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Hydro Solvers in FLASH3 

❑  In FLASH3, “Hydro” unit houses more than one usual gas dynamics solver: 
❑  Pure hydrodynamics (i.e., gas dynamics) solvers (PPM & MUSCL-Hancock) 
❑  Magnetohydrodynamics(MHD) solvers (Unsplit Staggered Mesh & 8-wave) 
❑  Relativistic hydrodynamics (RHD) solver 

❑  The Hydro unit is organized into two different subunits depending on how you
 treat multidimensional flux updates: 
❑  Operator (dimensional) Splitting (Strang, 1968) vs. Unsplit (Colella, 1990; Lee & Deane,

 2009)  
❑  source/Hydro/HydroMain/split (PPM, 8-wave MHD, RHD) 
❑  source/Hydro/HydroMain/unsplit (Staggered Mesh MHD, MUSCL-Hancock pure-Hydro) 

❑  All these five major different solvers are based on high-order Godunov (1959)
 method which involves: 
❑  Finite volume method 
❑  Predictor-corrector 
❑  Riemann problem 
❑  Explicit time advancement 
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Physics of Hydro Solvers 

❑  Pure hydrodynamics solvers (PPM & MUSCL-Hancock) 
❑  Compressible reactive gas dynamics 
❑  Can solve a broad range of (astro)physical problems 

❑  MHD solvers (Unsplit Staggered Mesh & 8-wave) 
❑  flows of conducting fluids (ionized gases, liquid metals) in presence of

 magnetic fields 
❑  Plasma is a completely ionized gas, consisting of freely moving positively

 charged ions (or nuclei) and negatively charged electrons 
❑  Lorentz forces act on charged particles and change their momentum and

 energy. In return, particles alter strength and topology of magnetic fields. 
❑  A valid macroscopic model of magnetized plasma  MHD 

❑  Relativistic hydrodynamics solver (RHD) 
❑  A wide variety of astrophysical flows exhibit relativistic behavior 
❑  accretion around compact objects, jets in extragalactic radio sources, pulsar

 winds, gamma ray bursts 
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Hydro Unit in FLASH3 

Hydro_MusclHancock 
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Operator Splitting vs. Unsplit Formulations 
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Operator Splitting vs. Unsplit Formulations 

Unsplit 

Splitting 
1st order Strang Splitting 

2nd order Strang Splitting 
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Splitting vs. Unsplit 

source/Hydro/HydroMain 

•  PPM 
•  MHD_8Wave 
•  RHD 

•  Hydro_MusclHancock 
•  MHD_StaggeredMesh 

/split /unsplit 

•  Easy to implement 
•  Robust, stable, efficient 
•  Less memory and computation 
•  Good enough for gas dynamics 
•  Bad for MHD 

•  Not easy to implement a robust &  
  stable solver 
•  More memory and computation 
•  Good for preserving symmetries 
•  Very important for MHD! 
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Hydro Solvers Primer – Split solvers 

❑  Piecewise-parabolic method solver (PPM) (Fryxell et al., 2000) 
❑  Parabolic interpolation of data over each cell (Colella and Woodward, 1984) 

❑  (Ideally) 3rd order, (formally) 2nd order, (practically) 1st order in shocks and
 discontinuities in spatial discretization 

❑  High resolution with accuracy (smooth flows) 
❑  Monotonocity enforcement, interpolant flattening, steepening of contact

 discontinuities 

❑  2nd order in explicit time evolution using operator splitting formulation 

Cellular detonation 

Rayleigh-Taylor instability 

Gravitationally confined
 detonation 

Turbulent Nuclear Burning 
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Hydro Solvers Primer – Split solvers 

❑  MHD 8-wave solver (Timur Linde, 1999) 
❑  Monotone Upstream-centered Scheme for Conservation Laws (MUSCL)

 approach (Van Leer, 1977) 
❑  2nd order in space, 2nd order in time 
❑  Magnetic monopoles (8th wave) are convected away, rather than accumulated

 (Powell et al., 1998) (i.e.,                 ) 
❑  Non-conservative formulation of the MHD governing equations 
❑  Incorrect jump conditions and incorrect propagation speeds across discontinuites 
❑  Robust and accurate (as  compared to the basic conservative scheme) 

Orszag-Tang 
Shock-Cloud Interaction 

Magnetic RT 

Magnetic reconnection 
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Hydro Solvers Primer – Split solvers 

❑  Special Relativistic solver (RHD) (A. Mignone, 2004) 
❑  PPM (3rd order in space) and PLM (2nd order) interpolations 
❑  2nd order in explicit time evolution using operator splitting formulation 
  (special) relativistic effects are twofold: 

   kinematical,            v ∼ c  (γ = 1/(1 – v2)1/2 >> 1) 
   thermodynamical,  cs ∼ c 

