

Various Hydro Solvers in FLASH3

Dongwook Lee

FLASH3 Tutorial June 22-23, 2009

An Advanced Simulation and Computing (ASC) Academic Strategic Alliances Program (ASAP) Center at The University of Chicago

- □ In FLASH3, "Hydro" unit houses more than one usual gas dynamics solver:
 - Pure hydrodynamics (i.e., gas dynamics) solvers (PPM & MUSCL-Hancock)
 - Magnetohydrodynamics(MHD) solvers (Unsplit Staggered Mesh & 8-wave)
 - Relativistic hydrodynamics (RHD) solver
- The Hydro unit is organized into two different subunits depending on how you treat multidimensional flux updates:
 - Operator (dimensional) Splitting (Strang, 1968) vs. Unsplit (Colella, 1990; Lee & Deane, 2009)
 - source/Hydro/HydroMain/split (PPM, 8-wave MHD, RHD)
 - source/Hydro/HydroMain/unsplit (Staggered Mesh MHD, MUSCL-Hancock pure-Hydro)
- All these five major different solvers are based on high-order Godunov (1959) method which involves:
 - Finite volume method
 - Predictor-corrector
 - Riemann problem
 - Explicit time advancement

- Pure hydrodynamics solvers (PPM & MUSCL-Hancock)
 - Compressible reactive gas dynamics
 - Can solve a broad range of (astro)physical problems
- MHD solvers (Unsplit Staggered Mesh & 8-wave)
 - flows of conducting fluids (ionized gases, liquid metals) in presence of magnetic fields
 - Plasma is a completely ionized gas, consisting of freely moving positively charged ions (or nuclei) and negatively charged electrons
 - Lorentz forces act on charged particles and change their momentum and energy. In return, particles alter strength and topology of magnetic fields.
 - □ A valid macroscopic model of magnetized plasma \rightarrow MHD
- Relativistic hydrodynamics solver (RHD)
 - A wide variety of astrophysical flows exhibit relativistic behavior
 - accretion around compact objects, jets in extragalactic radio sources, pulsar winds, gamma ray bursts

Hydro Unit in FLASH3

Splitting

$$X^{\Delta t}: \begin{array}{l} \text{PDE}: U_t + F(U)_x = 0\\ \text{IC}: U^n \end{array} \xrightarrow{\Delta t} U^{n+1/2} \\ Y^{\Delta t}: \begin{array}{l} \text{PDE}: U_t + G(U)_y = 0\\ \text{IC}: U^{n+1/2} \end{array} \xrightarrow{\Delta t} U^{n+1} \end{array}$$

1st order Strang Splitting

$$\mathbf{U}^{n+1} = \mathbf{X}^{\Delta t} \mathbf{Y}^{\Delta t} \mathbf{U}^{n}$$

2nd order Strang Splitting

$$\mathbf{J}^{n+1} = \left(\mathbf{X}^{\Delta t/2} \mathbf{Y}^{\Delta t/2} \right) \mathbf{Y}^{\Delta t/2} \mathbf{X}^{\Delta t/2} \mathbf{U}^{n}$$

Unsplit

PDE:
$$U_t + F(U)_x + G(U)_y = 0$$

IC: $U(x, y, t^n) = U^n$

Splitting vs. Unsplit

Piecewise-parabolic method solver (PPM) (Fryxell et al., 2000)

- □ Parabolic interpolation of data over each cell (Colella and Woodward, 1984)
 - (Ideally) 3rd order, (formally) 2nd order, (practically) 1st order in shocks and discontinuities in spatial discretization
 - □ High resolution with accuracy (smooth flows)
 - Monotonocity enforcement, interpolant flattening, steepening of contact discontinuities
- □ 2nd order in explicit time evolution using operator splitting formulation

Cellular detonation

Gravitationally confined detonation

Turbulent Nuclear Burning

Rayleigh-Taylor instability

□ MHD 8-wave solver (Timur Linde, 1999)

- Monotone Upstream-centered Scheme for Conservation Laws (MUSCL) approach (Van Leer, 1977)
 - □ 2nd order in space, 2nd order in time
 - □ Magnetic monopoles (8th wave) are convected away, rather than accumulated (Powell et al., 1998) (i.e., $\nabla \cdot B \neq 0$)
 - Non-conservative formulation of the MHD governing equations
 - Incorrect jump conditions and incorrect propagation speeds across discontinuites
 - Robust and accurate (as compared to the basic conservative scheme)

