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Grid Boundary Conditions

❑ Grid Boundary Conditions
❑ A subunit by Grid, included by default when Grid is used

❑ Implements Grid Boundary Conditions == Fluid Boundary Conditions

Runtime parameters xl_boundary_type, xr_boundary_type, ...
❑ Gravity boundary Conditions are different:

Runtime parameter grav_boundary_type

❑ Grid Boundary Conditions are implemented (only!) as part of 

Guard Cell Filling.
❑ No separate high-level call to fill boundary cells.
❑ FLASH provides implementation that gets called by 

PARAMESH4 for each block (and each guard cell region).
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Repeat overview: blocks and cells

❑ The grid is composed of 
blocks

❑ FLASH3: In current practice, 
all blocks are of same size.

❑ May cover different fraction 
of the physical domain, 
depending on a block's 
resolution.

❑ Each, block reserves space 
for some layers of guard 
cells. 
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Filling guard cells I

❑ For purposes of guard cell filling, guard 
cells are organized into guard cell 
regions.

❑ During guard cell filling, each guard 
cell region may get filled from a 
different data source:

❑ A local neighbor block

❑ A remote neighbor block

❑ A boundary condition
❑ using data from adjacent 

interior cells
❑ Using fixed or coordinate-

based data

❑ Interpolation from parent (if the 
block touches a fine/coarse 
boundary)
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Filling guard cells Ia

❑ For purposes of guard cell filling, guard 
cells are organized into guard cell 
regions.

In 2D, a block has 8 guard cell regions.

In 3D, a block has 26 guard cell regions!

❑ During guard cell filling, each guard 
cell region may get filled from a 
different data source:

❑ A local neighbor block

❑ A remote neighbor block

❑ A boundary condition
❑ using data from adjacent 

interior cells
❑ Using fixed or coordinate-

based data

❑ Interpolation from parent (if the 
block touches a fine/coarse 
boundary)
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Filling guard cells Ib

❑ For purposes of guard cell filling, guard 
cells are organized into guard cell 
regions.

In 2D, a block has 8 guard cell regions.

In 3D, a block has 26 guard cell regions!

❑ During guard cell filling, each guard 
cell region may get filled from a 
different data source:

❑ A local neighbor block

❑ A remote neighbor block

❑ A boundary condition
❑ using data from adjacent 

interior cells
❑ Using fixed or coordinate-

based data

❑ Interpolation from parent (if the 
block touches a fine/coarse 
boundary)
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Filling guard cells Ic

❑ For purposes of guard cell filling, guard 
cells are organized into guard cell 
regions.

In 2D, a block has 8 guard cell regions.

In 3D, a block has 26 guard cell regions!

❑ During guard cell filling, each guard 
cell region may get filled from a 
different data source:

❑ A local neighbor block

❑ A remote neighbor block

❑ A boundary condition
❑ using data from adjacent 

interior cells
❑ Using fixed or coordinate-

based data

❑ Interpolation from parent (if the 
block touches a fine/coarse 
boundary)
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Filling guard cells from neighbors I

❑ For purposes of guard cell filling, guard 
cells are organized into guard cell 
regions.

❑ During guard cell filling, each guard 
cell region may get filled from a 
different data source:

❑ A local neighbor block

❑ A remote neighbor block

❑ A boundary condition
❑ using data from adjacent 

interior cells
❑ Using fixed or coordinate-

based data

❑ Interpolation from parent (if the 
block touches a fine/coarse 
boundary)

cell data from 
neighbor blocks
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Filling guard cells at Boundary I

❑ For purposes of guard cell filling, guard 
cells are organized into guard cell 
regions.

Now assume a block at the corner of the 
domain:

❑ During guard cell filling, each guard 
cell region may get filled from a 
different data source:

❑ A local neighbor block

❑ A remote neighbor block

❑ A boundary condition
❑ using data from adjacent 

interior cells
❑ Using fixed or coordinate-

based data

❑ Interpolation from parent (if the 
block touches a fine/coarse 
boundary)
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Filling guard cells at Boundary II

❑ For purposes of guard cell filling, guard 
cells are organized into guard cell 
regions.

The guard cell regions in red represent 
locations outside of the domain:

❑ During guard cell filling, each guard 
cell region may get filled from a 
different data source:

❑ A local neighbor block

❑ A remote neighbor block

❑ A boundary condition
❑ using data from adjacent 

interior cells
❑ Using fixed or coordinate-

based data

❑ Interpolation from parent (if the 
block touches a fine/coarse 
boundary)
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Filling guard cells at Boundary III

❑ For purposes of guard cell filling, guard 
cells are organized into guard cell 
regions.