  Relativistic flows with γ > (3/2)1/2 are always supersonic, and therefore
 shock-capturing methods are essential (Martí and Müller, 2003) 

Relativistic 
Shock tube 

γ =10 Jet 
Jet through collapsars 
(GRB), γ ∼ 50  

2-D Riemann Problem 
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Hydro Solvers Primer – Unsplit solvers 

❑  Unsplit pure-Hydro solver (Lee, 2009) 
❑  Reduced version of USM-MHD solver without magnetic and electric fields 
❑  2nd order MUSCL-Hancock in space and time 
❑  Preserves better flow symmetries (Roe solver + Carbuncle instability fix) 

Unsplit MUSCL-Hancock Split PPM 

Sedov explosion 
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Hydro Solvers Primer – Unsplit solvers 

❑  A very efficient new data reconstruction algorithm  
❑   MUSCL-Hancock (2nd order in space) type characteristic

 tracing method 
❑  No extra Riemann problems for transverse fluxes! 

❑  A new way of treating multidimensional MHD source terms
 in unsplit formulation 

❑  Constrained Transport (CT) algorithm (Evans and Hawley,
 1988; Balsara and Spicer, 1999) for induction equations to
 maintain                 on a staggered grid  

❑  cell-centered, face-centered, corner (edge-centered) variables 

❑  Enhanced solution accuracy in calculating electric fields for
 the induction equations (modified electic field construction) 

❑  Added proper amount of numerical dissipation – important! 

❑  Unsplit Staggered Mesh (USM) MHD solver (Lee, 2006; Lee and Deane
 2009) 

2D staggered mesh 
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Hydro Solvers Primer – Unsplit solvers 

❑  Unsplit Staggered Mesh (USM) MHD solver (Lee, 2006; Lee and Deane
 2009) 

3D Staggered Mesh 
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Why unsplit formulation is necessary for MHD? 

❑  Operator splitting MHD schemes cannot avoid erroneous
 growth in     : 

Unsplit Staggered Mesh solver Split 8-wave solver 

2D Field Loop advection test 
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More on the USM-MHD solver 
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Applications 

High Mach Number MHD Turbulence 

Brio-Wu MHD shock-tube 
3D Field Loop advection 

Magnetic Reconnection 

Rotor 
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How to Setup a New Problem 

❑  MHD Simulation (especially with the USM solver) should be located in  
❑  source/Simulation/SimulationMain/magnetoHD/ 
❑  Special prolongation for face-centered variables 

❑  Create Simulation_initBlock.F90 exactly as you would do for hydro. Just do not
 forget to set magnetic field variables (both cell-centered and cell face
-centered) in the initialization routine. 
❑  Magnetic fields need to satisfy 

❑  Do not add magnetic pressure to total specific energy, because FLASH EOS
 routines assume a specific expression for it. 

❑  Create Config and flash.par files for your own Simulation directory. 

❑  Special care in writing custom boundary conditions in
 Grid_bcApplyToRegionSpecialized.F90. 

❑  Write custom functions and do not forget to add them to Makefile. Such custom
 functions in your Simulation directory will override other standard
 implementations. 
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Example – Config 
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Example – flash.par 
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Example – setup lines 

❑  ./setup magnetoHD/OrszagTang -auto -2d +usm (+8wave) -opt (-debug)
 –objdir=OT2D –with-unit=Particles +pm3 (+pm4dev) -nxb=8 -nyb=8 
❑  lrefine_min = 1, lrefine_max = 6 

❑  ./setup magnetoHD/Rotor -auto -2d +usm -opt +ug –nxb=200 –nyb=300 
❑  iProcs = 2, jProcs = 2 

❑  ./setup magnetoHD/Rotor -auto -2d +usm -opt +nofbs 
❑  iGridSize = 400, jGridSize = 600, iProcs = 2, jProcs = 2 

❑  More shortcuts can be found in 
❑  /bin/setup_shortcuts.txt 
❑  Users can add their own customized shortcut(s) by editing the file 
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Example – setup lines 

/bin/setup_shortcuts.txt 
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Tips on setting up your problems 

❑  Simulation’s Config file contains all default runtime parameter values
 specific to your problem 

❑  default.par is also generated in your object directory 
❑  Flash.h, setup_units, setup_vars, setup_params, etc 
❑  Always helpful to read FLASH user’s guide 
❑  Further read/refer references to understand the various roles/effects on

 using different choices of runtime parameters 
❑  e.g., Roe vs. HLL-type Riemann solvers 

❑  Use “-debug” for testing 
❑  Many (simple) issues come from wrong initializations and wrong

 boundary conditions 
❑  Simplify your issues as much as possible 
❑  Detailed description on your issues/bugs is always welcome 

