
An Advanced Simulation & Computing (ASC)
Academic Strategic Alliances Program (ASAP) Center

at The University of Chicago

The Center for Astrophysical Thermonuclear Flashes

Architecture

Flash Tutorial
June 22, 2009

Dr. Lynn B. Reid

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Architecture Outline

❑  Units
❑  UnitMain
❑  Subunits
❑  Alternate implementations

❑  Naming Conventions
❑  Files
❑  Variables

❑  Inheritance
❑  Stubs

❑  Setup script
❑  Config files

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

What’s a FLASH Unit?

❑  FLASH basic architecture unit
❑  Component of the FLASH code providing a particular

 functionality
❑  Different combinations of units are used for particular problem

 setups
❑  Publishes a public interface (API) for other units’ use.
❑  Ex: Driver, Grid, Hydro, IO etc

❑  Fake inheritance by use of directory structure
❑  Interaction between units governed by the Driver
❑  Not all units are included in all applications

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

FLASH Units: Examples

Driver

I/O
Runtime
Params

Grid

Profiling

Logfile
Simulation

Infrastructure

monitoring

Hydro

Burn Gravity

MHD

Physics

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Inside a Unit: The Top Level

❑  First capitalized directory in a branch of the source tree is a unit
❑  Contains stubs for every public function (API) in the unit

❑  Does not contain the data module (unit scope data)
❑  Individual API functions may be implemented in different subunits
❑  A unit has a minimum three functions in its API, no limit on the

 maximum
❑  Unit_init, Unit_finalize and the “do-er” function for the unit

❑  If necessary, contains a directory for the local API
❑  May contain the unit test

❑  Different Unit tests can reside at different levels in the unit hierarchy
❑  The Config file contains minimal information, no runtime

 parameters except “useUnit” defined
❑  Makefile includes all the API functions.

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Subunits

❑  Every unit has a UnitMain subunit, which must be included in the
 simulation if the unit is included.
❑  Has implementations for the init, finalize and the main “do-er”

 function
❑  Also contains the unit scope data module

❑  The API functions and private functions implemented in different
 subunits are mutually exclusive

❑  Subunits other than UnitMain may have private Unit scope
 functions that can be called by other subunits.
❑  un_suInit and un_suFinalize are the most common ones
❑  (naming convention explained later)

❑  Subunits can also have private data modules, strictly within the
 scope limited to the specific subunit

❑  Subunits can have their own unit tests

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

More on Subunits

❑  A subunit may have multiple alternative implementations
❑  Alternative implementations of UnitMain also act as

 alternative implementations of the Unit.
❑  Some subunits have multiple implementations that could be

 included in the same simulation
❑  GridSolver is one possible example.
❑  Alternative implementations are specified using the “EXCLUSIVE” directive

❑  The “KERNEL” keyword indicates that subdirectories below
 that level need not follow FLASH architecture, and the
 entire subtree will be included in the simulation

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Unit Hierarchy

Unit
API/stubs

Impl_1
Remaining
API impl

kernel

kernel

UnitMain
Common API

implementation
UnitSomething

API
implementation

kernel
Impl_2

Remaining
API impl

kernel

Impl_3
Remaining
API impl

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Example of a Unit – Grid (simplified)

Grid

GridSolversGridMainGridParticles

UG

Paramesh2 paramesh4

paramesh

PM4_package

UG paramesh

MoveSieve PttoPt

local
API

Why Local API ?
Grid_init calls init
 functions for all
 subunits, if subunit is
 not included code
 won’t build.

PM4dev_�
package

GridBC

GPMapToMesh GPMove

etc…

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Functional Component in Multiple Units

❑  Example Particles
❑  Position initialization and time integration in Particles unit
❑  Data movement in Grid unit
❑  Mapping divided between Grid and Particles

❑  Solve the problem by moving control back
 and forth between units

Driver

Init

Evolve

Particles
Init Map Evolve

Grid
Init Map Move

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Inheritance

❑  Inheritance implemented through directory structure and
 Config file directives understood by the setup script

