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Components of the Framework 

❑  Four sub-units within Particles unit 
❑  ParticlesMain – unit scope data, time advancement 
❑  ParticlesInitialization – initializing the unit and particle positions 
❑  ParticlesMapping – to & from the grid 
❑  ParticlesForces – from & to other particles and from & to grid 

❑ One sub-unit in the Grid unit 
❑  GridParticles 
❑  Three sub-sub-units under it 

❑  GridParticlesMove – move the particles data structures when their 
positions change 

❑  GridParticlesMapFromMesh – interpolate grid variables from the 
cell or face center to the particle positions 

❑  GridParticlesMapToMesh – map the particle attribute to relevant 
cells in the grid variable 
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The Particles Unit 
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GridParticles	
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Particle flavors 

❑ Passive particles trace and record the history of the 
flow  

❑ Active particles influence the simulation 
❑  Massive (dark matter) or Charged (PIC) 

❑ All particles are stored in the same 2-D array: 
–  1st dim: Total number of particle properties 

(NPART_PROPS) .  A single property named 
TYPE_PART_PROP indicates particle type. 

–  2nd dim: Maximum number of particles that are allowed 
on a single processor (pt_maxPerProc). 
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Particle behaviors 

❑ Particle behavior controlled by implementations of: 
–  Time advancement 
–  Initialization 
–  Mapping (Bidirectional for active particles) 

❑  Include the FLASH sub-units providing the desired 
behavior in your Simulation Config file. 

❑ Register particle behavior with a particular particle type 
using PARTICLETYPE keyword in your Simulation 
Config file. 
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PARTICLETYPE keyword 

❑  PARTICLETYPE name INITMETHOD initmethod MAPMETHOD 
mapmethod ADVMETHOD advmethod 

❑  The initmethod, mapmethod and advmethod strings must 
correspond to pre-processor definitions from the file Particles.h.   

–  We use these definitions to select the functions that are 
called for each particle type (see logic in the wrapper 
functions Particles_initPositions, 
Particles_mapFromMesh and Particles_advance). 

❑  PARTICLETYPE keyword is not fool-proof! 
–  Your responsibility to ensure PARTICLETYPE 

arguments are consistent with the units being included. 
–  Glance over the setup generated files:  

Particles_specifyMethods.F90 and setup_units. 
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Initialization 

❑  The wrapper function Particles_initPositions calls the 
specified initialization function for each particle type. 

❑ We have initialization functions named 
pt_initPositionsLattice and pt_initPositionsWithDensity. 

–  These correspond to initmethod strings of: 
•  “lattice”: Regularly spaced particle distribution. 
•  “with_density”: Density of particles is 

proportional to the density on the grid. 

❑ You can use your own initialization function: 
–  Name it pt_initPositions and place in simulation 

directory. 
–  Use an initmethod string of “custom” for each particle 

type that should use this distribution. 
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Mapping 

❑  Converts grid based quantities into similar attributes defined on 
particles (and vice versa for active particles). 

–  Particles_mapFromMesh (Mesh → Particles) 
–  Particles_mapToMeshOneBlk (Particles → Mesh) 

❑  FLASH supplies the following mapping schemes: 
–  Quadratic: Second-order interpolation. 

•  Only available for passive particles.  
–  Weighted: A linear weighting from nearby points. 

•  Default weighting is Cloud-In-Cell (CIC). 

❑  Use mapmethod strings of “quadratic” or “weighted”. 
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Time advancement 

❑  Different time integration schemes for passive and active particles.   
–  Only one type of passive and one type of active scheme 

may be selected in a simulation. 

❑  Advancement of particles' position may require particles move to 
another block (may be on another processor). 

–  Movement is handled by Grid/GridParticles subunit. 
•  Also handles particle movement that occurs as a 

result of refinement / derefinement. 



The University of Chicago 

Particle attributes 

❑ Aditional properties can be defined for each particle: 
PARTICLEPROP property-name 
❑  The new particle property may be used to sample the 

state of mesh variables:  
PARTICLEMAP TO property-name FROM VARTYPE variable-name 
(Here, VARTYPE can be GRIDVAR, FACEX, FACEY, FACEZ, VARIABLE, 

MASS_SCALAR, SPECIES) 

❑ We map from variable-name to property-name before 
we write a checkpoint file or a particle file. 

❑ Example: To sample the value of a mass scalar 
named val1: 

MASS_SCALAR val1 
PARTICLEPROP pval1 
PARTICLEMAP TO pval1 FROM MASS_SCALAR val1 
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Particle based refinement 

❑  Possible to refine the AMR grid according to the number of 
particles in each block.   