Shock-Cloud Interaction

Magnetic reconnection

Special Relativistic solver (RHD) (A. Mignone, 2004)

- □ PPM (3rd order in space) and PLM (2nd order) interpolations
- □ 2nd order in explicit time evolution using operator splitting formulation
- □ (special) relativistic effects are twofold:
 - > kinematical, $v \sim c \ (\gamma = 1/(1 v^2)^{1/2} >> 1)$
 - > thermodynamical, $c_s \sim c$
- Relativistic flows with γ > (3/2)^{1/2} are always <u>supersonic</u>, and therefore shock-capturing methods are essential (Martí and Müller, 2003)

 $\gamma = 10$ Jet

Relativistic Shock tube

The ASCI/Alliances Center for Astrophysical Thermonuclear FlashesJet tThe University of Chicago(GR

2-D Riemann Problem

Jet through collapsars (GRB), $\gamma \sim 50$

Unsplit pure-Hydro solver (Lee, 2009)

- Reduced version of USM-MHD solver without magnetic and electric fields
- □ 2nd order MUSCL-Hancock in space and time
- Preserves better flow symmetries (Roe solver + Carbuncle instability fix)

Unsplit MUSCL-Hancock

Split PPM

- Unsplit Staggered Mesh (USM) MHD solver (Lee, 2006; Lee and Deane 2009)
 - A very efficient new <u>data reconstruction</u> algorithm
 - MUSCL-Hancock (2nd order in space) type characteristic tracing method
 - No extra Riemann problems for transverse fluxes!
 - A new way of treating <u>multidimensional MHD source terms</u> <u>in unsplit</u> formulation
 - □ Constrained Transport (CT) algorithm (Evans and Hawley, 1988; Balsara and Spicer, 1999) for induction equations to maintain $\nabla \cdot \mathbf{B} = 0$ on a <u>staggered grid</u>

□ cell-centered, face-centered, corner (edge-centered) variables

 Enhanced solution accuracy in calculating electric fields for the induction equations (modified electic field construction)
 Added proper amount of numerical dissipation – important!

Unsplit Staddered Mesh (USM) MHD solver (Lee. 2006: Lee and Deane 2009)

• Operator splitting MHD schemes cannot avoid erroneous growth in B_z :

- Physics
 - Ideal and non-ideal flows
 - Magnetic resistivity, themal conductivity, and viscosity
 - EOS
 - □ Ideal gamma, multiple gamma, Helmholtz (degenerate EOS)
 - Gravity
 - Multiple species, particles
 - □ Well tested for wide ranges of plasma flows: $10^{-6} < \beta (= p/B_p) < 10^{6}$
- Implementations and algorithms
 - Riemann solvers
 - □ Roe (default), HLLE, HLLC, HLLD (robust and accurate, suggested for most plasma flows)
 - □ Carbuncle, even-odd instability fix for Roe solver
 - Strong shock-rarefaction detect algorithm (Balsara)
 - □ Various slope limiters (Minmod, MC, Van Leer, hybrid)
 - Two prolongation methods of divergence-free B fields on AMR
 - □ Use of face-centered variables, and edge-centered variable
 - □ Wide ranges of CFL limit: CFL < 1 for 1D, 2D and 3D

Applications

- MHD Simulation (especially with the USM solver) should be located in
 - source/Simulation/SimulationMain/magnetoHD/
 - □ Special prolongation for face-centered variables
- Create Simulation_initBlock.F90 exactly as you would do for hydro. Just do not forget to set magnetic field variables (both cell-centered and cell face -centered) in the initialization routine.
 - □ Magnetic fields need to satisfy $\nabla \cdot \mathbf{B} = 0$
- Do not add magnetic pressure to total specific energy, because FLASH EOS routines assume a specific expression for it.
- Create Config and flash.par files for your own Simulation directory.
- Special care in writing custom boundary conditions in Grid_bcApplyToRegionSpecialized.F90.
- Write custom functions and do not forget to add them to Makefile. Such custom functions in your Simulation directory will override other standard implementations.

