
The University of Chicago

FLASH Center for Computational Science

FLASH Infrastructure Code Units:
Driver, Grid, IO

Flash Tutorial at RAL
May 30, 2012
Klaus Weide

Flash Center for Computational Science
The University of Chicago

Infrastructure Code Topics

❑  Driver Unit
❑  Overview and Function
❑  Unsplit vs Split

❑ Grid Unit
❑  Overview: Implementations
❑  Overview: blocks, cells,
❑  PARAMESH: oct-tree
❑  Data structures and Meta-Data
❑  Configuring Variables for Grid Data Structures
❑  Dimensions and Geometries
❑  What the Grid Code Unit Does
❑  Filling Guard Cells and Boundary Conditions

❑  IO Unit preview

Flash Center for Computational Science
The University of Chicago

Driver Unit

❑  Overview and Function
❑  Unsplit vs Split

Flash Center for Computational Science
The University of Chicago

Driver - Overview and Function

All other code units and their subroutines are called, directly or
indirectly, from Driver. There are three phases encompassing
everything FLASH does:

Initialize – Simulate (producing some output,…) – Finish

The main F90 program, Flash.F90, invokes the rest of the code

like this:

❑  call Driver_initFlash

❑  Initialize parameters, data, Grid incl. variable values, ...
❑  call Driver_evolveFlash

❑  Advance in time (the only kind of “evolution” that FLASH does)
❑  call Driver_finalizeFlash

❑  Clean up nicely

Flash Center for Computational Science
The University of Chicago

Time Evolution - Unsplit and Split

❑  FLASH4 provides two variants of time evolution (two
Driver “implementations”): Split and Unsplit.
❑  Pick the right one for the Hydro implementation used

(normally this is automatically done by the ./setup command)
❑  Driver_evolveFlash implements the main loop of FLASH.
❑  The loop ends normally when one of several conditions is

satisfied:
❑  Loop counter dr_nstep = nstart ... nend
❑  Simulation time reaches tmax
❑  Wall clock reaches wall_clock_time_limit

❑  Time step dt can vary between dtmin and dtmax,
Driver_computeDt computes new dt after each loop iteration.

❑  Driver_computeDt calls Hydro_computeDt, Particles_computeDt,
etc. to honor time step requirements of different code units.

Flash Center for Computational Science
The University of Chicago

Time Evolution - Unsplit vs Split

❑  DriverMain/Split/
 Driver_evolveFlash loop for

split Hydro (PPM, default)

Do ...

call Hydro(...,SWEEP_XYZ)
call other physics
.....
call Hydro(...,SWEEP_ZYX)
call other physics
.....

End Do

❑  Each loop iteration advances the
solution by 2 dt

❑  DriverMain/Unsplit/
 Driver_evolveFlash loop for

unsplit Hydro (staggered mesh
MHD, etc.)

Do ...

call Hydro(...)
call other physics
.....

End Do

❑  Each loop iteration advances the
solution by dt

Flash Center for Computational Science
The University of Chicago

Grid Unit

❑ Overview: Purpose
❑ Overview: Implementations
❑  Overview: blocks, cells, ...
❑  PARAMESH: oct-tree
❑  Data structures and Meta-Data
❑  Configuring Variables for Grid Data Structures
❑  Dimensions and Geometries
❑  What the Grid Code Unit Actually Does
❑  Filling Guard Cells
❑  Boundary Conditions

Flash Center for Computational Science
The University of Chicago

First Look at Paramesh (and UG) Grids
❑  Purpose of the Grid: represent data

❑  Much more on UNK variables etc. below
❑  More precisely, will be talking about the GridMain subunit of Grid

❑ Each block of data resides on exactly one processor*
(at a given point in time)

❑ At a given point in time, the number of local blocks on a
processor lies between 1 and MAXBLOCKS. (or can be 0,
at least during initialization)
❑  MAXBLOCKS is defined at setup time. This represents a

hardwired limit on how many blocks can exist in total.
❑  Grid_getLocalNumBlks() returns the current local value.
❑  Paramesh attempts to balance blocks across processors so that

processor will have approximately equal amounts of work to do.
❑  With the FLASH4 Uniform Grid (UG), the number of blocks is always one

per processor.
 *On notation: processor here means, more correctly: MPI task .

