
An Advanced Simulation & Computing (ASC)
Academic Strategic Alliances Program (ASAP) Center

at The University of Chicago

The Center for Astrophysical Thermonuclear Flashes

Infrastructure 2: Particles

Chris Daley
22nd June

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Particle flavors

❑  Passive particles trace hydrodynamic flow in the simulation:
–  Velocities obtained from values on the grid.

❑  Active particles influence the simulation:
–  e.g. forces between particles (N-Body problem).

❑  All particles are stored in the same 2-D array:
–  1st dim: Total number of particle properties

 (NPART_PROPS) . A single property named
 TYPE_PART_PROP indicates particle type.

–  2nd dim: Maximum number of particles that are allowed
 on a single processor (pt_maxPerProc).

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Particle behaviors

❑  Particle behavior controlled by implementations of:
–  Time advancement
–  Initialization
–  Mapping (Bidirectional for active particles)

❑  Include the FLASH sub-units providing the desired behavior in
 your Simulation Config file.

❑  Register particle behavior with a particular particle type using
 PARTICLETYPE keyword in your Simulation Config file.

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

PARTICLETYPE keyword

❑  PARTICLETYPE name INITMETHOD initmethod MAPMETHOD
 mapmethod

❑  The initmethod and mapmethod strings must correspond to a pre
-processor definitions from the file Particles.h.

–  We use these definitions to select the functions that are
 called for each particle type (see logic in the wrapper
 functions Particles_initPositions and
 Particles_mapFromMesh).

❑  PARTICLETYPE keyword is not fool-proof!
–  Your responsibility to ensure PARTICLETYPE

 arguments are consistent with the units being included.
–  Glance over the setup generated files:

 Particles_specifyMethods.F90 and setup_units.

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Initialization

❑  The wrapper function Particles_initPositions calls the specified
 initialization function for each particle type.

❑  We have initialization functions named pt_initPositionsLattice and
 pt_initPositionsWithDensity.

–  These correspond to initmethod strings of:
•  “lattice”: Regularly spaced particle distribution.
•  “with_density”: Density of particles is

 proportional to the density on the grid.

❑  You can use your own initialization function:
–  Name it pt_initPositions and place in simulation

 directory.
–  Use an initmethod string of “custom” for each particle

 type that should use this distribution.

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Mapping

❑  Converts grid based quantities into similar attributes defined on
 particles (and vice versa for active particles).

–  Particles_mapFromMesh (Mesh → Particles)
–  Particles_mapToMeshOneBlk (Particles → Mesh)

❑  FLASH supplies the following mapping schemes:
–  Quadratic: Second-order interpolation.

•  Only available for passive particles.
–  Weighted: A linear weighting from nearby points.

•  Default weighting is Cloud-In-Cell (CIC).

❑  Use mapmethod strings of “quadratic” or “weighted”.

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Time advancement

❑  Different time integration schemes for passive and active
 particles.

–  Only one type of passive and one type of active
 scheme may be selected in a simulation.

❑  Advancement of particles' position may require particles move to
 another block (may be on another processor).

–  Movement is handled by Grid/GridParticles subunit.
•  Also handles particle movement that occurs as a

 result of refinement / derefinement.

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Example 1

Add Passive particles:

REQUESTS Particles/ParticlesMain/passive/RungeKutta
PARTICLETYPE passive INITMETHOD lattice MAPMETHOD quadratic
REQUESTS Particles/ParticlesInitialization/Lattice
REQUESTS Particles/ParticlesMapping/Quadratic
REQUIRES Grid/GridParticles

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Example 2

Add Active particles with your own custom initialization:

REQUIRES Particles/ParticlesMain/active/LeapfrogCosmo
PARTICLETYPE darkmatter INITMETHOD custom MAPMETHOD weighted
REQUESTS Particles/ParticlesMapping/meshWeighting/CIC

REQUIRES Grid/GridParticles/MapToMesh
REQUIRES Particles/ParticlesMapping/meshWeighting/MapToMesh
REQUIRES Particles/ParticlesForces/longRange/gravity/ParticleMesh
REQUESTS physics/Gravity/GravityMain/Poisson/Multigrid

Additional units for
 active particles

 subject to
 gravitational long

 range force.

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Particle attributes

❑  Aditional properties can be defined for each particle:
PARTICLEPROP property-name

❑  The new particle property may be used to sample the state of
 mesh variables:

PARTICLEMAP TO property-name FROM TYPE variable-name
(Here, TYPE can be GRIDVAR, FACEX, FACEY, FACEZ, VARIABLE,

 MASS_SCALAR, SPECIES)

❑  We map from variable-name to property-name before we write a
 checkpoint file or a particle file.

❑  Example: To sample the value of a mass scalar named val1:
MASS_SCALAR val1
PARTICLEPROP val1
PARTICLEMAP TO val1 FROM MASS_SCALAR val1
PARAMETER particle_attribute_1 STRING “val1”

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Particle based refinement

❑  Possible to refine the AMR grid according to the number of
 particles in each block.

–  May be necessary to avoid exceeding pt_maxPerProc
 in simulations that have significant particle clustering.

❑  This can be used as the sole refinement criterion or it can be
 used in conjunction with the standard mesh refinement criterion.

❑  Use the following runtime parameters:
–  refine_on_particle_count = .true. / .false.
–  max_particles_per_blk = Value

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Useful runtime parameters

Particle options that can be set in flash.par:

useParticles: Logical value that specifies whether to use particles.

pt_maxPerProc: Maximum number of particles that may exist on a
 single processor. Used to size particles array.

refine_on_particle_count: Logical value that specifies whether
 particle count should be used as a refinement criterion.

max_particles_per_blk: Refinement criterion for
 refine_on_particle_count. It is the maximum number of particles
 that may exist on any block.