❑  A child directory inherits all functions from the parent directory
❑  If the child directory has its own implementation of a function, it replaces the inherited one.
❑  The implementation in the lowest level offspring replaces all implementations in higher level

 directories.
❑  An implementation in the “Simulation/MyProblem” directory overrides all implementations when

 running MyProblem

❑  Config files arbitrate on multiple implementations through
 “Default” keyword

❑  Runtime environment is created by taking a union of all
 variables, fluxes, and runtime parameters in Config files of
 included directories.
❑  Value given to a runtime parameter in the “Simulation/MyProblem/Config” overrides any value

 given to it in other Config files
❑  Value in “flash.par” overrides any value given in any Config file

Multiple Config file initial values of a runtime parameter in units other than the
simulation unit can lead to non-deterministic behavior since

there are no other precedence rules.

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Inheritance Through Directories: Eos

Eos_
init

Eos
Eos_

wrapped

EosMain

Gamma

Multigamma

• Stub Implementations of the
three functions at the top level

•  There is only one subunit: Eos
/EosMain
•  Replaces the stub with an
implementation common to all
formulations of EOS

Eos/EosMain/Gamma
 implements gamma versions
 of Eos_init and Eos

Eos_init

Eos_wrapped

Specific implementation

Eos

Another implementation, which will have its
 own Eos and Eos_init etc.

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Naming Convention – Basic Files Rules

❑  Namespace directories are capitalized, organizational
 directories are not

❑  All API functions of unit start with Unit_
 (i.e.Grid_getBlkPtr, Driver_initFlash etc)

❑  Subunits have composite names that include unit
 name followed by a capitalized word describing the
 subunit (i.e. ParticlesMain, ParticlesMapping,
 GridParticles etc)

❑  Private unit functions and unit scope variables are
 named un_routineName (i.e. gr_createDomain,
 pt_numLocal etc)

❑  Private functions in subunits other than UnitMain are
 encouraged to have names like un_suRoutineName,
 as are the variables in subunit scope data module

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Naming Conventions: Within files

❑  Constants are all uppercase, usually have
 preprocessor definition, multiple words are separated
 by an underscore.
❑  Permanent constants in “constants.h” or “Unit.h”

❑  #define MASTER_PE 0
❑  #define CYLINDRICAL 3

❑  Generated by setup script in “Flash.h”
❑  #define DENS_VAR 1
❑  #define NFACE_VARS 6

❑  Style within routines
❑  Variables from Unit_data start with unit_variable:

 “eos_eintSwitch”
❑  Variables begin lowercase, additional words begin with

 uppercase: “massFraction”

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Naming Conventions – How they help

❑  The significance of capitalizing unit names:
❑  A new unit can be added without the need to modify the setup

 script.
❑  If the setup script encounters a top level capitalized directory

 without an API function to initialize the unit, it issues a
 warning.

❑  Variable Style:
❑  Immediately clear if variable is CONSTANT, local

 (massFraction) or global (eos_eintSwitch) in scope

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Setup Script Implements Architecture

Python code links together needed physics
and tools for a problem

❑  Traverse the FLASH source tree and link necessary files for a
 given application to the object directory

❑  Creates a file defining global constants set at build time
❑  Builds infrastructure for mapping runtime parameters to

 constants as needed
❑  Configures Makefiles properly
❑  Determine solution data storage list and create Flash.h
❑  Generate files needed to add runtime parameters to a given

 simulation.
❑  Generate files needed to parse the runtime parameter file.

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Setup Building an Application

Mesh Database

Gravity

Source
Terms Materials

Hydro Particles

I/O Vis

MHD

Configuration
Tool

(Setup)

Driver

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Config file: Purpose

❑ Written in a FLASH-dependent syntax
❑  Needed in each Unit or Simulation directory
❑  Define dependencies at all levels in the source tree:

❑  Lists required, requested, exclusive modules

❑  Declare solution variables, fluxes
❑  Declare runtime parameters

❑  Sets defaults and allowable ranges – do it early!
❑  Documentation – start line with “D”

❑  Variables, Units are additive down the directory tree
❑  Provides warnings to prevent dumb mistakes

❑  Better than compiling and then crashing

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Config Files: Spiffy bits

❑  Programming syntax of sorts:
❑  Allows some implementations choices with LINKIF
❑  Gives Unit-specific pre-processor symbols with PPDEFINE
❑  Comments are supported, use them!

