Makefile for source term solvers

source_terms = source_termsModule.o burn.o heat.o cool.o init_burn.o init_heat.o \

init_cool.o tstep_burn.o tstep_heat.o tstep_cool.o init_src.o

source_termsModule.o : source_termsModule.F90 dBase.o

burn.o : burn.F90

heat.o : heat.F90

cool.o : cool.F90

init_src.o : init_src.F90 dBase.o

init_burn.o : init_burn.F90

init_heat.o : init_heat.F90

init_cool.o : init_cool.F90

tstep_burn.o : tstep_burn.F90

tstep_heat.o : tstep_heat.F90

tstep_cool.o : tstep_cool.F90

Sub-module make include files use macro concatenation to add to their parent modules’ make include files.
For example, the source terms/burn sub-module has the following make include file:

# Makefile for the nuclear burning sub-module

source_terms += burn_block.o net_auxillary.o net_integrate.o sparse_ma28.o \

gift.o net.o shock_detect.o

burn_block.o : burn_block.F90 dBase.o network_common.fh eos_common.fh net.o

net_auxillary.o : net_auxillary.F90 network_common.fh eos_common.fh

net_integrate.o : net_integrate.F90 network_common.fh

sparse_ma28.o : sparse_ma28.F90

net.o : net.F90 network_common.fh eos_common.fh
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gift.o : gift.F90

shock_detect.o : shock_detect.F90 dBase.o

network_common.fh : network_size.fh

touch network_common.fh

# Additional dependencies

burn.o : dBase.o network_common.fh net.o

init_burn.o : dBase.o network_common.fh net.o

Note that the sub-module’s make include file only makes reference to files provided at its own level of the
directory hierarchy. If the sub-module provides special versions of routines to override those supplied by the
parent module, they do not need to be mentioned again in the object list, because the sub-module’s Makefile
is concatenated with its parent’s. However, if these special versions have additional dependencies, they can
be specified as shown. Of course, any files supplied by the sub-module that are not part of the parent module
should be mentioned in the sub-module’s object list, and their dependencies should be included.

If you are creating a new top-level module, your source files at this level will be included in the code
even if you do not request the module in Modules. However, no sub-modules will be included. If you intend
to have special versions of these files (stubs) that are used when the module is not included, create a sub-
module named null and place them in it. null is automatically included if it is found and the module is
not referenced in Modules.

If you create a top-level module with no Makefile, setup will automatically generate an empty one. For ex-
ample, creating a directory named my module/ in source/ causes setup to generate a Makefile.my module

in the build directory with contents

my module =

If sub-modules of my module exist and are requested, their Makefiles will be appended to this base.

Config: Create a configuration file for the module or sub-module you are creating. All configuration files in
a sub-module path are used by setup, so a sub-module inherits its parent module’s configuration. Config

should declare any runtime parameters you wish to make available to the code when this module is included.
It should indicate which (if any) other modules your module requires in order to function, and it should
indicate which (if any) of its sub-modules should be used as a default if none is specified when setup is run.
The configuration file format is described in Section 4.1.

This is all that is necessary to add a module or sub-module to the code. However, it is not sufficient to
have the module routines called by the code! If you are creating a new solver for an existing physics module,
the module itself should provide the interface layer to the rest of the code. As long as your sub-module
provides the routines expected by the interface layer, the sub-module should be ready to work. However,
if you are adding a new module (or if your sub-module has externally visible routines – a no-no for the
future), you will need to add calls to your externally visible routines. It is difficult to give completely general
guidance; here we simply note a few things to keep in mind.

If you wish to be able to turn your module on or off without recompiling the code, create a new runtime
parameter (e.g., use module) in the driver module. You can then test the value of this parameter before
calling your externally visible routines from the main code. For example, the burn module routines are only
called if (iburn .eq. 1). (Of course, if the burn module is not included in the code, setting iburn to 1 will
result in empty subroutine calls.)

You will need to add use dBase if you wish to have access to the global AMR data structure. Since this
is the only mechanism for operating on the grid data (which is presumably what you want to do) in FLASH
1.x, you will probably want to do this. An alternative, if your module uses a pre-existing data structure,
is to create an interface layer which converts the PARAMESH-inspired tree data structure used by FLASH
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into your data structure, then calls your routines. This will probably have some performance impact, but it
will enable you to quickly get things working.

You may wish to create an initialization routine for your module which is called before anything (e.g.,
setting initial conditions) is done. In this case you should call the routine init module() and place a call to
it (without any arguments) in the main initialization routine, init flash.F90, which is part of the driver
module. Be sure this routine has a stub available.

