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● In the absence of source terms, the hydrodynamic equations are:

● These equations are closed using an equation of state (EOS):

● Since separate ion/electron/radiation energies are not tracked, the 1T EOS units 
typically make an assumption about the temperatures:

T
ele

 = T
ion

 = T
rad

   or  T
ele

 = T
ion

, T
rad

 = 0

I define a 1T simulation as one in which separate ion, 
electron, or radiation energy equations are not evolved
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● Source terms may preferentially heat electrons, ions, or the radiation field 
creating different temperatures

‒ Shocks preferentially heat ions

‒ Laser preferentially heats electrons

● The difference in temperatures may be important for:

‒ Evaluating transport coefficients (conductivity, resistivity, …)

‒ Evaluating the EOS

● Thus, it is necessary to evolve the electron, ion, and radiation state so that we 
can keep track of the different electron/ion/radiation internal energies, 
temperatures, etc...

● All laser driven HEDP experiments should use the 3T version of FLASH, to 
activate just specify the following setup option:

‒ Split Hydrodynamics Solver: +3t

‒ Unsplit Hydrodynamics Solver: +uhd3t

‒ Staggered Mesh Unsplit MHD Solver: +usm3t

When is a 1T simulation not adequate?



Flash Center for Computational Science
University of Chicago

4 of 20

The 3T version of FLASH solves the following equations

● The same 1T hydrodynamic equations:

● Separate equations for ion, electron, radiation internal energy:
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The 3T version of FLASH solves the following equations

● Separate equations for ion, electron, radiation internal energy:

● These equations are closed using an EOS, but now, information about 
the electron, ion, radiation state are known, so the EOS can use this 
information:

● Typically, for simulations of HEDP experiments, EOS tables are used for 
each material
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The 3T version of FLASH solves the following equations

● Separate equations for ion, electron, radiation internal energy:

● q
qele

 = - K
ele

 T∇
ele

 represents the electron heat flux, where K
ele

 is the 
electron conductivity

● A flux-limiter is used to limit the electron heat flux in regions 
where the temperature gradient is steep

● The Spitzer conductivity is primarily used in FLASH simulations, 
although the next release will include the Lee-More conductivity
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Electron thermal conduction (q
ele

) is advanced in the 
Diffuse unit. It is solved implicitly using the HYPRE 
parallel linear algebra library

● To access the implicit HYPRE based diffusion solver include the 
following line in your Config file:

REQUESTS physics/Diffuse/DiffuseMain/Unsplit

● FLASH solves the following equation to model electron thermal 
conduction:

● Typically the Sptizer conductivity is used. To access it, include:

   REQUESTS physics/materialProperties/Conductivity/ConductivityMain/SpitzerHighZ
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The 3T version of FLASH solves the following equations

● Separate equations for ion, electron, radiation internal energy:

● The ion/electron equilibration term causes the electron/ion 
temperatures to relax over time due to collisions

● τ
ei
 is the ion/electron collision frequency. Most simulations use 

the Spizter form for this term
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Ion/electron equilibration is advanced by the 
HeatExchange unit

● To access ion/electron equilibration using the Spitzer collision 
time, include:

● FLASH solves the following equations to model ion/electron 
equilibration:

● The ion/electron equilibration time is:

REQUESTS physics/sourceTerms/Heatexchange/HeatexchangeMain/Spitzer
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The 3T version of FLASH solves the following equations

● Separate equations for ion, electron, radiation internal energy:

● Q
las

 represents the energy source due to laser energy deposition. 
This is computed using a ray-tracing algorithm (this will be 
discussed in detail tomorrow)

● The user can specify the location of multiple beams which illuminate 
the target

● The laser energy is absorbed using the common inverse 
Bremsstrahlung absorption coefficient
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The 3T version of FLASH solves the following equations

● Separate equations for ion, electron, radiation internal energy:

● The third equation above represents the change in the radiation 
energy density where q

rad
 is the radiation energy flux, Q

emis
 is the 

radiation energy emission, and Q
abs 

is the absorption of energy

● The flux is computed using flux-limited multigroup diffusion  
with tabulated opacities. This will be discussed in detail 
tomorrow
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FLASH solves the 3T equations by operator splitting the 
source terms from the “hydrodynamic” terms. Each 
source term is advanced by a different code unit...