–  May be necessary to avoid exceeding pt_maxPerProc 
in simulations that have significant particle clustering. 

❑  This can be used as the sole refinement criterion or it can be 
used in conjunction with the standard mesh refinement criterion.  

❑  Use the following runtime parameters: 
–  refine_on_particle_count = .true. / .false. 
–  max_particles_per_blk = Value 
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Useful runtime parameters 

Particle options that can be set in flash.par:  
useParticles: Logical value that specifies whether to use 

particles. 
pt_maxPerProc: Maximum number of particles that may 

exist on a single processor.  Used to size particles 
array. 

refine_on_particle_count: Logical value that specifies 
whether particle count should be used as a refinement 
criterion. 

max_particles_per_blk: Refinement criterion for 
refine_on_particle_count.  It is the maximum number 
of particles that may exist on any block. 
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Example 1 

Add Passive particles: 

REQUESTS Particles/ParticlesMain/passive/RungeKutta 
PARTICLETYPE passive INITMETHOD lattice MAPMETHOD quadratic 
ADVMETHOD rungekutta 
REQUESTS Particles/ParticlesInitialization/Lattice 
REQUESTS Particles/ParticlesMapping/Quadratic 
REQUESTS Particles/ParticlesMain/passive/RungeKutta 
REQUIRES Grid/GridParticles 

FLASH Simulation : Weakly compressible turbulence 
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Example 2 

Add Active particles with your own custom initialization: 

REQUIRES Particles/ParticlesMain/active/LeapfrogCosmo 
PARTICLETYPE darkmatter INITMETHOD custom MAPMETHOD weighted 

ADVMETHOD leapfrog 
REQUESTES Particles/ParticlesMain/active/massive/Leapfrog 

REQUESTS Particles/ParticlesMapping/meshWeighting/CIC 
REQUIRES Grid/GridParticles/MapToMesh 
REQUIRES Particles/ParticlesMapping/meshWeighting/MapToMesh 
REQUIRES Particles/ParticlesForces/longRange/gravity/ParticleMesh 
REQUESTS physics/Gravity/GravityMain/Poisson/Multigrid 

Additional units for 
active particles subject 

to gravitational long 
range force. 



The University of Chicago 

Massive Particles Simulations 

                      Galaxy Cluster Simulation 
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PIC 

❑  External Contribution by Mats Holmström 
❑ Models ions as particles and electrons as massless 

fluid 
❑ Works only with uniform grid 
❑  Two basic operations 

❑  Deposit charges and currents into the grid  
❑  Grid_mapParticlesToMesh 

❑  Interpolate fields to particle positions 
❑  Grid_mapMeshToParticles 

❑  Time advancement using predictor-corrector leapfrog 
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Lagrangian Framework 
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File Types - Diagnostic Files 

❑  Log File: flash.log 
❑  Generated by the Logfile module 
❑  Collects events during a run, and often provides more data 

than stdout/stderr 
❑  Can also put out individual process logfiles -- good for 

debugging 

❑  Dat File: flash.dat 
❑  Collection of quantities generated per time step 
❑  Usually integrated over the physical domain 

❑  amr.log -- Paramesh only! 
❑  Generated by Paramesh in the event of an error 

❑  Timer summaries: timer_summary_xxxxx 
❑  Allows for the collection of individual processor timing data 

from FLASH’s timers, each processor writes out a file 
❑  Can be turned off by setting eachProcWritesSummary to false 
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File Types -- Large Files 

❑  Checkpoint files: basename_filetype_chk_xxxx 
❑  Contain everything you need to restart outside of a parfile 
❑  Large, but can save a lot of time and CPU hours 
❑  Can be set to “roll” via the rollingCheckpoint parameter 

❑  Plot Files: basename_filetype_plt_cnt_xxxx 
❑  Contains specific Eulerian quantities specified in your parfile 
❑  Much smaller and faster to output than a checkpoint 
❑  By default double-sized floating point data is output in single 

precision 

❑  Particle files: basename_filetype_part_xxxx 
❑  Contains header information, particle metadata and particle 

data 
❑  Typically very small and fast to output 
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Key Flash I/O Feature Overview 

❑ Multiple I/O Modes 
❑  Serial, Parallel, Direct 

❑ Multiple I/O Libraries supported 
❑  HDF5 in serial and parallel mode 
❑  PnetCDF 
❑  More can be brought in under FLASH’s architecture 

