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Infrastructure Code Topics 

❑  Driver Unit 
❑  Overview and Function 
❑  Unsplit vs Split 

❑ Grid Unit 
❑  Overview: Implementations 
❑  Overview: blocks, cells,  
❑  PARAMESH: oct-tree 
❑  Data structures and Meta-Data 
❑  Configuring Variables for Grid Data Structures 
❑  Dimensions and Geometries 
❑  What the Grid Code Unit Does 
❑  Filling Guard Cells and Boundary Conditions 

❑  IO Unit preview 
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Driver Unit 

❑  Overview and Function 
❑  Unsplit vs Split 



Flash Center for Computational Science 
The University of Chicago 

Driver - Overview and Function 

All other code units and their subroutines are called, directly or 
indirectly, from Driver. There are three phases encompassing 
everything FLASH does: 

Initialize – Simulate (producing some output,…) – Finish  
 
The main F90 program, Flash.F90, invokes the rest of the code 

like this: 
 
❑  call Driver_initFlash 

❑  Initialize parameters, data, Grid incl. variable values, ... 
❑  call Driver_evolveFlash 

❑  Advance in time (the only kind of “evolution” that FLASH does) 
❑  call Driver_finalizeFlash 

❑  Clean up nicely 
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Time Evolution - Unsplit and Split 

❑  FLASH4  provides two variants of time evolution (two 
Driver “implementations”): Split and Unsplit. 
❑  Pick the right one for the Hydro implementation used 

(normally this is automatically done by the ./setup command) 
❑  Driver_evolveFlash implements the main loop of FLASH. 
❑  The loop ends normally when one of several conditions is 

satisfied: 
❑  Loop counter dr_nstep = nstart ... nend 
❑  Simulation time reaches tmax 
❑  Wall clock reaches wall_clock_time_limit 

❑  Time step dt can vary between dtmin and dtmax, 
Driver_computeDt computes new dt after each loop iteration. 

❑  Driver_computeDt calls Hydro_computeDt, Particles_computeDt, 
etc. to honor time step requirements of different code units. 
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Time Evolution - Unsplit vs Split 

❑  DriverMain/Split/ 
     Driver_evolveFlash loop for 

split Hydro (PPM, default) 
 
Do ... 

call Hydro(...,SWEEP_XYZ) 
call other physics 
..... 
call Hydro(...,SWEEP_ZYX) 
call other physics 
..... 

End Do 
 

❑  Each loop iteration advances the 
solution by 2 dt 

❑  DriverMain/Unsplit/ 
     Driver_evolveFlash loop for 

unsplit Hydro (staggered mesh 
MHD, etc.) 

 
Do ... 

call Hydro(...) 
call other physics 
..... 
 

End Do 
 
 

❑  Each loop iteration advances the 
solution by dt 
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Grid Unit 

❑ Overview: Purpose 
❑ Overview: Implementations 
❑  Overview: blocks, cells, ... 
❑  PARAMESH: oct-tree 
❑  Data structures and Meta-Data 
❑  Configuring Variables for Grid Data Structures 
❑  Dimensions and Geometries 
❑  What the Grid Code Unit Actually Does 
❑  Filling Guard Cells 
❑  Boundary Conditions 
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First Look at Paramesh (and UG) Grids 
❑  Purpose of the Grid: represent data 

❑  Much more on UNK variables etc. below 
❑  More precisely, will be talking about the GridMain subunit of Grid 

❑ Each block of data resides on exactly one processor*  
(at a given point in time) 

❑ At a given point in time, the number of local blocks on a 
processor lies between 1 and MAXBLOCKS. (or can be 0, 
at least during initialization) 
❑  MAXBLOCKS is defined at setup time. This represents a 

hardwired limit on how many blocks can exist in total. 
❑  Grid_getLocalNumBlks() returns the current local value. 
❑  Paramesh attempts to balance blocks across processors so that 

processor will have approximately equal amounts of work to do.  
❑  With the FLASH4 Uniform Grid (UG), the number of blocks is always one 

per processor. 
 *On notation: processor here means, more correctly: MPI task .  



Flash Center for Computational Science 
The University of Chicago 

Overview: Implementations 

❑  UG – Uniform Grid 
❑  Fast, very little overhead 
❑  Use when your problem does not profit from varying resolution 

❑  Paramesh2 – old AMR for FLASH2 compatibility 
❑  Paramesh4.0 – currently the default Grid Implementation 

❑  Paramesh4dev 
❑  May become the default soon; recommended for large runs. 
❑  Same functions as PM4.0, users should see no differences in results. 