If your solver introduces a constraint on the timestep, you should create a routine named tstep module()
which computes this constraint. Add a call to this routine in timestep.F90 (part of the driver/time dep

module), using your global switch parameter if you have created one. See this file for examples. Your
routine should operate on a single block and take three parameters: the timestep variable (a real variable
which you should set to the smaller of itself and your constraint before returning), the minimum timestep
location (an integer array with five elements), and the block identifier (an integer). Returning anything for
the minimum location is optional, but the other timestep routines interpret it in the following way. The first
three elements are set to the coordinates within the block of the zone contributing the minimum timestep.
The fourth element is set to the block identifier, and the fifth is set to the current processor identifier
(MyPE). This information tags along with the timestep constraint when blocks and solvers are compared
across processors, and it is printed on stdout by the master processor along with the timestep information
as FLASH advances.

If your solver is time-dependent, you will need to add a call to your solver in the evolve() routine
(driver/time dep/evolve.F90). If it is time-independent, add the call to driver/steady/flash.F90.
evolve() implements second-order Strang time splitting within the time loop maintained by driver/time dep/flash.F90.
The steady version of flash.F90 simply calls each operator once and then exits.

Try to limit the number of entry points to your module. This will make it easier to update it when the
next version of FLASH is released. It will also help to keep you sane.
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Porting FLASH to other machines

Porting FLASH to new architectures should be fairly straightforward for most Unix or Unix-like systems.
For systems which look nothing like Unix, or which have no ability to interpret the setup script or makefiles,
extensive reworking of the meta-code which configures and builds FLASH would be necessary. We do not
treat such systems here; rather than do so, it would be simpler for us to do the port ourselves. The good
news in such cases is that, assuming that you can get the source tree configured on your system and that you
have a Fortran 90 compiler and the other requirements discussed in Section 2, you should be able to compile
the code without making too many changes to the source. We have generally tried to stick to standard
Fortran 90, avoiding machine-specific features.

For Unix-like systems, you should make sure that your system has csh, a gmake which permits included
makefiles, awk, sed, and python.

Next, create a directory in source/sites/ with the name of your site (or a directory in source/sites/Prototypes/
with the name of your operating system). This directory should at least contain a makefile fragment named
Makefile.h. The best way to start is to copy one of the existing makefile fragments to your new directory
and modify that. Makefile.h sets macros which define the names of your compilers, the compiler and
linker flags, the names of additional object files needed for your machine but not included in the standard
source distribution, and additional shell commands (such as file renaming and deletion commands) needed
for processing the master makefile.

For most Unix systems this will be all you need to do. However, in addition to Makefile.h you may
need to create machine-specific subroutines which override the defaults included with the main source code.
As long as the files containing these routines duplicate the existing routines’ filenames, they do not need
to be added to the machine-dependent object list in Makefile.h; setup will automatically find the special
routine in the system-specific directory and link to it rather than to the general routine in the main source
directories.

An example of such a routine is getarg(), which returns command-line arguments and is used by FLASH
to read the name of the runtime parameter file from the command line. This routine is not part of the Fortran
90 standard, but it is available on many Unix systems without the need to link to a special library. However,
it is not available on the Cray T3E; instead, a routine named pxfgetarg() provides the same functionality.
Therefore we have encapsulated the getarg() functionality in a routine named get arguments(), which
is part of the driver module in a file named getarg.F90. The default version simply calls getarg().
For the T3E a replacement getarg.F90 calling pxfgetarg() is supplied. Since this file overrides a default
file with the same name, getarg.o does not need to be added to the machine-dependent object list in
source/sites/Prototypes/UNICOS/Makefile.h.

22.1 Writing a Makefile.h

To create a custom Makefile.h for your site, create a directory under source/sites that is the name returned
by hostname (ex. sphere.uchicago.edu). In this directory, copy the Makefile.h from the Prototypes directory
that matches your system most closely. Currently, the Makefile in sphere.uchicago.edu is usually the most
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up-to-date and should be used as a starting point if no other sites seem appropriate. To reflect your system,
you must modify the different macros defined in the Makefile.h.

22.1.1 Makefile macros

Listed and described below are macros defined in the Makefile.h:

FCOMP the name of the Fortran 90 compiler

CCOMP the name of the C compiler

CPPCOMP the name of the C++ compiler

LINK the name of the linker (usually the Fortran compiler should serve as the linker)

PP a flag (if any) that should preceed a preprocessor directive (typically -D)

FFLAGS OPT the Fortran compilation flags to produce an optimized executable. These are the flags used
when -auto is given to setup.