❑  Your simulation files, flash.par, log files, boundary conditions, compilers, setup
 lines, etc. 
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Tips in general 

❑  Make sure you know your problem 
❑  Literature research 
❑  IC, BC, units 
❑  Any working example? 
❑  Working on FLASH3 

❑  Comments, comments, and comments – keep your journal 

❑  Useful books and references: 
❑  LeVeque, Finite volume methods for hyperbolic problems 
❑  Toro, Riemann solvers and numerical methods for fluid dynamics 
❑  Laney, Computational gas dynamics 
❑  Goedbloed and Poedts, Principles of Magnetohydrodynamics 
❑  NRL plasma formulary 
❑  FLASH user’s guide 

❑  Ask around good people! 
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Supplementary slides 
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Ideal MHD Equations 

with 

Important to remember: Fluid (Euler) equations are not  the limiting case
 of MHD equations in the B → 0 case in strict mathematical sense. 



Major Properties: 
❑  MHD equations form a hyperbolic system  Seven families of waves

 (entropy, Alfvén and fast and slow magnetoacoustic waves). 
❑  Convex space of physically admissible variables if convex EOS. 
❑  Non-convex flux function  Multiple degeneracies in the eigensystem,

 possibility of compound waves, shock evolutionarity concerns. 
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MHD Equations in FLASH3 

❑  Advective terms are discretized using slope-limited TVD scheme. 
❑  Diffusive terms are discretized using central finite differences. 
❑  Time integration is done using one-stage Hancock scheme. 
❑  Directions are either split or unsplit. 
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Overview on Numerical MHD codes 

❑  Numerical MHD 
❑  Finite difference method (e.g., ZEUS code by Stone & Norman, 1992) 
❑  High order Godunov method – high resolution shock capturing approach 

❑  Two major algorithmic progresses in high order Godunov based MHD codes 
❑  Multidimensional integration algorithm  

❑  split vs. unsplit 
❑  Donor cell method 
❑  Corner transport upwind (CTU), Colella 1990 

❑  Divergence-free constraint on B 
❑  Hodge projection 

❑  Zachary et al, 1994; Crockett et al, 2005 
❑  Constrained transport (CT)  

❑  Evans & Hawley, 1988; Dai & Woodward, 1998; Ryu et al, 1998; Balsara & Spicer,
 1999; Toth, 2000; Londrillo & Del Zanna, 2004; Ziegler, 2004; Gardiner & Stone,
 2005; Fromang, 2006; Cunningham et al, 2007 

❑  Non-conservative formulation 
❑  Powell (et al), 1994; 1999; Falle et al, 1998; Dedner et al, 2002 
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Overview on Numerical MHD codes 

❑  Numerical MHD 
❑  Finite difference method (e.g., ZEUS code by Stone & Norman, 1992) 
❑  High order Godunov method – high resolution shock capturing approach 

❑  Two major algorithmic progresses in high order Godunov based MHD codes 
❑  Multidimensional integration algorithm  

❑  split vs. unsplit 
❑  Donor cell method 
❑  Corner transport upwind (CTU), Colella 1990 

❑  Divergence-free constraint on B 
❑  Hodge projection 

❑  Zachary et al, 1994; Crockett et al, 2005 
❑  Constrained transport (CT)  

❑  Evans & Hawley, 1988; Dai & Woodward, 1998; Ryu et al, 1998; Balsara & Spicer,
 1999; Toth, 2000; Londrillo & Del Zanna, 2004; Ziegler, 2004; Gardiner & Stone,
 2005; Fromang, 2006; Cunningham et al, 2007 

❑  Non-conservative formulation 
❑  Powell (et al), 1994; 1999; Falle et al, 1998; Dedner et al, 2002 

USM scheme 
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Applications 

Orszag-Tang 

Shock-Cloud Interaction Self-Gravitating Plasma 

Jet Launching 

Surface Gravity Wave Rising bubble 

Magnetic RT 

Magnetic reconnection 
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Beyond Plain MHD 

Plasma effects 
     Reduced 2D Hall (Grasso et al, 1999) 
     Electron inertia and compressibility 
     3D Hall MHD and two-fluid MHD 

Relativistic MHD 
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Numerical Results on Benchmarked problems (1) 

Field Loop advection in 3D 

Gardiner & Stone (2008) 
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Numerical Results on Benchmarked problems (2) 

Current Sheet Problem with different plasma beta values (magnetic field lines are shown) 
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Numerical Results on Benchmarked problems (2) 

Current Sheet Problem with different plasma beta values (magnetic field lines are shown) 



The ASCI/Alliances Center for Astrophysical Thermonuclear Flashes 
The University of Chicago 

Other Applications 


