
An Advanced Simulation & Computing (ASC)
Academic Strategic Alliance Program (ASAP) Center

at The University of Chicago

The Center for Astrophysical Thermonuclear Flashes

FLASH3 Boundary Conditions

Flash Tutorial
June 23, 2009

Dr. Klaus Weide

The ASC/Alliance Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Grid Boundary Conditions

❑ Grid Boundary Conditions
❑ A subunit by Grid, included by default when Grid is used

❑ Implements Grid Boundary Conditions == Fluid Boundary Conditions

Runtime parameters xl_boundary_type, xr_boundary_type, ...
❑ Gravity boundary Conditions are different:

Runtime parameter grav_boundary_type

❑ Grid Boundary Conditions are implemented (only!) as part of

Guard Cell Filling.
❑ No separate high-level call to fill boundary cells.
❑ FLASH provides implementation that gets called by

PARAMESH4 for each block (and each guard cell region).

The ASC/Alliance Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Repeat overview: blocks and cells

❑ The grid is composed of
blocks

❑ FLASH3: In current practice,
all blocks are of same size.

❑ May cover different fraction
of the physical domain,
depending on a block's
resolution.

❑ Each, block reserves space
for some layers of guard
cells.

The ASC/Alliance Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Filling guard cells I

❑ For purposes of guard cell filling, guard
cells are organized into guard cell
regions.

❑ During guard cell filling, each guard
cell region may get filled from a
different data source:

❑ A local neighbor block

❑ A remote neighbor block

❑ A boundary condition
❑ using data from adjacent

interior cells
❑ Using fixed or coordinate-

based data

❑ Interpolation from parent (if the
block touches a fine/coarse
boundary)

The ASC/Alliance Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Filling guard cells Ia

❑ For purposes of guard cell filling, guard
cells are organized into guard cell
regions.

In 2D, a block has 8 guard cell regions.

In 3D, a block has 26 guard cell regions!

❑ During guard cell filling, each guard
cell region may get filled from a
different data source:

❑ A local neighbor block

❑ A remote neighbor block

❑ A boundary condition
❑ using data from adjacent

interior cells
❑ Using fixed or coordinate-

based data

❑ Interpolation from parent (if the
block touches a fine/coarse
boundary)

-1,0

-1,-1 0,-1 1,-1

1,0

-1,1 0,1 1,1

The ASC/Alliance Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Filling guard cells Ib

❑ For purposes of guard cell filling, guard
cells are organized into guard cell
regions.

In 2D, a block has 8 guard cell regions.

In 3D, a block has 26 guard cell regions!

❑ During guard cell filling, each guard
cell region may get filled from a
different data source:

❑ A local neighbor block

❑ A remote neighbor block

❑ A boundary condition
❑ using data from adjacent

interior cells
❑ Using fixed or coordinate-

based data

❑ Interpolation from parent (if the
block touches a fine/coarse
boundary)

-1,0

-1,-1 0,-1 1,-1

1,0

-1,1 0,1 1,1

face direction

diagonal direction

The ASC/Alliance Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Filling guard cells Ic

❑ For purposes of guard cell filling, guard
cells are organized into guard cell
regions.

In 2D, a block has 8 guard cell regions.

In 3D, a block has 26 guard cell regions!

❑ During guard cell filling, each guard
cell region may get filled from a
different data source:

❑ A local neighbor block

❑ A remote neighbor block

❑ A boundary condition
❑ using data from adjacent

interior cells
❑ Using fixed or coordinate-

based data

❑ Interpolation from parent (if the
block touches a fine/coarse
boundary)

-1,0

-1,-1 0,-1 1,-1

1,0

-1,1 0,1 1,1

face neighbor

diagonal neighbor

The ASC/Alliance Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Filling guard cells from neighbors I

❑ For purposes of guard cell filling, guard
cells are organized into guard cell
regions.

❑ During guard cell filling, each guard
cell region may get filled from a
different data source:

❑ A local neighbor block

❑ A remote neighbor block

❑ A boundary condition
❑ using data from adjacent

interior cells
❑ Using fixed or coordinate-

based data

❑ Interpolation from parent (if the
block touches a fine/coarse
boundary)

cell data from
neighbor blocks

The ASC/Alliance Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Filling guard cells at Boundary I

❑ For purposes of guard cell filling, guard
cells are organized into guard cell
regions.

Now assume a block at the corner of the
domain:

❑ During guard cell filling, each guard
cell region may get filled from a
different data source:

❑ A local neighbor block

❑ A remote neighbor block

❑ A boundary condition
❑ using data from adjacent

interior cells
❑ Using fixed or coordinate-

based data

❑ Interpolation from parent (if the
block touches a fine/coarse
boundary)

-1,0

-1,-1 0,-1 1,-1

1,0

-1,1 0,1 1,1

Domain boundaries

The ASC/Alliance Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Filling guard cells at Boundary II

❑ For purposes of guard cell filling, guard
cells are organized into guard cell
regions.

