
 The University of Chicago	

Flash Center for Computational Science	

Lagrangian Infrastructure & IO

FLASH Tutorial/Workshop
May 30 – June 1, 2012

Anshu Dubey

The University of Chicago

Components of the Framework

❑  Four sub-units within Particles unit
❑  ParticlesMain – unit scope data, time advancement
❑  ParticlesInitialization – initializing the unit and particle positions
❑  ParticlesMapping – to & from the grid
❑  ParticlesForces – from & to other particles and from & to grid

❑ One sub-unit in the Grid unit
❑  GridParticles
❑  Three sub-sub-units under it

❑  GridParticlesMove – move the particles data structures when their
positions change

❑  GridParticlesMapFromMesh – interpolate grid variables from the
cell or face center to the particle positions

❑  GridParticlesMapToMesh – map the particle attribute to relevant
cells in the grid variable

The University of Chicago

The Particles Unit

Particles	

Particles	

Main	

Particles	

Initialization	

Euler	

Leap	

frog	

Euler	

Runge	

Kutta	

CellMass	

Bin	

Rejection	

Lattice	

FromFile	

With	

Density	

Particles	

Mapping	

Particles	

Forces	

Quadratic	

CIC	

Long	

Range	

Short	

Range	

Passive	

Active	

Mid	

point	

The University of Chicago

GridParticles	

GridParticlesMove	
 GridParticlesMapFromMesh	
GridParticlesMapToMesh	

Paramesh	

Uniform	

Grid	

Sieve	

Paramesh	
 Point-to-	

point	

UpDown	

Tree	

Uniform	

Grid	
 Directional	

The GridParticles Sub-unit

The University of Chicago

Driver_initFlash	
 Particles	

Initialization	

GridParticles	

MapFromMesh	

Driver_	

EvolveFlash	

Particles	

Main	

Particles	

Mapping	

GridParticles	

MapFromMesh	

Particles	

Mapping	

GridParticles	

Move	

GridParticles	

MapToMesh	

Particles	

Mapping	

Particles	

Mapping	

Particles	

Forces	

invokes	

follows	

The Control Flow Between Them

The University of Chicago

Particle flavors

❑ Passive particles trace and record the history of the
flow

❑ Active particles influence the simulation
❑  Massive (dark matter) or Charged (PIC)

❑ All particles are stored in the same 2-D array:
–  1st dim: Total number of particle properties

(NPART_PROPS) . A single property named
TYPE_PART_PROP indicates particle type.

–  2nd dim: Maximum number of particles that are allowed
on a single processor (pt_maxPerProc).

The University of Chicago

Particle behaviors

❑ Particle behavior controlled by implementations of:
–  Time advancement
–  Initialization
–  Mapping (Bidirectional for active particles)

❑  Include the FLASH sub-units providing the desired
behavior in your Simulation Config file.

❑ Register particle behavior with a particular particle type
using PARTICLETYPE keyword in your Simulation
Config file.

The University of Chicago

PARTICLETYPE keyword

❑  PARTICLETYPE name INITMETHOD initmethod MAPMETHOD
mapmethod ADVMETHOD advmethod

❑  The initmethod, mapmethod and advmethod strings must
correspond to pre-processor definitions from the file Particles.h.

–  We use these definitions to select the functions that are
called for each particle type (see logic in the wrapper
functions Particles_initPositions,
Particles_mapFromMesh and Particles_advance).

❑  PARTICLETYPE keyword is not fool-proof!
–  Your responsibility to ensure PARTICLETYPE

arguments are consistent with the units being included.
–  Glance over the setup generated files:

Particles_specifyMethods.F90 and setup_units.

The University of Chicago

Initialization

❑  The wrapper function Particles_initPositions calls the
specified initialization function for each particle type.

❑ We have initialization functions named
pt_initPositionsLattice and pt_initPositionsWithDensity.

–  These correspond to initmethod strings of:
•  “lattice”: Regularly spaced particle distribution.
•  “with_density”: Density of particles is

proportional to the density on the grid.

❑ You can use your own initialization function:
–  Name it pt_initPositions and place in simulation

directory.
–  Use an initmethod string of “custom” for each particle

type that should use this distribution.

The University of Chicago

Mapping

❑  Converts grid based quantities into similar attributes defined on
particles (and vice versa for active particles).

–  Particles_mapFromMesh (Mesh → Particles)
–  Particles_mapToMeshOneBlk (Particles → Mesh)

❑  FLASH supplies the following mapping schemes:
–  Quadratic: Second-order interpolation.

•  Only available for passive particles.
–  Weighted: A linear weighting from nearby points.

•  Default weighting is Cloud-In-Cell (CIC).

❑  Use mapmethod strings of “quadratic” or “weighted”.

The University of Chicago

Time advancement

❑  Different time integration schemes for passive and active particles.
–  Only one type of passive and one type of active scheme

may be selected in a simulation.