❑ During guard cell filling, each guard 
cell region may get filled from a 
different data source:

❑ A local neighbor block

❑ A remote neighbor block

❑ A boundary condition
❑ using data from adjacent 

interior cells
❑ Using fixed or coordinate-

based data

❑ Grid_bcApplyToRegionSpecialized is 
called and passed a pointer to the data 
in the blue region.

(actually, a copy of the block data)
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Filling guard cells at Boundary IV

❑ For purposes of guard cell filling, guard 
cells are organized into guard cell 
regions.

❑ During guard cell filling, each guard 
cell region may get filled from a 
different data source:

❑ A local neighbor block

❑ A remote neighbor block

❑ A boundary condition
❑ using data from adjacent 

interior cells
❑ Using fixed or coordinate-

based data

❑ Grid_bcApplyToRegionSpecialized 
may fill in the guard cell region.

❑ OR it may decline to handle this, and 
then: 

❑ The subroutine Grid_bcApplyToRegion 
is called and passed a pointer to the 
data in the blue region.
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Implementing Boundary Conditions

 Grid_bcApplyToRegionSpecialized gets called first

❑ This is normally a no-op stub

❑ This is the preferred place to users to hook in customized implementations.

❑ This interface provided more information to an implementation than 
Grid_bcApplyToRegion, most importantly:

❑ A block handle (usually, block ID) identifying the block being filled
❑ Location of the data region within the Grid block

❑ May decide to handle the call, based on BC type, direction, ...

❑ Before returning, sets “applied” flag to signal that the BC was handled.

 Grid_bcApplyToRegion gets called if Grid_bcApplyToRegionSpecialized did not 
handle the case.

❑ The standard implementation of Grid_bcApplyToRegion in 
source/Grid/GridBoundaryConditions provides the standard simple BC types: 
REFLECTING, OUTFLOW, DIODE, ...

❑ It is a good place to start if you need to write your own!
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BCs – Complications

 Grid_bcApplyToRegion* may be called on a non-LEAF block.

 Grid_bcApplyToRegion* may be called on a block that is not even local!

❑ This can happen if a parent block needs to be filled to provide input data for 
interpolation, and the parent resides on a different PE from the leaf.

❑ Simple BC methods don't have to be aware of this.

❑ But if your method depends on coodinate information, or needs to access the 
block by its ID, beware!

❑ See source/Grid/GridBoundaryConditions/README and Users Guide in those 
cases.

 The data region passed to Grid_bcApplyToRegion* is in transposed form:

Reference it like regionData(I,J,k,ivar), where 

❑ I counts cells in the normal direction (NOT always: x direction!), 

❑ J,K cont cells in the other directions

❑ Ivar counts variables

This is convenient for implementing simple BC where location does not matter, but

complicates things if you need to know where a cell is within the block. 

❑ Use provided examples!
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BCs – Simplifications

 If you prefer a simpler interface:
❑ Handle one data row at a time (vector of data in normal direction)

❑ Powerful enough to implement hydrostatic boundaries

❑ REQUIRES Grid/GridBoundaryConditions/OneRow (see source files there!)

❑ Implements a version of Grid_bcApplyToRegionSpecialized

❑ Provides functions Grid_applyBCEdge, Grid_applyBCEdgeAllUnkVars

❑ Too customize, user should provide own implementation of  
Grid_applyBCEdge.F90 (or Grid_applyBCEdgeAllUnkVars.F90)
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Hydrostatic Boundary Conditions

❑ The ones provided are ported from FLASH2 and probably not the 
best implementation.  You may want to write your own!

❑ To use: REQUIRES Grid/GridBoundaryConditions/Flash2HSE

❑ Works by implementing Grid_bcApplyToRegionSpecialized, which 
calls a function gr_applyFlash2HSEBC.F90 on rows (i.e., vectors) 
of data

Grid/GridBoundaryConditions/Flash2HSE/Grid_bcApplyToRegionSpecialized.F90

may be a good template for your own implementation of BCs.

❑ To use, in flash.par:
❑ xl_boundary_type = “hydrostatic-F2+nvout”  # etc.

❑ xl_boundary_type = “hydrostatic-F2+nvrefl”  # etc.

❑ xl_boundary_type = “hydrostatic-F2+nvdiode”  # etc.

❑ The three variants differ in the handling of normal velocities.
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