FFLAGS DEBUG the Fortran compilation flags to produce an executable that can be used with a debugger
(e.g. totalview). These flags are used when -debug is passed to setup.

FFLAGS TEST Fortran compilation flags to produce an executable suitable for testing. These usually involve
less optimization. These flags are used when -test is passed to setup.

CFLAGS OPT the optimized set of compilation flags for C/C++ code.

CFLAGS DEBUG the debug compilation flags for C/C++ code.

CFLAGS TEST the test compilation flags for C/C++ code.

LFLAGS OPT linker flags used with the OPT compilation flags. This usually ends in ’-o’ to rename the
executable.

LFLAGS DEBUG linker flags used with the DEBUG compilation.

LFLAGS TEST linker flags used with the TEST compilation.

LIB OPT libraries to link in with the OPT compilation. This should include the MPI library if a MPI wrapper
for the linker was not used (e.g. mpif90).

LIB DEBUG libraries to link in the with the DEBUG compilation.

LIB TEST libraries to link in with the TEST compilation.

LIB HDF4 the necessary link line required to link the HDF4 library. This will be something of the form:

L /path/to/library -lmfhdf -ldf -ljpeg -lz

LIB HDF5 the necessary link line required to link in the HDF5 library. This will look something like:

-L /path/to/library -lhdf5

For example, here’s how you might modify the macros defined in the Makefile.h in sphere.uchicago.edu/.
The first part of Makefile.h defines the paths for the libraries that FLASH requires (HDF/HDF5).

HDF4_PATH = /opt/pkgs/HDF/4.1r2_irix64v6.4-n32

HDF5_PATH = /opt/pkgs/HDF5-1.4.0-irix64n32

ZLIB_PATH = /opt/pkgs/zlib-1.1.3
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These should be modified to reflect the locations on your system. For some machines, zlib is needed in
addition to the HDF5 library in order to resolve all of the dependencies.

Next we setup the compilers and linker. We almost always use the Fortran 90 compiler as the linker, so
the Fortran libraries are automatically linked in.

FCOMP = f90

CCOMP = cc

CPPCOMP = CC

LINK = f90

# pre-processor flag

PP = -D

These commands will need to be changed if your compiler names are different. Note that on some systems
(i.e. those with MPICH as the MPI implementation), there are wrappers for the compilers (mpif90, mpicc,
mpiCC) that automatically add the proper flags for the include files and the libraries to the link line when
building. You are encouraged to use these wrappers. Some older versions of MPICH do not recognize .F90
as a valid extension. For these, you can either update MPICH to a later version, or edit mpif90 and add
.F90 to the line that checks for a valid extension. The PP macro refers to the pre-processor and should be
set to the flag that the compiler uses to pass information to the C preprocessor (usually -D).

We define three different setups of compiler flags as described earlier: the “ OPT” set for normal, fully
optimized code, the “ DEBUG” set for debugging FLASH, and the “ TEST” set for regression testing. This
latter set usually has less optimization. These three sets are picked with the -auto, -debug, and -test flags
to setup respectively.

FFLAGS_OPT = -c -Ofast=ip27 -OPT:Olimit=0:IEEE_arithmetic=3:roundoff=3 -IPA \

-r8 -d8 -i4 -cpp -r10000 -LNO

FFLAGS_DEBUG = -c -DEBUG:subscript_check=ON:verbose_runtime=ON -r8 -d8 -i4 \

-cpp -g

FFLAGS_TEST = -c -r8 -d8 -i4 -cpp -O2

F90FLAGS =

CFLAGS_OPT = -IPA -Ofast=ip27 -c

CFLAGS_DEBUG = -g -c

CFLAGS_TEST = -c -O2

Next come the linker flags. Typically, these have only -o to rename the executable, and some debug flags
(eg. -g) for the “ DEBUG” set.

LFLAGS_OPT = -r8 -d8 -i4 -IPA -o

LFLAGS_DEBUG = -r8 -d8 -i4 -g -o

LFLAGS_TEST = -r8 -d8 -i4 -o

There are two different groups of library macros defined in the Makefile.h: one group corresponding to
the “ OPT”, “ DEBUG”, “ TEST” flags defined above, and the other group for any libraries that are required
by a specific module (e.g. HDF5). Any module can require a certain library by putting a line like

LIBRARY xxx

in its Config file. This library requirement will be satisfied in the Makefile.h by creating a macro called
LIB xxx, and setting it equal to the libraries (including any path) that are required to resolve the dependencies
in that module. For the sphere.uchicago.edu Makefile.h we have