Flash Center for Computational Science
The University of Chicago

Overview: Implementations

❑  UG – Uniform Grid
❑  Fast, very little overhead
❑  Use when your problem does not profit from varying resolution

❑  Paramesh2 – old AMR for FLASH2 compatibility
❑  Paramesh4.0 – currently the default Grid Implementation

❑  Paramesh4dev
❑  May become the default soon; recommended for large runs.
❑  Same functions as PM4.0, users should see no differences in results.

(known exception: very small differences are possible with face variables.)

❑  Performance can differ from PM4.0:
❑  Faster in handling grid refinement changes
❑  Other Grid operations may be slightly slower

❑  Chombo – patch-based library, experimental

Select implementation: setup shortcuts +ug, +pm40, +pm4dev

Flash Center for Computational Science
The University of Chicago

Reminder: blocks and cells

❑  The grid is composed of
blocks

❑  FLASH4: In current practice,
all blocks are of same size.

❑  May cover different fractions
of the physical domain,
depending on a block's
resolution.

❑  Data storage area for each
block reserves space for
some layers of guard cells.

Flash Center for Computational Science
The University of Chicago

PARAMESH: An Oct-tree of Blocks
q  Paramesh specific design:

q  Block Structured
q  All blocks have same dimensions
q  Blocks at different refinement levels have

different grid spacings and thus cover different
fractions of the physical domain

q  Fixed sized blocks specified at compile time
q  Global block numbers are based on Morton

order, approximates “space-filling” behavior.
(example numbers for PM2; PM4 is very similar.)

q  Storage order within each processor follows
this ordering. Re-distribution of blocks after
refinement changes, for load balancing.

q  Oct-tree in 3D: A node has either 8 children or
none. (Quad-tree in 2D, binary in 1D)

q  Blocks are of type LEAF, PARENT, or
ANCESTOR.

q  Data for PARENT and ANCESTOR blocks
occupies storage space! (not much in 3D)

In choosing Paramesh, the original FLASH code architects
chose simplicity of the Paramesh structure over a patch based

mesh.

Flash Center for Computational Science
The University of Chicago

Limits of Paramesh

❑  PARAMESH is based on blocks, not general patches.

❑ Limitations imposed by Paramesh:
❑  Same number of cells in all blocks
❑  Same number of guard cell layers in all blocks, all directions
❑  Resolution (“Delta”) of a block changes by multiples of 2.
❑  Resolution of neighbors differs at most by factor of 2.
(In other words: the local refinement level may change by at most ±1)

Flash Center for Computational Science
The University of Chicago

How Blocks are Addressed

❑  At a given time, a block is globally uniquely identified by a pair (proc,

BlockID), where
❑  0 < proc < numprocs
❑  1 < BlockID <= MAXBLOCKS

❑  Locally, BlockID is sufficient to specify a block
❑  User code can't directly access remote blocks anyway

❑  Morton Numbers provide another way to identify blocks globally.
(private data of the Grid unit, not exposed to other code at runtime)

❑  The global block number of a block determines the index of the
block's data in output files (checkpoint, plot files). It is not available to
user code during run time.

Flash Center for Computational Science
The University of Chicago

How Blocks are Stored

❑  Solution data,
❑  per-block meta data,
❑  tree information (for local blocks!)

 are stored in F90 arrays declared like this:
real, dimension(:,:,:,:,MAXBLOCKS) :: UNK
real, dimension(:,MAXBLOCKS) :: bnd_box
integer, dimension(:,MAXBLOCKS) :: parent

 etc. etc.
❑ MAXBLOCKS is a hardwired constant (from setup

time)
❑  “Inactive” (non-leaf) blocks also use storage
❑  These structures are internal to the Grid unit and should

not be accessed directly by other code.
❑  Use the appropriate Grid_something() subroutine calls instead!