❑  Hints:
❑  Keep the parameter space clean & documented
❑  Use the least aggressive request for an implementation

❑  Consider REQUESTS instead of REQUIRES
❑  Use REQUIRES with the most general level possible (i.e. Grid

/GridMain rather than a specific implementation)
❑  Set default values and constraints

❑  The earlier an error is detected, the easier it is to fix.
❑  Prevents operator misuse

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Config file example

Alternate local IO routines

Runtime parameters and
 documentation

Additional scratch grid variable

Required Units

Enforce geometry or other conditions

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Simple setup
hostname:Flash3> ./setup MySimulation -auto

setup script will automatically generate the object directory based on the
 MySimulation problem you specify

INCLUDE Driver/DriverMain/TimeDep
INCLUDE Grid/GridMain/paramesh/Paramesh3/PM3_package/headers
INCLUDE Grid/GridMain/paramesh/Paramesh3/PM3_package/mpi_source
INCLUDE Grid/GridMain/paramesh/Paramesh3/PM3_package/source
INCLUDE Grid/localAPI
INCLUDE IO/IOMain/hdf5/serial/PM
INCLUDE PhysicalConstants/PhysicalConstantsMain
INCLUDE RuntimeParameters/RuntimeParametersMain
INCLUDE Simulation/SimulationMain/Sedov
INCLUDE flashUtilities/general
INCLUDE physics/Eos/EosMain/Gamma
INCLUDE physics/Hydro/HydroMain/split/PPM/PPMKernel
INCLUDE physics/Hydro/HydroMain/utilities

If you don’t use the -auto flag, you must have a valid Units file
 in the object FLASH directory (FLASH3/object/Units)

Try manually changing IO
/IOMain/hdf5/serial/PM to IO
/IOMain/hdf5/parallel/PM -
 Then run setup without the

-auto flag

Sample Units File

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

setup Shortcuts & help

❑  ./setup –help shows many fascinating options
❑  Shortcuts allows many setup options to be included

 with one keyword
❑  To use a shortcut, add +shortcut to your setup line

❑  The shortcut ug is defined as:
❑  ug:--with-unit=Grid/GridMain/:Grid=UG:

❑  prompt> ./setup MySimulation -auto +ug

❑  this is equivalent to typing in unit options with
❑  -unit=Grid/GridMain/UG
❑  -unit=IO/IOMain/hdf5/serial/UG (because the appropriate IO is

 included by default)

❑  Look in Flash3/bin/setup_shortcuts.txt for more
 examples and to define your own

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Important Files Generated by setup

setup_call contains the options with which setup was called and the command line
 resulting after shortcut expansion

setup_datafiles contains the complete path of data files copied to the object directory

setup_defines contains a list of all pre-process symbols passed to the compiler
 invocation directly

setup_flags contains the exact compiler and linker flags

setup_libraries contains the list of libraries and their arguments (if any) which was
 linked in to generate the executable

setup_params contains the list of runtime parameters defined in the Config files
 processed by setup

setup_units contains the list of all units which were included in the current setup

setup_vars contains the list of variables, fluxes, species, particle properties, and
 mass scalars used in the current setup, together with their descriptions

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Additional Files created by setup

❑  Flash.h contains
❑  Problem dimensionality and size e.g. NDIM, MAXBLOCKS
❑  Fixed block size dimensionality e.g. NXB, GRID_IJI_GC
❑  Variable, species, flux, mass scalar numbers and list e.g. e.g.

 NSPECIES, DENS_VAR, EINT_FLUX
❑  Possibly grid geometry GRID_GEOM
❑  PPDEFINE variables showing which units are included e.g.

 FLASH_GRID_PARAMESH3

❑  Simulation_mapIntToStr.F90,
 Simulation_mapStrToInt.F90
❑  Converts text strings to equivalent index in Flash.h e.g. “dens”

 maps to DENS_VAR=1
❑  Similar functionality to FLASH2’s dbaseKeyNumber

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Architecture

Questions?