LIB_HDF4 = -L$(HDF4_PATH)/lib -lmfhdf -ldf -lz

CFLAGS_HDF5 = -I $(HDF5_PATH)/include
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LIB_HDF5 = -B static -L $(HDF5_PATH)/lib -lhdf5 \

-B dynamic -L $(ZLIB_PATH)/lib -lz

CFLAGS_VISTOOLS = -I /scratch2/caceres/python/include/python2.1

LIB_VISTOOLS = -L /scratch2/caceres/python/src -lpython2.1 \

-lpthread

LIB_OPT = -L/usr/lib32 -lmpi -lfastm

LIB_DEBUG = -L/usr/lib32 -lmpi -lfastm

LIB_TEST = -L/usr/lib32 -lmpi

Note, there are also two CFLAGS xxx macros here. They specify the include path for the library if any header
files are needed. When setup generates the master Makefile, it will append the individual CFLAGS xxx lines
to the master CFLAGS macro, and the LIB xxx lines to the master LIB macro.

Finally, we have a macro to specify and platform dependent code, and some macros for basic file manip-
ulation and library tools.

MACHOBJ =

MV = mv -f

AR = ar -r

RM = rm -f

CD = cd

RL = ranlib

ECHO = echo

On most platforms, these will not need to be modified.

It is strongly suggested that you use the compiler flags from the prototype Makefile.h that matches
your system, if one exists. These are the flags that we use when testing FLASH.

22.2 Troubleshooting

This section addresses some known problems that users and developers alike have encountered in compiling
FLASH on a number of different machines.

22.2.1 General questions about compiling FLASH

22.2.1.1 When I try to make FLASH, I get the following error:

make:

file ‘Makefile.driver’ line 34: Must be a separator (: or ::) for rules (bu39)

FLASH requires the use of GNU make (usually called gmake) to build the code.

22.2.1.2 I noticed that FLASH uses the REAL declaration for single precision. Is there a
simple way to make sure the computer calculates to DOUBLE PRECISION, even
though the variables are defined with REAL?

Although the variables are all declared as real instead of double precision (of real*8) in the code, and
constants are written as 1.e30 instead of 1.d30, the Makefiles for the different platforms use compiler
switches to promote the reals to double precision. This is necessary since on some platforms (Cray T3E),
double precision is 16-byte precision.
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22.2.1.3 When I make FLASH, lots of compilation lines are output, but no object (.o) files
are produced in object/—what’s up?

Older versions of MPICH do not recognize .F90 as a valid Fortran file extension in the mpif90 compiler
wrapper. All FLASH Fortran files end in .F90, to signify that they are free-form and require preprocessing.

To fix this, edit the mpif90 wrapper and add ”.F90” to the if test on the file extension. It should look
something like this:

if [ "$ext" = ".f" -o "$ext" = ".F" -o "$ext" = ".f90" -o \

"$ext" = ".for" -o "$ext" = ".FOR" -o "$ext" = ".F90" ] ; then

This should make mpif90 recognize .F90 files.

22.2.2 Runtime errors

22.2.2.1 The detonation problem dies when after the first timestep, with the error message:

matrix is structurally singular, rank = 1,

when running on an SGI

Originally, the MIPS Pro 7.3.X series of compilers did not work properly with FLASH, and we recom-
mended that users try dropping down to the 7.2 series, or compile without the -IPA switch. Skipping the
interprocedural inlining would significantly affect performance.

Recently, however, this problem has been fixed by the 7.3.2.1m series compilers. A test suite comparison
of the 7.2 series and 7.3.1.2 compilers found no differences in the FLASH results.

22.2.2.2 I get the an mmap error when running a large job (>∼ 32 processors) on an SGI.

Try recompiling and linking with the -64 switch (see the ABI man page). This will create a 64-bit executable.
You will need to link in the 64-bit versions of the HDF libraries.

22.2.2.3 FLASH runs for a while but all of a sudden it stops, without printing any errors to
stdout – what’s going on?

Most likely you’ve exceeded the maximum number of blocks that you have allocated on a processor – this
is controlled by the maxblocks parameter. There may be an error message in the amr log file generated by
the PARAMESH library. Possible errors include:

ERROR memory overflow in restrict

No. of blocks per processor exceeds maxblocks

There are two ways to fix this problem. Either increase the number of processors you are using or increase
the number of blocks per processor.