The guard cell regions in red represent
locations outside of the domain:

❑ During guard cell filling, each guard
cell region may get filled from a
different data source:

❑ A local neighbor block

❑ A remote neighbor block

❑ A boundary condition
❑ using data from adjacent

interior cells
❑ Using fixed or coordinate-

based data

❑ Interpolation from parent (if the
block touches a fine/coarse
boundary)

-1,0

-1,-1 0,-1 1,-1

1,0

-1,1 0,1 1,1

The ASC/Alliance Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Filling guard cells at Boundary III

❑ For purposes of guard cell filling, guard
cells are organized into guard cell
regions.

❑ During guard cell filling, each guard
cell region may get filled from a
different data source:

❑ A local neighbor block

❑ A remote neighbor block

❑ A boundary condition
❑ using data from adjacent

interior cells
❑ Using fixed or coordinate-

based data

❑ Grid_bcApplyToRegionSpecialized is
called and passed a pointer to the data
in the blue region.

(actually, a copy of the block data)
-1,-1 0,-1 1,-1

1,0

-1,1 0,1 1,1

The ASC/Alliance Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Filling guard cells at Boundary IV

❑ For purposes of guard cell filling, guard
cells are organized into guard cell
regions.

❑ During guard cell filling, each guard
cell region may get filled from a
different data source:

❑ A local neighbor block

❑ A remote neighbor block

❑ A boundary condition
❑ using data from adjacent

interior cells
❑ Using fixed or coordinate-

based data

❑ Grid_bcApplyToRegionSpecialized
may fill in the guard cell region.

❑ OR it may decline to handle this, and
then:

❑ The subroutine Grid_bcApplyToRegion
is called and passed a pointer to the
data in the blue region.

-1,-1 0,-1 1,-1

1,0

-1,1 0,1 1,1

The ASC/Alliance Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Implementing Boundary Conditions

 Grid_bcApplyToRegionSpecialized gets called first

❑ This is normally a no-op stub

❑ This is the preferred place to users to hook in customized implementations.

❑ This interface provided more information to an implementation than
Grid_bcApplyToRegion, most importantly:

❑ A block handle (usually, block ID) identifying the block being filled
❑ Location of the data region within the Grid block

❑ May decide to handle the call, based on BC type, direction, ...

❑ Before returning, sets “applied” flag to signal that the BC was handled.

 Grid_bcApplyToRegion gets called if Grid_bcApplyToRegionSpecialized did not
handle the case.

❑ The standard implementation of Grid_bcApplyToRegion in
source/Grid/GridBoundaryConditions provides the standard simple BC types:
REFLECTING, OUTFLOW, DIODE, ...

❑ It is a good place to start if you need to write your own!

The ASC/Alliance Center for Astrophysical Thermonuclear Flashes
The University of Chicago

BCs – Complications

 Grid_bcApplyToRegion* may be called on a non-LEAF block.

 Grid_bcApplyToRegion* may be called on a block that is not even local!

❑ This can happen if a parent block needs to be filled to provide input data for
interpolation, and the parent resides on a different PE from the leaf.

❑ Simple BC methods don't have to be aware of this.

❑ But if your method depends on coodinate information, or needs to access the
block by its ID, beware!

❑ See source/Grid/GridBoundaryConditions/README and Users Guide in those
cases.

 The data region passed to Grid_bcApplyToRegion* is in transposed form:

Reference it like regionData(I,J,k,ivar), where

❑ I counts cells in the normal direction (NOT always: x direction!),

❑ J,K cont cells in the other directions

❑ Ivar counts variables

This is convenient for implementing simple BC where location does not matter, but

complicates things if you need to know where a cell is within the block.

❑ Use provided examples!

The ASC/Alliance Center for Astrophysical Thermonuclear Flashes
The University of Chicago

BCs – Simplifications

 If you prefer a simpler interface:
❑ Handle one data row at a time (vector of data in normal direction)

❑ Powerful enough to implement hydrostatic boundaries

❑ REQUIRES Grid/GridBoundaryConditions/OneRow (see source files there!)

❑ Implements a version of Grid_bcApplyToRegionSpecialized

❑ Provides functions Grid_applyBCEdge, Grid_applyBCEdgeAllUnkVars

❑ Too customize, user should provide own implementation of
Grid_applyBCEdge.F90 (or Grid_applyBCEdgeAllUnkVars.F90)

The ASC/Alliance Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Hydrostatic Boundary Conditions

❑ The ones provided are ported from FLASH2 and probably not the
best implementation. You may want to write your own!

❑ To use: REQUIRES Grid/GridBoundaryConditions/Flash2HSE

❑ Works by implementing Grid_bcApplyToRegionSpecialized, which
calls a function gr_applyFlash2HSEBC.F90 on rows (i.e., vectors)
of data

Grid/GridBoundaryConditions/Flash2HSE/Grid_bcApplyToRegionSpecialized.F90

may be a good template for your own implementation of BCs.

❑ To use, in flash.par:
❑ xl_boundary_type = “hydrostatic-F2+nvout” # etc.

❑ xl_boundary_type = “hydrostatic-F2+nvrefl” # etc.

❑ xl_boundary_type = “hydrostatic-F2+nvdiode” # etc.

❑ The three variants differ in the handling of normal velocities.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