Ø Configuration file for Orszag Tang MHD vortex problem (Orszag and Tang, J. Fluid Mech., 90:129--143, 1979) REQUIRES physics/Hydro/HydroMain REQUIRES physics/Eos/EosMain/Gamma USESETUPVARS withParticles IF withParticles PARTICLETYPE passive INITMETHOD lattice MAPMETHOD quadratic REOUIRES Particles/ParticlesMain REQUESTS IO/IOMain REOUESTS IO/IOParticles REQUESTS Particles/ParticlesMapping/Quadratic REQUESTS Particles/ParticlesInitialization/Lattice ENDIF D tiny Threshold value used for numerical zero PARAMETER tiny REAL 1.e-16 # ----- For Resistive MHD setup --------------# #REQUIRES physics/materialProperties/Conductivity/ConductivityMain/Constant-diff #REQUIRES physics/materialProperties/Viscosity/ViscosityMain #REQUIRES physics/materialProperties/MagneticResistivity/MagneticResistivityMain #REQUIRES physics/sourceTerms/Diffuse/DiffuseMain #VARIABLE vecz # vector potential Az #----- End of Resistive MHD setup ----------#

DivB control switch killdivb = .true. Flux Conservation for AMR flux correct = .true. ## -------## ## SWITCHES SPECIFIC TO THE UNSPLIT STAGGERED MESH MHD SOLVER ## # I. INTERPOLATION SCHEME: order = 2 # Interpolation order (First/Second order) slopeLimiter = "mc" # Slope limiters (minmod, mc, vanLeer, hybrid, limited) LimitedSlopeBeta= 1. # Slope parameter for the "limited" slope by Toro charLimiting = .true. # Characteristic limiting vs. Primitive limiting II. MAGNETIC(B) AND ELECTRIC(E) FIELDS: prolMethod = "injection prol" # Prolongation method (injecton prol, balsara prol) III. RIEMANN SOLVERS: shockInstabilityFix = .false. # Carbuncle instability fix for the Roe solver entropy = .false. # Entropy fix for the Roe solver IV. STRONG SHOCK HANDELING SCHEME: # shockDetect = .false. # Shock Detect for numerical stability
------##

- ./setup magnetoHD/OrszagTang -auto -2d +usm (+8wave) -opt (-debug)
 _objdir=OT2D _with-unit=Particles +pm3 (+pm4dev) -nxb=8 -nyb=8
 _ Irefine min = 1, Irefine max = 6
- ./setup magnetoHD/Rotor -auto -2d +usm -opt +ug –nxb=200 –nyb=300
 iProcs = 2, jProcs = 2
- ./setup magnetoHD/Rotor -auto -2d +usm -opt +nofbs
 iGridSize = 400, jGridSize = 600, iProcs = 2, jProcs = 2
- More shortcuts can be found in
 - /bin/setup_shortcuts.txt
 - □ Users can add their own customized shortcut(s) by editing the file

/bin/setup_shortcuts.txt

Choice of Grid grid:-unit=Grid: ug:+grid:Grid=UG: pm2:+grid:Grid=PM2: pm40:+grid:Grid=PM40: pm3:+pm40 pm4dev:+grid:Grid=PM4DEV:ParameshLibraryMode=True

Choice of MHD solver
NOTE: The 8wave mhd solver only works with the native interpolation.
8wave:--with-unit=physics/Hydro/HydroMain/split/MHD_8Wave:+grid:-gridinterpolation=native

NOTE: If pure hydro mode used with the USM solver, add +pureHydro in setup
usm:--with-unit=physics/Hydro/HydroMain/unsplit/MHD_StaggeredMesh:--without-unit=physics/Hydro/HydroMain/split/MHD_8Wave
pureHydro:physicsMode=hydro
unsplitHydro:--with-unit=physics/Hydro/HydroMain/unsplit/Hydro_MusclHancock

- Simulation's Config file contains all default runtime parameter values specific to your problem
- default.par is also generated in your object directory
- Flash.h, setup_units, setup_vars, setup_params, etc
- Always helpful to read FLASH user's guide
- Further read/refer references to understand the various roles/effects on using different choices of runtime parameters
 - e.g., Roe vs. HLL-type Riemann solvers
- Use "-debug" for testing
- Many (simple) issues come from wrong initializations and wrong boundary conditions
 - Simplify your issues as much as possible
 - Detailed description on your issues/bugs is always welcome
 - Your simulation files, flash.par, log files, boundary conditions, compilers, setup lines, etc.