(known exception: very small differences are possible with face variables.) 

❑  Performance can differ from PM4.0: 
❑  Faster in handling grid refinement changes 
❑  Other Grid operations may be slightly slower 

❑  Chombo – patch-based library, experimental 

Select implementation: setup shortcuts +ug, +pm40, +pm4dev 
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Reminder: blocks and cells 

❑  The grid is composed of 
blocks 

❑  FLASH4: In current practice, 
all blocks are of same size. 

❑  May cover different fractions 
of the physical domain, 
depending on a block's 
resolution. 

❑  Data storage area for each 
block reserves space for 
some layers of guard cells.  
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PARAMESH: An Oct-tree of Blocks 
q  Paramesh specific design: 

q  Block Structured 
q  All blocks have same dimensions 
q  Blocks at different refinement levels have 

different grid spacings and thus cover different 
fractions of the physical domain 

q  Fixed sized blocks specified at compile time  
q  Global block numbers are based on Morton 

order, approximates “space-filling” behavior. 
(example numbers for PM2; PM4 is very similar.) 

q  Storage order within each processor follows 
this ordering. Re-distribution of blocks after 
refinement changes, for load balancing. 

q  Oct-tree in 3D: A node has either 8 children or 
none.  (Quad-tree in 2D, binary in 1D) 

q  Blocks are of type LEAF, PARENT, or 
ANCESTOR. 

q  Data for PARENT and ANCESTOR blocks 
occupies storage space! (not much in 3D) 

In choosing Paramesh, the original FLASH code architects 
chose simplicity of the Paramesh structure over a patch based 

mesh. 
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Limits of Paramesh 

❑  PARAMESH is based on blocks, not general patches. 

❑ Limitations imposed by Paramesh: 
❑  Same number of cells in all blocks 
❑  Same number of guard cell layers in all blocks, all directions 
❑  Resolution (“Delta”) of a block changes by multiples of 2. 
❑  Resolution of neighbors differs at most by factor of 2. 
(In other words: the local refinement level may change by at most ±1) 
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How Blocks are Addressed 

 
❑  At a given time, a block is globally uniquely identified by a pair (proc, 

BlockID), where 
❑    0 <    proc     < numprocs 
❑    1 < BlockID <= MAXBLOCKS 

❑  Locally, BlockID is sufficient to specify a block 
❑   User code can't directly access remote blocks anyway  

❑  Morton Numbers provide another way to identify blocks globally. 
(private data of the Grid unit, not exposed to other code at runtime) 

❑  The global block number of a block determines the index of the 
block's data in output files (checkpoint, plot files). It is not available to 
user code during run time. 
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How Blocks are Stored 

❑  Solution data, 
❑  per-block meta data, 
❑  tree information (for local blocks!) 

 are stored in F90 arrays declared like this: 
real, dimension(:,:,:,:,MAXBLOCKS) :: UNK 
real, dimension(:,MAXBLOCKS)     :: bnd_box 
integer, dimension(:,MAXBLOCKS)  :: parent 

 etc. etc. 
❑ MAXBLOCKS is a hardwired constant (from setup 

time) 
❑  “Inactive” (non-leaf) blocks also use storage 
❑  These structures are internal to the Grid unit and should 

not be accessed directly by other code. 
❑  Use the appropriate Grid_something()  subroutine calls instead! 

(in particular: Grid_getBlkPtr, Grid_getBlkData) 



Flash Center for Computational Science 
The University of Chicago 

Grid Data Structures 

❑  CENTER  (keywords VARIABLE, SPECIES, MASS_SCALAR) 
❑  The “normal” way to keep fluid variables: logically cell-centered 
❑  Kept internally in an array UNK of dimensions UNK(NUNK_VARS,NXB

+gcs,NYB+gcs,NZB+gcs,sMAXBLOCKS) 

❑  FACEX, FACEY, FACEZ 
❑  Face-centered variables, currently used by unsplit MHD solver 
❑  Supported in UG, PM 4.0, PM 4dev 

❑  SCRATCH (data that is never updated automatically by Grid) 
❑  Additional block-oriented storage provided by FLASH (not PM Kernel) 
❑  Guard cell filling or other communications not supported 

❑  WORK (only 1 “variable”, not recommended for portability) 
❑  Additional block-oriented storage provided by PARAMESH (not in UG) 
❑  Used internally by some units (currently: geometric multigrid solvers) 