(in particular: Grid_getBlkPtr, Grid_getBlkData)

Flash Center for Computational Science
The University of Chicago

Grid Data Structures

❑  CENTER (keywords VARIABLE, SPECIES, MASS_SCALAR)
❑  The “normal” way to keep fluid variables: logically cell-centered
❑  Kept internally in an array UNK of dimensions UNK(NUNK_VARS,NXB

+gcs,NYB+gcs,NZB+gcs,sMAXBLOCKS)

❑  FACEX, FACEY, FACEZ
❑  Face-centered variables, currently used by unsplit MHD solver
❑  Supported in UG, PM 4.0, PM 4dev

❑  SCRATCH (data that is never updated automatically by Grid)
❑  Additional block-oriented storage provided by FLASH (not PM Kernel)
❑  Guard cell filling or other communications not supported

❑  WORK (only 1 “variable”, not recommended for portability)
❑  Additional block-oriented storage provided by PARAMESH (not in UG)
❑  Used internally by some units (currently: geometric multigrid solvers)

❑  (FLUX – not a permanent data store, for flux corrections by Hydro)

Flash Center for Computational Science
The University of Chicago

Configuring Variables for Grid Data
Structures

❑  Use VARIABLE vvvv in Config for unk(VVV_VAR,:,:,:,:)**
❑  gridDataStruct=CENTER*

❑  Use SPECIES ssss in Config for unk(SSSS_SPEC,:,:,:,:)
❑  gridDataStruct=CENTER

❑  Use MASS_SCALAR mmmm for unk(MMMM_MSCALAR,:,:,:,:)
❑  gridDataStruct=CENTER

❑  Use FACEVAR ffff in Config for facevarx(FFFF_FACE_VAR,:,:,:,:),
facevary(FFFF_FACE_VAR,...), & facevarz(FFFF_FACE_VAR,...)

❑  gridDataStruct=FACEX/FACEY/FACEZ (or for some calls: FACES)

❑  Use GRIDVAR ggg for scratch(:,:,:,GGG_SCRATCH_GRID_VAR,:)
❑  gridDataStruct=SCRATCH

 * Many Grid interfaces have a gridDataStruct argument to specify what kind of data to
act on. Examples: Grid_getBlkPointer, Grid_putBlkData, Grid_getBlkIndexLimits,
Grid_fillGuardCells. See API documentation of these interface for details.

** The internal organization (order of array indices) is important for code working with
block pointers as returned by Grid_getBlkPointer.

Flash Center for Computational Science
The University of Chicago

Configuring Variables for Grid Data
Structures II

❑  Use VARIABLE vvvv in Config for unk(VVV_VAR,:,:,:,:)
❑  gridDataStruct=CENTER

❑  Use SPECIES ssss in Config for unk(SSSS_SPEC,:,:,:,:)
❑  gridDataStruct=CENTER

❑  Use MASS_SCALAR mmmm for unk(MMMM_MSCALAR,:,:,:,:)
❑  gridDataStruct=CENTER

Cell-centered variables from VARIABLE, SPECIES, MASS_SCALAR become parts of
the same large array:

❑  unk(1:NPROP_VARS,:,:,:,:) holds NPROP_VARS VARIABLEs
❑  unk(SPECIES_BEGIN:SPECIES_END,:,:,:,:) holds NSPECIES SPECIES

❑  Note: often NSPECIES=0, in that case
SPECIES_END=SPECIES_BEGIN-1

❑  unk(MASS_SCALARS_BEGIN:NUNK_VARS,:,:,:,:) holds NMASS_SCALARS
MASS_SCALARs
❑  Often NMASS_SCALARS=0, in that case MASS_SCALARS_BEGIN =