- Make sure you know your problem
 - Literature research
 - IC, BC, units
 - Any working example?
 - Working on FLASH3
- Comments, comments, and comments keep your journal
- Useful books and references:
 - LeVeque, Finite volume methods for hyperbolic problems
 - Toro, Riemann solvers and numerical methods for fluid dynamics
 - Laney, Computational gas dynamics
 - Goedbloed and Poedts, Principles of Magnetohydrodynamics
 - NRL plasma formulary
 - □ FLASH user's guide
- Ask around good people!

Supplementary slides

$$\frac{\partial}{\partial t} \begin{pmatrix} \rho \\ \mathbf{V} \\ \rho E \\ \mathbf{B} \end{pmatrix} + \nabla \cdot \begin{pmatrix} \rho \mathbf{V} \\ \rho \mathbf{V} + (p + \frac{B^2}{2})\overline{\mathbf{I}} - \mathbf{B}\mathbf{B} \\ \mathbf{V}(\rho E + p + \frac{B^2}{2}) - \mathbf{B}(\mathbf{V} \cdot \mathbf{B}) \\ \mathbf{V}\mathbf{B} - \mathbf{B}\mathbf{V} \end{pmatrix} = 0$$

Major Properties:

♪

- MHD equations form a hyperbolic system → Seven families of waves (entropy, Alfvén and fast and slow magnetoacoustic waves).
- Convex space of physically admissible variables if convex EOS.
- ❑ Non-convex flux function → Multiple degeneracies in the eigensystem, possibility of compound waves, shock evolutionarity concerns.
- **Important to remember**: Fluid (Euler) equations <u>are not</u> the limiting case of MHD equations in the $B \rightarrow 0$ case in strict mathematical sense.

MHD Equations in FLASH3

$$\begin{aligned} \frac{\partial \rho}{\partial t} &+ \nabla \cdot (\rho \mathbf{v}) = 0 \\ \frac{\partial \rho \mathbf{v}}{\partial t} &+ \nabla \cdot (\rho \mathbf{v} \mathbf{v} - \mathbf{B} \mathbf{B}) + \nabla p_* = \rho \mathbf{g} + \nabla \cdot \tau \\ \frac{\partial \rho E}{\partial t} &+ \nabla \cdot (\mathbf{v} (\rho E + p_*) - \mathbf{B} (\mathbf{v} \cdot \mathbf{B})) = \rho \mathbf{g} \cdot \mathbf{v} + \nabla \cdot (\mathbf{v} \cdot \tau + \sigma \nabla T) + \nabla \cdot (\mathbf{B} \times (\eta \nabla \times \mathbf{B})) \\ \frac{\partial \mathbf{B}}{\partial t} &+ \nabla \cdot (\mathbf{v} \mathbf{B} - \mathbf{B} \mathbf{v}) = -\nabla \times (\eta \nabla \times \mathbf{B}) \end{aligned}$$

where

$$p_* = p + \frac{B^2}{2},$$

$$E = \frac{1}{2}v^2 + \epsilon + \frac{1}{2}\frac{B^2}{\rho},$$

$$\tau = \mu \left((\nabla \mathbf{v}) + (\nabla \mathbf{v})^{\mathrm{T}} - \frac{2}{3}(\nabla \cdot \mathbf{v}) \right)$$

- Advective terms are discretized using slope-limited TVD scheme.
- Diffusive terms are discretized using central finite differences.
- Time integration is done using one-stage Hancock scheme.
- Directions are either split or unsplit.

- Numerical MHD
 - □ Finite difference method (e.g., ZEUS code by Stone & Norman, 1992)
 - □ High order Godunov method high resolution shock capturing approach
- Two major algorithmic progresses in high order Godunov based MHD codes
 - Multidimensional integration algorithm
 - split vs. unsplit
 - Donor cell method
 - Corner transport upwind (CTU), Colella 1990
 - Divergence-free constraint on B
 - Hodge projection
 - Zachary et al, 1994; Crockett et al, 2005
 - Constrained transport (CT)
 - Evans & Hawley, 1988; Dai & Woodward, 1998; Ryu et al, 1998; Balsara & Spicer, 1999; Toth, 2000; Londrillo & Del Zanna, 2004; Ziegler, 2004; Gardiner & Stone, 2005; Fromang, 2006; Cunningham et al, 2007
 - Non-conservative formulation
 - Devell (et al), 1994; 1999; Falle et al, 1998; Dedner et al, 2002