❑  (FLUX – not a permanent data store, for flux corrections by Hydro) 
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Configuring Variables for Grid Data 
Structures 

❑  Use VARIABLE vvvv in Config for unk(VVV_VAR,:,:,:,:)** 
❑  gridDataStruct=CENTER* 

❑  Use SPECIES ssss in Config for unk(SSSS_SPEC,:,:,:,:) 
❑  gridDataStruct=CENTER 

❑  Use MASS_SCALAR mmmm for unk(MMMM_MSCALAR,:,:,:,:) 
❑  gridDataStruct=CENTER 

❑  Use FACEVAR ffff in Config for facevarx(FFFF_FACE_VAR,:,:,:,:), 
facevary(FFFF_FACE_VAR,...), & facevarz(FFFF_FACE_VAR,...) 

❑  gridDataStruct=FACEX/FACEY/FACEZ  (or for some calls: FACES) 

❑  Use GRIDVAR ggg for scratch(:,:,:,GGG_SCRATCH_GRID_VAR,:) 
❑  gridDataStruct=SCRATCH 

    * Many Grid interfaces have a gridDataStruct argument to specify what kind of data to 
act on. Examples: Grid_getBlkPointer, Grid_putBlkData, Grid_getBlkIndexLimits, 
Grid_fillGuardCells. See API documentation of these interface for details. 

** The internal organization (order of array indices) is important for code working with 
block pointers as returned by Grid_getBlkPointer.  
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Configuring Variables for Grid Data 
Structures II 

❑  Use VARIABLE vvvv in Config for unk(VVV_VAR,:,:,:,:) 
❑  gridDataStruct=CENTER 

❑  Use SPECIES ssss in Config for unk(SSSS_SPEC,:,:,:,:) 
❑  gridDataStruct=CENTER 

❑  Use MASS_SCALAR mmmm for unk(MMMM_MSCALAR,:,:,:,:) 
❑  gridDataStruct=CENTER 

Cell-centered variables from VARIABLE, SPECIES, MASS_SCALAR become parts of 
the same large array:  

❑   unk(1:NPROP_VARS,:,:,:,:) holds NPROP_VARS VARIABLEs 
❑   unk(SPECIES_BEGIN:SPECIES_END,:,:,:,:) holds NSPECIES SPECIES 

❑  Note: often NSPECIES=0, in that case 
SPECIES_END=SPECIES_BEGIN-1 

❑   unk(MASS_SCALARS_BEGIN:NUNK_VARS,:,:,:,:) holds NMASS_SCALARS 
MASS_SCALARs 
❑  Often NMASS_SCALARS=0, in that case MASS_SCALARS_BEGIN = 

NUNK_VARS+1 
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More On Variables for Grid Data Structures 

❑  The “VARIABLE” part of unk represents most solution variables 
❑  VARIABLE dens TYPE: PER_VOLUME – conserved variable per volume-unit 
❑  VARIABLE ener TYPE: PER_MASS – energy in mass-specific form 
❑  VARIABLE temp TYPE: GENERIC – not a conserved entity in any form 
Specify the TYPE correctly to ensure correct treatment in Grid interpolation. 
See Config files in existing code Units for examples: Hydro, Eos, ... 

❑  The SPECIES part of unk represents mass fractions 
❑  Get automatically advected by Hydro 
❑  Should probably be used with Multispecies Unit and Multigamma EOS 
❑  Should always add up to 1.0, code may enforce this 
❑  Treated as a per-mass variable for purposes of interpolation 

❑  The MASS_SCALAR part of unk represents additional variables 
❑  Get automatically advected by Hydro 
❑  Treated as a per-mass variable for purposes of interpolation 
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Dimensions and Geometries 

Geometry Support 
 The FLASH4 Grid supports these geometries: 

❑  Cartesian  - 1D, 2D, 3D 
❑  Cylindrical  - 2D, (3D) 
❑  Spherical  - 1D, (2D), (3D) 
❑  Polar  - (2D) 

 Combinations in bold have been extensively used & tested at the FLASH Center. 
(Note: for a specific application, geometry support may be limited by available solvers!) 
The Grid Implementation: 
❑  Makes used of Paramesh4 support of geometries 
❑  Centralized support by Grid unit, provides routines for cell volumes, face areas, etc. 
❑  Grid uses geometry-aware conservative interpolation at refinement boundaries 

❑  This is thr default interpolation, internally called “monotonic”. 
❑  we provide a way to use an alternative Grid implementation's native methods 

instead:  
./setup ... -gridinterpolation=native 

❑  Use setup -3d -geometry= and/or runtime parameter geometry in flash.par to specify. 
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What the Grid Code Unit Actually Does 

Note: the following focuses on AMR Grids; UG is simpler. 