❑  Advancement of particles' position may require particles move to
another block (may be on another processor).

–  Movement is handled by Grid/GridParticles subunit.
•  Also handles particle movement that occurs as a

result of refinement / derefinement.

The University of Chicago

Particle attributes

❑ Aditional properties can be defined for each particle:
PARTICLEPROP property-name
❑  The new particle property may be used to sample the

state of mesh variables:
PARTICLEMAP TO property-name FROM VARTYPE variable-name
(Here, VARTYPE can be GRIDVAR, FACEX, FACEY, FACEZ, VARIABLE,

MASS_SCALAR, SPECIES)

❑ We map from variable-name to property-name before
we write a checkpoint file or a particle file.

❑ Example: To sample the value of a mass scalar
named val1:

MASS_SCALAR val1
PARTICLEPROP pval1
PARTICLEMAP TO pval1 FROM MASS_SCALAR val1

The University of Chicago

Particle based refinement

❑  Possible to refine the AMR grid according to the number of
particles in each block.

–  May be necessary to avoid exceeding pt_maxPerProc
in simulations that have significant particle clustering.

❑  This can be used as the sole refinement criterion or it can be
used in conjunction with the standard mesh refinement criterion.

❑  Use the following runtime parameters:
–  refine_on_particle_count = .true. / .false.
–  max_particles_per_blk = Value

The University of Chicago

Useful runtime parameters

Particle options that can be set in flash.par:
useParticles: Logical value that specifies whether to use

particles.
pt_maxPerProc: Maximum number of particles that may

exist on a single processor. Used to size particles
array.

refine_on_particle_count: Logical value that specifies
whether particle count should be used as a refinement
criterion.

max_particles_per_blk: Refinement criterion for
refine_on_particle_count. It is the maximum number
of particles that may exist on any block.

The University of Chicago

Example 1

Add Passive particles:

REQUESTS Particles/ParticlesMain/passive/RungeKutta
PARTICLETYPE passive INITMETHOD lattice MAPMETHOD quadratic
ADVMETHOD rungekutta
REQUESTS Particles/ParticlesInitialization/Lattice
REQUESTS Particles/ParticlesMapping/Quadratic
REQUESTS Particles/ParticlesMain/passive/RungeKutta
REQUIRES Grid/GridParticles

FLASH Simulation : Weakly compressible turbulence

The University of Chicago

Example 2

Add Active particles with your own custom initialization:

REQUIRES Particles/ParticlesMain/active/LeapfrogCosmo
PARTICLETYPE darkmatter INITMETHOD custom MAPMETHOD weighted

ADVMETHOD leapfrog
REQUESTES Particles/ParticlesMain/active/massive/Leapfrog

REQUESTS Particles/ParticlesMapping/meshWeighting/CIC
REQUIRES Grid/GridParticles/MapToMesh
REQUIRES Particles/ParticlesMapping/meshWeighting/MapToMesh
REQUIRES Particles/ParticlesForces/longRange/gravity/ParticleMesh
REQUESTS physics/Gravity/GravityMain/Poisson/Multigrid

Additional units for
active particles subject

to gravitational long
range force.

The University of Chicago

Massive Particles Simulations

 Galaxy Cluster Simulation

The University of Chicago

PIC

❑  External Contribution by Mats Holmström
❑ Models ions as particles and electrons as massless

fluid
❑ Works only with uniform grid
❑  Two basic operations

❑  Deposit charges and currents into the grid
❑  Grid_mapParticlesToMesh

❑  Interpolate fields to particle positions
❑  Grid_mapMeshToParticles

❑  Time advancement using predictor-corrector leapfrog

The University of Chicago

Lagrangian Framework

The University of Chicago

File Types - Diagnostic Files

❑  Log File: flash.log
❑  Generated by the Logfile module
❑  Collects events during a run, and often provides more data

than stdout/stderr
❑  Can also put out individual process logfiles -- good for

debugging

❑  Dat File: flash.dat
❑  Collection of quantities generated per time step
❑  Usually integrated over the physical domain

❑  amr.log -- Paramesh only!
❑  Generated by Paramesh in the event of an error

❑  Timer summaries: timer_summary_xxxxx
❑  Allows for the collection of individual processor timing data

from FLASH’s timers, each processor writes out a file
❑  Can be turned off by setting eachProcWritesSummary to false

The University of Chicago

File Types -- Large Files

❑  Checkpoint files: basename_filetype_chk_xxxx
❑  Contain everything you need to restart outside of a parfile
❑  Large, but can save a lot of time and CPU hours
❑  Can be set to “roll” via the rollingCheckpoint parameter