NUNK_VARS+1

Flash Center for Computational Science
The University of Chicago

More On Variables for Grid Data Structures

❑  The “VARIABLE” part of unk represents most solution variables
❑  VARIABLE dens TYPE: PER_VOLUME – conserved variable per volume-unit
❑  VARIABLE ener TYPE: PER_MASS – energy in mass-specific form
❑  VARIABLE temp TYPE: GENERIC – not a conserved entity in any form
Specify the TYPE correctly to ensure correct treatment in Grid interpolation.
See Config files in existing code Units for examples: Hydro, Eos, ...

❑  The SPECIES part of unk represents mass fractions
❑  Get automatically advected by Hydro
❑  Should probably be used with Multispecies Unit and Multigamma EOS
❑  Should always add up to 1.0, code may enforce this
❑  Treated as a per-mass variable for purposes of interpolation

❑  The MASS_SCALAR part of unk represents additional variables
❑  Get automatically advected by Hydro
❑  Treated as a per-mass variable for purposes of interpolation

Flash Center for Computational Science
The University of Chicago

Dimensions and Geometries

Geometry Support
 The FLASH4 Grid supports these geometries:

❑  Cartesian - 1D, 2D, 3D
❑  Cylindrical - 2D, (3D)
❑  Spherical - 1D, (2D), (3D)
❑  Polar - (2D)

 Combinations in bold have been extensively used & tested at the FLASH Center.
(Note: for a specific application, geometry support may be limited by available solvers!)
The Grid Implementation:
❑  Makes used of Paramesh4 support of geometries
❑  Centralized support by Grid unit, provides routines for cell volumes, face areas, etc.
❑  Grid uses geometry-aware conservative interpolation at refinement boundaries

❑  This is thr default interpolation, internally called “monotonic”.
❑  we provide a way to use an alternative Grid implementation's native methods

instead:
./setup ... -gridinterpolation=native

❑  Use setup -3d -geometry= and/or runtime parameter geometry in flash.par to specify.

Flash Center for Computational Science
The University of Chicago

What the Grid Code Unit Actually Does

Note: the following focuses on AMR Grids; UG is simpler.

The Grid unit is responsible for
❑  Keeping account of the spatial domain as a whole:

❑  Extent and size, outer boundaries
❑  Keeping and maintaining block structure:

❑  Which blocks exist?
❑  Where are they?
❑  Sizes and other properties of blocks
❑  Neighbors
❑  Parent / child links for AMR

❑  Initializing block structure:
❑  Initialize the metadata and links mentioned above
❑  Keep Grid structure valid:

❑  Consistent (if A is child of B, then B must be parent of A, etc. etc.)
❑  For PARAMESH: no refinement jumps by more than 1 level

Flash Center for Computational Science
The University of Chicago

What the Grid Unit Actually Does - Cont.

Note: the previous slide was mostly about metadata; now the stuff actually wanted
by users...

The Grid unit is also responsible for
❑  Keeping data (“User data”, “Solution data”, “payload”):

❑  Provide storage
❑  UNK, FACEVAR{X,Y,Z}, SCRATCH, (WORK)
❑  FLUXes and other more temporary arrays

❑  Initializing solution data:
❑  Actually left to the user, who provides a subroutine Simulation_initBlock()
❑  Grid invokes user function, applies refinement criteria, repeat as necessary

❑  maintaining and keeping track of data during refinement changes:
❑  Apply refinement criteria as requested
❑  Copy data within processor, and/or communicate between procs
❑  Involves prolongation (interpolation)
❑  Involves restriction (valid data in PARENT blocks)

Flash Center for Computational Science
The University of Chicago

What the Grid Unit Actually Does - Cont..

Note: the previous slide was about data and mesh changes; now what's left to do
between those changes?