The Grid unit is responsible for 
❑  Keeping account of the spatial domain as a whole: 

❑  Extent and size, outer boundaries 
❑  Keeping and maintaining block structure: 

❑  Which blocks exist? 
❑  Where are they? 
❑  Sizes and other properties of blocks 
❑  Neighbors 
❑  Parent / child links for AMR 

❑  Initializing block structure: 
❑  Initialize the metadata and links mentioned above 
❑  Keep Grid structure valid: 

❑  Consistent (if A is child of B, then B must be parent of A, etc. etc.) 
❑  For PARAMESH: no refinement jumps by more than 1 level 
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What the Grid Unit Actually Does - Cont. 

Note: the previous slide was mostly about metadata; now the stuff actually wanted 
by users... 

The Grid unit is also responsible for 
❑  Keeping data (“User data”, “Solution data”, “payload”): 

❑  Provide storage 
❑  UNK, FACEVAR{X,Y,Z}, SCRATCH, (WORK) 
❑  FLUXes and other more temporary arrays 

❑  Initializing solution data: 
❑  Actually left to the user, who provides a subroutine Simulation_initBlock() 
❑  Grid invokes user function, applies refinement criteria, repeat as necessary 

❑  maintaining and keeping track of data during refinement changes: 
❑  Apply refinement criteria as requested 
❑  Copy data within processor, and/or communicate between procs 
❑  Involves prolongation (interpolation) 
❑  Involves restriction (valid data in PARENT blocks) 
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What the Grid Unit Actually Does - Cont.. 

Note: the previous slide was about data and mesh changes; now what's left to do 
between those changes? 

❑  The Grid unit is also responsible for 
❑  Operations that communicate user data between blocks: 

❑  Prolong (interpolate) data 
❑  After new leaf blocks are created 

❑  Restrict (summarize) data 
❑  PARENT blocks usually get summarized data as part of guard cell filling 

❑  Flux correction (special operation invoked from Hydro) 
❑  Edge averaging (special operation invoked from MHD Hydro) 

And finally... 
❑  Guard cell filling 

❑  The most important form of data communication on an established mesh 
configuration. 

❑  Called frequently, by various code units 
❑  May move a lot of data between procs, efficiency is important! 
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Guard Cell Filling – When 

Note: the following is focused on Paramesh4, but the high-level calls apply to 
all grid implementations 

 
❑  When are guard cells filled? 

❑  Directly: High-level call to Grid_fillGuardCells (or maybe amr_guardcell) 
❑  Always a global operation involving all processors 
❑  Usually fills guard cells of LEAF blocks and their parents – but don't count on it 

for PARENT blocks. 

❑  Indirectly: internally as part of some other Grid operation 
❑  As part of amr_prolong (filling new leaf blocks) 

❑  Indirectly during global direct filling: 
❑  Auxiliary filling of a PARENT block's guard cells in order to provide 

input for interpolation to this PARENT's child, a finer-resolution 
LEAF node. 
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Guard Cell Filling - Usage 

When should you fill guard cells? 
❑  Before a subroutine that you have written uses guard cells, you need 

to make sure they are filled with valid and current data. 
❑  FLASH4 does not guarantee that guard cells are valid on entry to a 

solver, source term code unit, etc.! 

❑  How should you fill guard cells? 
❑  Only worry about direct filling of LEAF guard cells – that is nearly 

always what is needed. 
❑  Basic high-level call:  

Call Grid_fillGuardCells(CENTER_FACES,ALLDIR) 

❑  High-level call with automatic Eos call on guard cells:  
Call Grid_fillGuardCells(CENTER_FACES,ALLDIR,doEos=.true.) 
❑  Eos often needs to be called to get cells at refinement boundaries, where data was 

interpolated, into thermodynamic balance. 

❑  There are many additional optional arguments, see API docs. They are 
for increasing performance, and can all be initially ignored. 
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GC Overview: blocks, cells, regions  

❑  Blocks consist of cells: guard cells and 
interior cells. 

❑  For purposes of guard cell filling, guard 
cells are organized into guard cell 
regions. 