● Electron thermal conduction (q
ele
) is advanced in the Diffuse 

unit. It is solved implicitly using the HYPRE parallel linear 
algebra library

● Laser energy deposition is computed in the EnergyDeposition 
unit

● Radiation emission, absorption, and energy flux is advanced in 
the RadTrans unit. This is also evaluated implicitly using HYPRE

● Ion/electron equilibration is advanced by the HeatExchange unit

● The Eos unit computes the 3T equation of state

● The remaining terms in the energy equations represent 
hydrodynamic work and advection of internal energy by the 
fluid; these effects are included by the Hydro unit
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FLASH solves the 3T equations by operator splitting the 
source terms from the “hydrodynamic” terms, we are 
left with:

● Solving these equations can be difficult for an Eulerian code, the 
work terms are NOT written as the divergence of a flux

● Worse, they include the divergence of velocity, which is 
discontinuous at a shock
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The electron, ion, radiation, internal energy equations 
cannot be directly evaluated, a work around is needed...

● In general, there are three hydrodynamic effects which alter the 
ion, electron, radiation, and total internal energy:

‒ Advection

‒ Work

‒ Shock heating

● The normal 1T hydrodynamics solver updates the total internal 
energy. The change in internal energy in a given cell must then 
be divided among the ions, electrons, and radiation field

● For example, the total work done on a cell (or by a cell) is 
divided among the ions, electrons, and radiation field in 
proportion to their pressures
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One work around involves treating the electrons 
adiabatically (no shock heating for electrons)

● To do this, you replace the electron internal energy equation with an 
advection equation for the electron entropy

● Unfortunately, the electron entropy method currently only works without 
radiation and for a fixed-ionization gamma-law EOS

● But we (Klaus) are working on extending this so that it works generally!
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Structure of a shock in a plasma with electron thermal 
conduction and no radiation

Helium
ρ = 0.0018 g/cc

Fully Ionized,
Gamma EOS

Shock moves from left to right
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The “RAGE-like” hydro method is an alternative to 
entropy-advection, it is less accurate near shocks

● The entropy-advection approach treats the electrons adiabatically

● An alternative is to divide the shock heating between electrons in exactly 
the same way as the work – in proportion to the pressure ratios 

‒ This is the “RAGE-like” approach to 3T hydrodynamics in an Eulerian code

● In this case, the electrons would be shock heated, but the solution away 
from shocks should be accurate

● This is not necessarily important – in plasmas the ion/electron 
temperatures equilibrate over time!

● RAGE-like hydro is the default method, you can try entropy advection by 
setting the following parameter in the runtime parameters file (flash.par):

hy_eosModeAfter = “dens_ie_sele_gather”
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There is a large difference between entropy-advection 
and RAGE-like hydro in the absence of ion/electron 
equilibration

Green – Ions
Blue – Electrons
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When Ion/electron equilibration is significant, the 
difference between RAGE-like hydro and entropy 
advection is small – even near a shock
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FLASH has been extended to support 3T simulations

● 3T should be used for simulations of laser driven HEDP experiments

● A lot of physics relevant to simulating HEDP experiments only works with 3T:

‒ Laser

‒ Electron thermal conduction

‒ Multrigroup radiation diffusion

● 3T hydrodynamics in an Eulerian code is a little tricky because the electrons 
should be treated adiabatically

● This can affect the electron/ion temperatures near shocks

● We will see some hands on examples and a details on the laser and multigroup 
diffusion radiation tomorrow!

● For more on 3T simulations, please see user's guide (Ch 13, Sec 25.7.5):

http://flash.uchicago.edu/site/flashcode/user_support/flash4b_ug/node20.html

http://flash.uchicago.edu/site/flashcode/user_support/flash4b_ug/node34.ht
ml#SECTION08175000000000000000

http://flash.uchicago.edu/site/flashcode/user_support/flash4b_ug/node20.html
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