❑  The Grid unit is also responsible for
❑  Operations that communicate user data between blocks:

❑  Prolong (interpolate) data
❑  After new leaf blocks are created

❑  Restrict (summarize) data
❑  PARENT blocks usually get summarized data as part of guard cell filling

❑  Flux correction (special operation invoked from Hydro)
❑  Edge averaging (special operation invoked from MHD Hydro)

And finally...
❑  Guard cell filling

❑  The most important form of data communication on an established mesh
configuration.

❑  Called frequently, by various code units
❑  May move a lot of data between procs, efficiency is important!

Flash Center for Computational Science
The University of Chicago

Guard Cell Filling – When

Note: the following is focused on Paramesh4, but the high-level calls apply to
all grid implementations

❑  When are guard cells filled?

❑  Directly: High-level call to Grid_fillGuardCells (or maybe amr_guardcell)
❑  Always a global operation involving all processors
❑  Usually fills guard cells of LEAF blocks and their parents – but don't count on it

for PARENT blocks.

❑  Indirectly: internally as part of some other Grid operation
❑  As part of amr_prolong (filling new leaf blocks)

❑  Indirectly during global direct filling:
❑  Auxiliary filling of a PARENT block's guard cells in order to provide

input for interpolation to this PARENT's child, a finer-resolution
LEAF node.

Flash Center for Computational Science
The University of Chicago

Guard Cell Filling - Usage

When should you fill guard cells?
❑  Before a subroutine that you have written uses guard cells, you need

to make sure they are filled with valid and current data.
❑  FLASH4 does not guarantee that guard cells are valid on entry to a

solver, source term code unit, etc.!

❑  How should you fill guard cells?
❑  Only worry about direct filling of LEAF guard cells – that is nearly

always what is needed.
❑  Basic high-level call:

Call Grid_fillGuardCells(CENTER_FACES,ALLDIR)

❑  High-level call with automatic Eos call on guard cells:
Call Grid_fillGuardCells(CENTER_FACES,ALLDIR,doEos=.true.)
❑  Eos often needs to be called to get cells at refinement boundaries, where data was

interpolated, into thermodynamic balance.

❑  There are many additional optional arguments, see API docs. They are
for increasing performance, and can all be initially ignored.

Flash Center for Computational Science
The University of Chicago

GC Overview: blocks, cells, regions

❑  Blocks consist of cells: guard cells and
interior cells.

❑  For purposes of guard cell filling, guard
cells are organized into guard cell
regions.

❑  During guard cell filling, each guard
cell region may get filled from a
different data source:
❑  A local neighbor block
❑  A remote neighbor block
❑  A boundary condition

❑  using data from adjacent
interior cells

❑  Using fixed or coordinate-
based data

❑  Interpolation from parent (if the
block touches a fine/coarse
boundary)

❑  In PARAMESH4, diagonal regions are
treated just like “face neighbor”
regions.

Flash Center for Computational Science
The University of Chicago

Filling guard cells I

❑  For purposes of guard cell filling, guard
cells are organized into guard cell
regions. ❑  During guard cell filling, each guard

cell region may get filled from a
different data source:
❑  A local neighbor block
❑  A remote neighbor block
❑  A boundary condition

❑  using data from adjacent
interior cells

❑  Using fixed or coordinate-
based data

❑  Interpolation from parent (if the
block touches a fine/coarse
boundary)

Flash Center for Computational Science
The University of Chicago

Filling guard cells Ia

❑  For purposes of guard cell filling, guard
cells are organized into guard cell
regions.

In 2D, a block has 8 guard cell regions.
In 3D, a block has 26 guard cell regions!

❑  During guard cell filling, each guard
cell region may get filled from a
different data source:
❑  A local neighbor block
❑  A remote neighbor block
❑  A boundary condition

❑  using data from adjacent
interior cells

❑  Using fixed or coordinate-
based data

❑  Interpolation from parent (if the
block touches a fine/coarse
boundary)

-1,-1 0,-1 1,-1

1,0

-1,1 0,1 1,1

-1,0

Flash Center for Computational Science
The University of Chicago

Filling guard cells Ib

❑  For purposes of guard cell filling, guard
cells are organized into guard cell
regions.