❑  During guard cell filling, each guard 
cell region may get filled from a 
different data source: 
❑  A local neighbor block 
❑  A remote neighbor block 
❑  A boundary condition 

❑  using data from adjacent 
interior cells 

❑  Using fixed or coordinate-
based data 

❑  Interpolation from parent (if the 
block touches a fine/coarse 
boundary) 

❑  In PARAMESH4, diagonal regions are 
treated just like “face neighbor” 
regions.  
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Filling guard cells I 

❑  For purposes of guard cell filling, guard 
cells are organized into guard cell 
regions. ❑  During guard cell filling, each guard 

cell region may get filled from a 
different data source: 
❑  A local neighbor block 
❑  A remote neighbor block 
❑  A boundary condition 

❑  using data from adjacent 
interior cells 

❑  Using fixed or coordinate-
based data 

❑  Interpolation from parent (if the 
block touches a fine/coarse 
boundary) 
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Filling guard cells Ia 

❑  For purposes of guard cell filling, guard 
cells are organized into guard cell 
regions. 

In 2D, a block has 8 guard cell regions. 
In 3D, a block has 26 guard cell regions! 

❑  During guard cell filling, each guard 
cell region may get filled from a 
different data source: 
❑  A local neighbor block 
❑  A remote neighbor block 
❑  A boundary condition 

❑  using data from adjacent 
interior cells 

❑  Using fixed or coordinate-
based data 

❑  Interpolation from parent (if the 
block touches a fine/coarse 
boundary) 

-1,-1 0,-1 1,-1 

1,0 

-1,1 0,1 1,1 

-1,0 
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Filling guard cells Ib 

❑  For purposes of guard cell filling, guard 
cells are organized into guard cell 
regions. 

In 2D, a block has 8 guard cell regions. 
In 3D, a block has 26 guard cell regions! 

❑  During guard cell filling, each guard 
cell region may get filled from a 
different data source: 
❑  A local neighbor block 
❑  A remote neighbor block 
❑  A boundary condition 

❑  using data from adjacent 
interior cells 

❑  Using fixed or coordinate-
based data 

❑  Interpolation from parent (if the 
block touches a fine/coarse 
boundary) 

-1,-1 0,-1 1,-1 

1,0 

-1,1 0,1 1,1 

face direction 

diagonal direction 

-1,0 
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Filling guard cells Ic 

❑  For purposes of guard cell filling, guard 
cells are organized into guard cell 
regions. 

In 2D, a block has 8 guard cell regions. 
In 3D, a block has 26 guard cell regions! 

❑  During guard cell filling, each guard 
cell region may get filled from a 
different data source: 
❑  A local neighbor block 
❑  A remote neighbor block 
❑  A boundary condition 

❑  using data from adjacent 
interior cells 

❑  Using fixed or coordinate-
based data 

❑  Interpolation from parent (if the 
block touches a fine/coarse 
boundary) 

-1,-1 0,-1 1,-1 

1,0 

-1,1 0,1 1,1 

face neighbor 

diagonal neighbor 

-1,0 
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Filling guard cells from neighbors I 

❑  For purposes of guard cell filling, guard 
cells are organized into guard cell 
regions. ❑  During guard cell filling, each guard 

cell region may get filled from a 
different data source: 
❑  A local neighbor block 
❑  A remote neighbor block 
❑  A boundary condition 

❑  using data from adjacent 
interior cells 

❑  Using fixed or coordinate-
based data 

❑  Interpolation from parent (if the 
block touches a fine/coarse 
boundary) 

cell data from  
neighbor blocks 
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Filling guard cells at Boundary I 

❑  For purposes of guard cell filling, guard 
cells are organized into guard cell 
regions. 

Now assume a block at the corner of the 
domain: 

❑  During guard cell filling, each guard 
cell region may get filled from a 
different data source: 
❑  A local neighbor block 
❑  A remote neighbor block 
❑  A boundary condition 

❑  using data from adjacent 
interior cells 

❑  Using fixed or coordinate-
based data 

❑  Interpolation from parent (if the 
block touches a fine/coarse 
boundary) 

-1,-1 0,-1 1,-1 

1,0 

-1,1 0,1 1,1 

Domain boundaries 

-1,0 



Flash Center for Computational Science 
The University of Chicago 

Filling guard cells at Boundary II 

❑  For purposes of guard cell filling, guard 
cells are organized into guard cell 
regions. 

The guard cell regions in red represent 
locations outside of the domain: 

❑  During guard cell filling, each guard 
cell region may get filled from a 
different data source: 
❑  A local neighbor block 
❑  A remote neighbor block 
❑  A boundary condition 

❑  using data from adjacent 
interior cells 

❑  Using fixed or coordinate-
based data 

❑  Interpolation from parent (if the 
block touches a fine/coarse 
boundary) 

-1,-1 0,-1 1,-1 

1,0 

-1,1 0,1 1,1 

-1,0 
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Filling guard cells at Boundary III 

❑  For purposes of guard cell filling, guard 
cells are organized into guard cell 
regions. 