❑  Plot Files: basename_filetype_plt_cnt_xxxx
❑  Contains specific Eulerian quantities specified in your parfile
❑  Much smaller and faster to output than a checkpoint
❑  By default double-sized floating point data is output in single

precision

❑  Particle files: basename_filetype_part_xxxx
❑  Contains header information, particle metadata and particle

data
❑  Typically very small and fast to output

The University of Chicago

Key Flash I/O Feature Overview

❑ Multiple I/O Modes
❑  Serial, Parallel, Direct

❑ Multiple I/O Libraries supported
❑  HDF5 in serial and parallel mode
❑  PnetCDF
❑  More can be brought in under FLASH’s architecture

❑  Transparent Restarting
❑  Arbitrary I/O File Splitting
❑  Integral Quantities

The University of Chicago

Serial I/O

0 1 2 3 4

File

processors

 Each processor sends its data to the
master who then writes the data to a
file

 Advantages
 Don’t need a parallel file system
 Simple

  Disadvantages
 Not scalable
 Not Efficient

5

The University of Chicago

Parallel I/O: Separate Files

0 1 2 3 4

File File File File File

processors

 Each processor writes its own data to a separate file
 Advantages

  Fast!
  Disadvantages

  can quickly accumulate many files
  hard to manage
  requires post processing

5

File

The University of Chicago

Parallel I/O: Single-file

0 1 2 3 4

File

processors

 Each processor writes its own data to the same file
using MPI-IO mapping

 Advantages
  single file
  scalable

  Disadvantages
  requires MPI-IO mapping or other higher level libraries

5

The University of Chicago

Parallel I/O Split File

0 1 2 3 4 processors

 Hybridized model: parallel output to multiple files
 Advantages

  Potentially more scalable than single file
  Can take advantage of architecture

  Disadvantages
  Requires MPI-IO mapping or other higher level libraries
  Still have multiple files to deal with

5

File File File

The University of Chicago

Parallel IO single file

3 5 2 9 2 4 3 1 9 8 2 4

0 1 2 3 4 5 processors

array of data

Each processor writes to a section of a data array.
Each must know its offset from the beginning of the

array and the number of elements to write

The University of Chicago

HDF5

❑  Library maintained by the HDF group
❑  Allows for serial and parallel operations
❑  Primary IO format for FLASH
❑  Pros:

❑  Data is stored with metadata that increases portability
❑  Very flexible data format
❑  Handles large volumes of data well
❑  Most tools for working with FLASH files are written for this

format

❑  Cons:
❑  Can be slower than other IO libraries
❑  Lots of settings, can be confusing

The University of Chicago

HDF5: Notes on Parallel Mode

❑  Parallel HDF5 can be run using an independent
access pattern or a collective access pattern

❑  Collective operations can aggregate reads and writes
from multiple processes so that the data can be written
in one disk operation

❑  This can lead to dramatic increases in speed.

❑  Collective mode may not play nice with other HDF5
features

The University of Chicago

PnetCDF

❑  Library maintained by Argonne National Laboratory
❑  Allows for parallel operations, a CDF library can be

used for serial tools.
❑  Every operation is run in collective mode
❑  Pros:

❑  Very fast if collective operations are enabled, can be faster
than HDF5

❑  Interface to files is simpler than HDF5

❑  Cons:
❑  Not as flexible
❑  Most tools for FLASH do not support PnetCDF files

The University of Chicago

Direct IO

❑  Each processor performs a binary write to disk.
❑  Data split up into n files where n is the number of

processors.
❑  Pros:

❑  Always available.
❑  One of the fastest methods available.

❑  Cons:
❑  No automated reader
❑  Files will be non-portable
❑  Can generate too many files

❑ Warning:
❑  Method of Last Resort!
❑  Implementation within FLASH is only an example should this

mode be necessary.

The University of Chicago

Flash Center IO Nightmare…

❑  Large 32,000 processor run on LLNL BG/L
❑  Parallel IO libraries not yet available
❑  Intensive I/O application

❑  checkpoint files .7 TB, dumped every 4 hours, 200 dumps
❑  used for restarting the run
❑  full resolution snapshots of entire grid

❑  plotfiles - 20GB each, 700 dumps

❑  coarsened by a factor of two averaging
❑  single precision
❑  subset of grid variables

❑  particle files 1400 particle files 470MB each
❑  154 TB of disk capacity
❑  74 million files!
❑  Unix tool problems
❑  2 Years Later we were still trying to sift though data, sew files together

The University of Chicago

Integral Quantities

❑  Individual file output by the master PE
❑  Collects quantities integrated by volume over the grid

❑  Cartesian geometries are supportes along with 2D cylindrical

❑  Frequently overrode in individual simulations for
additional functionality

❑  If modified, the user is responsible for all MPI needed
to marshal data
❑  Recommended that you use Flash_mpi.h and FLASH_REAL

for MPI calls.

❑  Also a good place for step-by-step statistics for
debugging

The University of Chicago

Questions?

Questions?