In 2D, a block has 8 guard cell regions.
In 3D, a block has 26 guard cell regions!

❑  During guard cell filling, each guard
cell region may get filled from a
different data source:
❑  A local neighbor block
❑  A remote neighbor block
❑  A boundary condition

❑  using data from adjacent
interior cells

❑  Using fixed or coordinate-
based data

❑  Interpolation from parent (if the
block touches a fine/coarse
boundary)

-1,-1 0,-1 1,-1

1,0

-1,1 0,1 1,1

face direction

diagonal direction

-1,0

Flash Center for Computational Science
The University of Chicago

Filling guard cells Ic

❑  For purposes of guard cell filling, guard
cells are organized into guard cell
regions.

In 2D, a block has 8 guard cell regions.
In 3D, a block has 26 guard cell regions!

❑  During guard cell filling, each guard
cell region may get filled from a
different data source:
❑  A local neighbor block
❑  A remote neighbor block
❑  A boundary condition

❑  using data from adjacent
interior cells

❑  Using fixed or coordinate-
based data

❑  Interpolation from parent (if the
block touches a fine/coarse
boundary)

-1,-1 0,-1 1,-1

1,0

-1,1 0,1 1,1

face neighbor

diagonal neighbor

-1,0

Flash Center for Computational Science
The University of Chicago

Filling guard cells from neighbors I

❑  For purposes of guard cell filling, guard
cells are organized into guard cell
regions. ❑  During guard cell filling, each guard

cell region may get filled from a
different data source:
❑  A local neighbor block
❑  A remote neighbor block
❑  A boundary condition

❑  using data from adjacent
interior cells

❑  Using fixed or coordinate-
based data

❑  Interpolation from parent (if the
block touches a fine/coarse
boundary)

cell data from
neighbor blocks

Flash Center for Computational Science
The University of Chicago

Filling guard cells at Boundary I

❑  For purposes of guard cell filling, guard
cells are organized into guard cell
regions.

Now assume a block at the corner of the
domain:

❑  During guard cell filling, each guard
cell region may get filled from a
different data source:
❑  A local neighbor block
❑  A remote neighbor block
❑  A boundary condition

❑  using data from adjacent
interior cells

❑  Using fixed or coordinate-
based data

❑  Interpolation from parent (if the
block touches a fine/coarse
boundary)

-1,-1 0,-1 1,-1

1,0

-1,1 0,1 1,1

Domain boundaries

-1,0

Flash Center for Computational Science
The University of Chicago

Filling guard cells at Boundary II

❑  For purposes of guard cell filling, guard
cells are organized into guard cell
regions.

The guard cell regions in red represent
locations outside of the domain:

❑  During guard cell filling, each guard
cell region may get filled from a
different data source:
❑  A local neighbor block
❑  A remote neighbor block
❑  A boundary condition

❑  using data from adjacent
interior cells

❑  Using fixed or coordinate-
based data

❑  Interpolation from parent (if the
block touches a fine/coarse
boundary)

-1,-1 0,-1 1,-1

1,0

-1,1 0,1 1,1

-1,0

Flash Center for Computational Science
The University of Chicago

Filling guard cells at Boundary III

❑  For purposes of guard cell filling, guard
cells are organized into guard cell
regions.

❑  During guard cell filling, each guard
cell region may get filled from a
different data source:
❑  A local neighbor block
❑  A remote neighbor block
❑  A boundary condition

❑  using data from adjacent
interior cells

❑  Using fixed or coordinate-
based data

❑  Grid_bcApplyToRegionSpecialized is

called and passed a pointer to the data
in the blue region.