❑  Transparent Restarting 
❑  Arbitrary I/O File Splitting 
❑  Integral Quantities 
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Serial I/O  

0 1 2 3 4 

File 

processors 

 Each processor sends its data to the 
master who then writes the data to a 
file 

 Advantages 
 Don’t need a parallel file system 
 Simple 

  Disadvantages 
 Not scalable 
 Not Efficient 

5 
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Parallel I/O: Separate Files  

0 1 2 3 4 

File File File File File 

processors 

 Each processor writes its own data to a separate file 
 Advantages 

  Fast! 
  Disadvantages 

  can quickly accumulate many files 
  hard to manage 
  requires post processing 

5 

File 
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Parallel I/O: Single-file  

0 1 2 3 4 

File 

processors 

 Each processor writes its own data to the same file 
using MPI-IO mapping 

 Advantages 
  single file 
  scalable 

  Disadvantages 
  requires MPI-IO mapping or other higher level libraries 

5 
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Parallel I/O Split File  

0 1 2 3 4 processors 

 Hybridized model: parallel output to multiple files 
 Advantages 

  Potentially more scalable than single file 
  Can take advantage of architecture 

  Disadvantages 
  Requires MPI-IO mapping or other higher level libraries 
  Still have multiple files to deal with 

5 

File File File 
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Parallel IO single file 

3 5 2 9 2 4 3 1 9 8 2 4 

0 1 2 3 4 5 processors 

array of data 

Each processor writes to a section of a data array.  
Each must know its offset from the beginning of the 

array and the number of elements to write 
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HDF5 

❑  Library maintained by the HDF group 
❑  Allows for serial and parallel operations 
❑  Primary IO format for FLASH 
❑  Pros: 

❑  Data is stored with metadata that increases portability 
❑  Very flexible data format 
❑  Handles large volumes of data well 
❑  Most tools for working with FLASH files are written for this 

format 

❑  Cons: 
❑  Can be slower than other IO libraries 
❑  Lots of settings, can be confusing 
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HDF5: Notes on Parallel Mode 

❑  Parallel HDF5 can be run using an independent 
access pattern or a collective access pattern 

❑  Collective operations can aggregate reads and writes 
from multiple processes so that the data can be written 
in one disk operation 

❑  This can lead to dramatic increases in speed. 

❑  Collective mode may not play nice with other HDF5 
features 
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PnetCDF 

❑  Library maintained by Argonne National Laboratory 
❑  Allows for parallel operations, a CDF library can be 

used for serial tools. 
❑  Every operation is run in collective mode 
❑  Pros: 

❑  Very fast if collective operations are enabled, can be faster 
than HDF5 

❑  Interface to files is simpler than HDF5 

❑  Cons: 
❑  Not as flexible 
❑  Most tools for FLASH do not support PnetCDF files 
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Direct IO 

❑  Each processor performs a binary write to disk.   
❑  Data split up into n files where n is the number of 

processors. 
❑  Pros: 

❑  Always available. 
❑  One of the fastest methods available. 

❑  Cons: 
❑  No automated reader 
❑  Files will be non-portable 
❑  Can generate too many files 

❑ Warning: 
❑  Method of Last Resort! 
❑  Implementation within FLASH is only an example should this 

mode be necessary. 
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Flash Center IO Nightmare… 

❑  Large 32,000 processor run on LLNL BG/L 
❑  Parallel IO libraries not yet available 
❑  Intensive I/O application 

❑  checkpoint files .7 TB, dumped every 4 hours, 200 dumps 
❑  used for restarting the run 
❑  full resolution snapshots of entire grid 

❑  plotfiles - 20GB each, 700 dumps 

❑  coarsened by a factor of two averaging 
❑  single precision 
❑  subset of grid variables 

❑  particle files 1400 particle files 470MB each 
❑  154 TB of disk capacity 
❑  74 million files! 
❑  Unix tool problems 
❑  2 Years Later we were still trying to sift though data, sew files together 
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Integral Quantities 

❑  Individual file output by the master PE 
❑  Collects quantities integrated by volume over the grid 

❑  Cartesian geometries are supportes along with 2D cylindrical 

❑  Frequently overrode in individual simulations for 
additional functionality 

❑  If modified, the user is responsible for all MPI needed 
to marshal data 
❑  Recommended that you use Flash_mpi.h and FLASH_REAL 

for MPI calls. 

❑  Also a good place for step-by-step statistics for 
debugging 
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Questions? 

Questions? 