USM scheme

- Numerical MHD
 - □ Finite difference method (e.g., ZEUS code by Stone & Norman, 1992)
 - □ High order Godunov method high resolution shock capturing approach
- Two major algorithmic progresses in high order Godunov based MHD codes
 - Multidimensional integration algorithm
 - split vs. unsplit *
 - Donor cell method
 - □ Corner transport upwind (CTU), Colella 1990
 - Divergence-free constraint on B
 - Hodge projection
 - □ Zachary et al, 1994; Crockett et al, 2005
 - Constrained transport (CT)⁴
 - Evans & Hawley, 1988; Dai & Woodward, 1998; Ryu et al, 1998; Balsara & Spicer, 1999; Toth, 2000; Londrillo & Del Zanna, 2004; Ziegler, 2004; Gardiner & Stone, 2005; Fromang, 2006; Cunningham et al, 2007
 - Non-conservative formulation
 - Devell (et al), 1994; 1999; Falle et al, 1998; Dedner et al, 2002

Applications

Orszag-Tang

Jet Launching

Shock-Cloud Interaction 0.5 × (cm)

Surface Gravity Wave

Self-Gravitating Plasma

Rising bubble

Magnetic reconnection

The ASCI/Alliances Center for Astrophysical Thermonuclear Flashes The University of Chicago

Magnetic RT

Beyond Plain MHD

Plasma effects

- Reduced 2D Hall (Grasso et al, 1999)
- Electron inertia and compressibility
- 3D Hall MHD and two-fluid MHD

$$\mathbf{E} + \mathbf{V} \times \mathbf{B} = \frac{1}{S} \mathbf{J} + \frac{d_e^2}{n} \frac{d\mathbf{J}}{dt} + \frac{d_i}{n} \left(\mathbf{J} \times \mathbf{B} - \nabla \cdot \vec{p}_e \right) \qquad \stackrel{B}{\vec{v}} = 1$$

 $\mu_0 c^2 = -$

 μ_0

Relativistic MHD

$$\frac{\partial \mathbf{W}}{\partial t} + (\nabla \cdot \mathbf{F})^{\mathrm{T}} = \mathbf{0}$$

$$\mathbf{W} = \begin{pmatrix} \Gamma_{\rho} & \\ \Gamma^{2} \frac{e+p}{c^{2}} \mathbf{u} + \frac{1}{c^{2}} \mathbf{S}_{\mathrm{A}} \\ \mathbf{B} \\ \Gamma^{2}(e+p) - p - \Gamma \rho c^{2} + e_{\mathrm{A}} \end{pmatrix} \quad \mathbf{F} = \begin{pmatrix} \Gamma \rho \mathbf{u} \\ \frac{\Gamma^{2}}{c^{2}} (e+p) \mathbf{u} \mathbf{u} + p \mathbf{I} + \mathbf{P}_{\mathrm{A}} \\ \mathbf{u} \mathbf{B} - \mathbf{B} \mathbf{u} \\ [\Gamma^{2}(e+p) - \Gamma \rho c^{2}] \mathbf{u} + \mathbf{S}_{\mathrm{A}} \end{pmatrix}^{\mathrm{T}}$$

$$\Gamma = \frac{1}{\sqrt{1 - \frac{u^{2}}{c^{2}}}}, \qquad e_{\mathrm{A}} = \frac{1}{2\mu_{0}} \left(B^{2} + \frac{1}{c^{2}} E^{2} \right),$$

$$\mathbf{S}_{\mathrm{A}} = \frac{1}{c} (\mathbf{E} \times \mathbf{B}) \qquad \mathbf{P}_{\mathrm{A}} = e_{\mathrm{A}} \mathbf{I} - \frac{1}{c^{2}} \mathbf{B} \mathbf{B} - \frac{1}{c^{2}} \mathbf{E} \mathbf{E}.$$

Numerical Results on Benchmarked problems (1)

Field Loop advection in 3D

Current Sheet Problem with different plasma beta values (magnetic field lines are shown)

Numerical Results on Benchmarked problems (2)

Current Sheet Problem with different plasma beta values (magnetic field lines are shown)

Other Applications