(actually, to a copy of the block data)
-1,-1 0,-1 1,-1

1,0

-1,1 0,1 1,1

Flash Center for Computational Science
The University of Chicago

Filling guard cells at Boundary IV

❑  For purposes of guard cell filling, guard
cells are organized into guard cell
regions.

❑  During guard cell filling, each guard
cell region may get filled from a
different data source:
❑  A local neighbor block
❑  A remote neighbor block
❑  A boundary condition

❑  using data from adjacent
interior cells

❑  Using fixed or coordinate-
based data

❑  Grid_bcApplyToRegionSpecialized

may fill in the guard cell region.
❑  OR it may decline to handle this, and

then:
❑  The subroutine Grid_bcApplyToRegion

is called and passed a pointer to the
data in the blue region.

-1,-1 0,-1 1,-1

1,0

-1,1 0,1 1,1

Flash Center for Computational Science
The University of Chicago

Implementing Boundary Conditions

q  Grid_bcApplyToRegionSpecialized gets called first
❑  This is normally a no-op stub
❑  This is the preferred place to users to hook in customized implementations.
❑  May decide to handle the call, based on BC type, direction, ...
❑  Before returning, sets “applied” flag to signal that the BC was handled.

q  Grid_bcApplyToRegion gets called if Grid_bcApplyToRegionSpecialized did not
handle the case.
❑  The standard implementation of Grid_bcApplyToRegion in source/Grid/

GridBoundaryConditions provides the standard simple BC types:
REFLECTING, OUTFLOW, DIODE, ...

❑  It is a good place to start if you need to write your own!

❑  Both interfaces provide information that an implementation, can
use to fill guard cells at boundaries, including:
❑  A block handle (usually, block ID) identifying the block being filled
❑  Location of the data region within the Grid block

Flash Center for Computational Science
The University of Chicago

BCs – Complications

q  Grid_bcApplyToRegion* may be called on a non-LEAF block.
q  Grid_bcApplyToRegion* may be called on a block that is not even local!

❑  This can happen if a parent block needs to be filled to provide input data for
interpolation, and the parent resides on a different PE from the leaf.

❑  Simple BC methods don't have to be aware of this.
❑  But if your method depends on coodinate information, or needs to access the

block by its ID, beware!
❑  See source/Grid/GridBoundaryConditions/README and Users Guide in those

cases.
q  The data region passed to Grid_bcApplyToRegion* is in transposed form:

Reference it like regionData(I,J,k,ivar), where
❑  I counts cells in the normal direction (NOT always: x direction!),
❑  J,K cont cells in the other directions
❑  Ivar counts variables
This is convenient for implementing simple BC where location does not matter, but
complicates things if you need to know where a cell is within the block.
❑  Use provided examples!

Flash Center for Computational Science
The University of Chicago

BCs – Simplifications

q  If you prefer a simpler interface:
❑  Handle one data row at a time (vector of data in normal direction)
❑  Powerful enough to implement hydrostatic boundaries
❑  REQUIRES Grid/GridBoundaryConditions/OneRow (see source files there!)
❑  Implements a version of Grid_bcApplyToRegionSpecialized
❑  Provides functions Grid_applyBCEdge, Grid_applyBCEdgeAllUnkVars
❑  Too customize, user should provide own implementation of

Grid_applyBCEdge.F90 (or Grid_applyBCEdgeAllUnkVars.F90)

Flash Center for Computational Science
The University of Chicago

IO Unit

❑  The IO unit is responsible for
❑  Writing checkpoint files

❑  For restarting, …

❑  Writing “plot files”
❑  For visualization
❑  For further analysis

❑  Writing particle data files
❑  For visualization and further processing

❑ binary output files are writing in a structured format: HDF5,
pnetcdf

❑ Various tools can process FLASH files, including Visit

Flash Center for Computational Science
The University of Chicago

Grid and other Infrastructure Code

•  Questions?