To increase the number of blocks per processor, you need to rerun setup with the -maxblocks flag. For
example, to setup the sedov problem with 1000 blocks per processor, use

./setup sedov -auto -maxblocks=1000

You want to ensure that the resulting executable fits into the available memory on a processor (leaving
room for the operating system). You can check the size of the memory taken by the executable with the size
command. Since flash uses very little dynamically allocated memory, this is a good measure of the memory
requirements of FLASH. The default values of maxblocks are 500 for 2-d and 200 for 3-d.
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22.2.2.4 I can compile FLASH with HDF5 fine, but when I run I get an error—“error while
loading shared libraries: libhdf5.so.0”. How do I get HDF5 output to work?

You’ve installed the shared-object library for HDF5, and linked to it fine, because you specified the location
of the library using -L on the link line. However, this library is not in your library path, so when the
executable is run, and tries to load it, it cannot find it. Try setting the LD LIBRARY PATH environment
variable to the location of the library. For example, under tcsh:

setenv LD_LIBRARY_PATH /opt/HDF5-1.4.2-patch1/lib/

22.2.2.5 FLASH segmentation faults on an IBM when running on multiple processors, what’s
up?

There is a bug in either FLASH (which I cannot find) or the AIX compilers that prevents runtime parameters.F90
from working on multiple processors when optimized with -O3 or higher. If compiled with -O3, a segmenta-
tion fault will arise, because the pointer to the head of the integer linked list magically becomes null.

The current work around is to compile runtime parameters.F90 with -O2—everything else can handle -
O3. Add a rule to your Makefile.h for runtime parameters.o that uses less optimization (i.e. FFLAGS TEST
instead of FFLAGS OPT).

22.2.2.6 When I run FLASH on an IBM machine using the AIX compilers, I get far more
blocks than I do on other platforms – how do I fix this?

Don’t use -qipa or -qhot with FLASH. It just doesn’t work. The issue is somewhere in the Paramesh library,
but it has not been worked though.

If you are insistent, you can try compiling all of amr *.F90 without -qipa/-qhot, and the rest with these
flags, but we’ve never tested FLASH in this manner, and do not support it.

22.3 Contacting the authors of FLASH

FLASH is still under active development, so many desirable features have not yet been included. Also, you
will most likely encounter bugs in the distributed code. A mailing list has been established for reporting
problems with the distributed FLASH code. To report a bug, send email to

flash-bugs@flash.uchicago.edu

giving your name and contact information and a description of the procedure you were following when you
encountered the error. Information about the machine, operating system (uname -a), and compiler you are
using is also extremely helpful. Please do not send checkpoint files, as these can be very large. If the problem
can be reproduced with one of the standard test problems, send a copy of your runtime parameter file and
your setup options. This situation is very desirable, as it limits the amount of back-and-forth communication
needed for us to reproduce the problem. We cannot be responsible for problems which arise with a physics
module or initial model you have developed yourself, but we will generally try to help with these if you can
narrow down the problem to an easily reproducible effect which occurs in a short program run and if you
are willing to supply your added source code.

We have also established a mailing list for FLASH users. This is a moderated mailing list and is intended
both for FLASH users to communicate with each other about general usage issues (other than bugs) and for
FLASH developers to announce the availability of new releases. The address for this mailing list is

flash-users@flash.uchicago.edu

Documentation (including this user’s guide and a FAQ) and support information for FLASH can be
obtained on the World Wide Web at

http://flash.uchicago.edu/flashcode/
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Tóth, G. 2000, JCP, 161, 605

Trottenberg, U., Oosterlee, C., & Schüller, A. 2001, Multigrid (San Diego: Academic Press)

van Leer, B. 1979, JCP, 32, 101

Wallace, R. K., Woosley, S. E., & Weaver, T. A. 1982, ApJ, 258, 696

Warren, M. S. & Salmon, J. K. 1993, in Proc. Supercomputing 1993 (Washington, DC: IEEE Computer
Soc.)

Weaver, T. A., Zimmerman, G. B., & Woosley, S. E. 1978, ApJ, 225, 1021

Williams, F. A. 1988, Combustion Theory (Menlo Park: Benjamin-Cummings)

Williamson, J. H. 1980, JCP, 35, 48



242 CHAPTER 23. REFERENCES

Woodward, P. & Colella, P. 1984, JCP, 54, 115

Yakovlev, D. G., & Urpin, V. A. (YU) 1980 24, 303

Yee, H. C., Vinokur, M., and Djomehri, M. J. 2000, JCP, 162, 33

Zalesak, S. T. 1987, in Advances in Computer Methods for Partial Differential Equations VI, eds. Vichn-
evetsky, R. and Stepleman, R. S. (IMACS), 15

Zingale, M. 2002, ApJ, submitted.