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

setup Options: use ./setup -help
-auto Automatically generates the Units file

-unit=<unit> Forces a specific unit to be used

-without-unit=<unit> Forces a specific unit to be left out

-[123]d Specifies the dimension, default is 2d

-nxb=<#> -nyb=<#> -nzb=<#> Specifies number of zones/block, default is 8

-maxblocks=<#> Assigns maxblocks per processor. Defaults are in place but you may want to
 modify depending on problem and machine specs

-site=<site> | -ostype=<ostype> Allows you to directly specify the host or ostype. Typically setup finds this info
 but on some machines it isn’t directly accessible.
-site=sphere.asci.uchicago.edu or -ostype=Linux

-debug | -test -debug: makes compiler put debugging symbols in executable, possibly checks
 for array out of bounds conditions, etc
-test: compiles code with no debugging or optimization options
-opt: compiles code for highest performance (default)

-portable Normally setup links files from the source directory to the object directory. With
 -portable files are copied to object dir instead

-objdir=<relative obj dir> By default setup script links all files needed in compilation to the object
 directory. The -objdir flag allows you to specify a different or new directory

-noclobber To setup a simulation over a previous compiled object directory, so that
 previously included units are not recompiled, saving compilation time

-verbose More wordy explanations during setup

-parfile=<file> This causes setup to copy the specified file in the simulation directory to the
 object directory as flash.par

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Basic Config File Syntax

DEFAULT sub-unit Every unit and subunit designates one implementation to be the
 ``default''. If no specific implementation of the unit or its sub-units
 is selected by the application, the designated default
 implementation gets included

EXCLUSIVE implementation… Specify a list of implementations that cannot be included together

REQUIRES unit[/sub-unit[
/implementation...]] [OR unit[/sub
-unit...]]...

Specify a unit requirement. Unit requirements can be general,
 without asking for a specific implementation, so that unit
 dependencies are not tied to particular algorithms

REQUESTS unit[/sub-unit[
/implementation...]]

Requests a unit to be added to the Simulation. All requests, are
 upgraded to a ``REQUIRES'' if they are not negated by a "
-without-unit" option from the command line. If negated, the
 REQUEST is ignored. This can be used to turn off profilers and
 other ``optional'' units which are included by default.

CONFLICTS unit1[/sub-unit[
/implementation...]] ...

Specifies that the current unit, subunit or specific implementation
 is not compatible with the list of units, subunits or other
 implemenations list that follows. Setup issues an error if the user
 attempts to set up a conflicting unit configuration.

PARAMETER name type [constant]
 default [range spec]

Specify a runtime parameter. Parameter names are unique up to
 20 characters and may not contain spaces. Admissible types
 include REAL, INTEGER, STRING, and BOOLEAN

DATAFILES wildcard Declare that all files matching the given wildcard in the unit
 directory should be copied over to the object directory.

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

More Config File Syntax

VARIABLE name Register variable with the framework with name name. The setup script
 collects variables from all the included units, and creates a comprehensive
 list with no duplications. It then assigns defined constants to each variables
 and calculates the amount of storage required in the data structures for
 storing the variables. The defined constants, and the calculates sizes are
 written to the file Flash.h.

FLUX name Register flux variable name with the framework. When using adaptive mesh,
 flux conservation is needed at fine-coarse boundaries. Paramesh uses a
 data structure for this purpose, the flux variables provide index into that
 data structure.

SPECIES name An application that uses multiple species uses this keyword to define them

MASS_SCALAR name If a quantity is defined with keyword MASS_SCALAR, space is created for it
 in the ``unk'' data structure. It is treated like any other variable by
 Paramesh, but the hydrodynamic unit treats it differently. It is advected, but
 other physical characteristics don't apply to it.

GRIDVAR name This keyword is used in connection with the grid scope scratch space
 supported by FLASH3 (This feature wasn't available in FLASH2). It lets you
 ask for scratch space for variables specified with this keyword.

PPDEFINE name Define a preprocessor symbol which appears in Flash.h. Useful for
 differentiating Fortran code which depends upon a certain Unit.

USESETUPVARS var Provides logical action within setup.

LINKIF file unit/directory/path Provides alternate linking routines dependent upon included Unit path.