 

❑  During guard cell filling, each guard 
cell region may get filled from a 
different data source: 
❑  A local neighbor block 
❑  A remote neighbor block 
❑  A boundary condition 

❑  using data from adjacent 
interior cells 

❑  Using fixed or coordinate-
based data 

 
❑  Grid_bcApplyToRegionSpecialized is 

called and passed a pointer to the data 
in the blue region. 

(actually, to a copy of the block data) 
-1,-1 0,-1 1,-1 

1,0 

-1,1 0,1 1,1 
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Filling guard cells at Boundary IV 

❑  For purposes of guard cell filling, guard 
cells are organized into guard cell 
regions. 

 

❑  During guard cell filling, each guard 
cell region may get filled from a 
different data source: 
❑  A local neighbor block 
❑  A remote neighbor block 
❑  A boundary condition 

❑  using data from adjacent 
interior cells 

❑  Using fixed or coordinate-
based data 

 
❑  Grid_bcApplyToRegionSpecialized 

may fill in the guard cell region. 
❑  OR it may decline to handle this, and 

then:  
❑  The subroutine Grid_bcApplyToRegion 

is called and passed a pointer to the 
data in the blue region. 

 

-1,-1 0,-1 1,-1 

1,0 

-1,1 0,1 1,1 
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Implementing Boundary Conditions 

q  Grid_bcApplyToRegionSpecialized gets called first 
❑  This is normally a no-op stub 
❑  This is the preferred place to users to hook in customized implementations. 
❑  May decide to handle the call, based on BC type, direction, ... 
❑  Before returning, sets “applied” flag to signal that the BC was handled. 
 

q  Grid_bcApplyToRegion gets called if Grid_bcApplyToRegionSpecialized did not 
handle the case. 
❑  The standard implementation of Grid_bcApplyToRegion in source/Grid/

GridBoundaryConditions provides the standard simple BC types: 
REFLECTING, OUTFLOW, DIODE, ... 

❑  It is a good place to start if you need to write your own! 

❑  Both interfaces provide information that an implementation, can 
use to fill guard cells at boundaries, including: 
❑  A block handle (usually, block ID) identifying the block being filled 
❑  Location of the data region within the Grid block 
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BCs – Complications 

q  Grid_bcApplyToRegion* may be called on a non-LEAF block. 
q  Grid_bcApplyToRegion* may be called on a block that is not even local! 

❑  This can happen if a parent block needs to be filled to provide input data for 
interpolation, and the parent resides on a different PE from the leaf. 

❑  Simple BC methods don't have to be aware of this. 
❑  But if your method depends on coodinate information, or needs to access the 

block by its ID, beware! 
❑  See source/Grid/GridBoundaryConditions/README and Users Guide in those 

cases. 
q  The data region passed to Grid_bcApplyToRegion* is in transposed form: 

Reference it like regionData(I,J,k,ivar), where  
❑  I counts cells in the normal direction (NOT always: x direction!),  
❑  J,K cont cells in the other directions 
❑  Ivar counts variables 
This is convenient for implementing simple BC where location does not matter, but 
complicates things if you need to know where a cell is within the block.  
❑  Use provided examples! 
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BCs – Simplifications 

q  If you prefer a simpler interface: 
❑  Handle one data row at a time (vector of data in normal direction) 
❑  Powerful enough to implement hydrostatic boundaries 
❑  REQUIRES Grid/GridBoundaryConditions/OneRow (see source files there!) 
❑  Implements a version of Grid_bcApplyToRegionSpecialized 
❑  Provides functions Grid_applyBCEdge, Grid_applyBCEdgeAllUnkVars 
❑  Too customize, user should provide own implementation of  

Grid_applyBCEdge.F90 (or Grid_applyBCEdgeAllUnkVars.F90) 
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IO Unit 

❑  The IO unit is responsible for 
❑  Writing checkpoint files 

❑  For restarting, … 

❑  Writing “plot files” 
❑  For visualization 
❑  For further analysis  

❑  Writing particle data files 
❑  For visualization and further processing 

❑ binary output files are writing in a structured format: HDF5, 
pnetcdf 

❑ Various tools can process FLASH files, including Visit 
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Grid and other Infrastructure Code 

•  Questions? 


