
 The University of Chicago	

Flash Center for Computational Science	

Infrastructure Overview

FLASH Tutorial/Workshop
May 30, 2012
Anshu Dubey

The University of Chicago

FLASH Basics

❑  Infrastructure
❑  Configuration (setup)
❑  Mesh Management
❑  Parallel I/O
❑  Monitoring

❑  Performance and progress
❑  Verification

❑  FlashTest
❑  Unit and regression

testing

❑  An application code, composed of units/modules. Particular
modules are set up together to run different physics problems.

❑  Fortran, C, Python, …
❑  Very portable, scales to tens of thousand processors

Capabilities	

❑  Physics	

❑  Hydrodynamics, MHD, RHD	

❑  Equation of State	

❑  Nuclear Physics	

❑  Radiation Diffusion	

❑  Laser Drive	

❑  Gravity	

❑  Particles, active and passive	

❑  Material Properties 	

❑  Opacities, Conductivity,
Resistivity etc	

❑  Cosmology	

The University of Chicago

Architecture : Unit

❑  FLASH basic architecture unit
❑  Component of the FLASH code providing a particular

functionality
❑  Different combinations of units are used for particular problem

setups
❑  Publishes a public interface (API) for other units’ use.
❑  Ex: Driver, Grid, Hydro, IO etc

❑  Fake inheritance by use of directory structure
❑  Interaction between units governed by the Driver
❑  Not all units are included in all applications

The University of Chicago

FLASH Units: Examples

Driver

I/O
Runtime
Params

Grid

Profiling

Logfile
Simulation

Infrastructure

monitoring

Hydro

Burn Gravity

MHD

Physics

The University of Chicago

Inside a Unit: The Top Level

❑  First capitalized directory in a branch of the source tree is a unit
❑  Contains stubs for every public function (API) in the unit

❑  Does not contain the data module (unit scope data)
❑  Individual API functions may be implemented in different subunits
❑  A unit has a minimum three functions in its API, no limit on the

maximum
❑  Unit_init, Unit_finalize and the “do-er” function for the unit

❑  If necessary, contains a directory for the local API
❑  May contain the unit test

❑  Different Unit tests can reside at different levels in the unit hierarchy
❑  The Config file contains minimal information, no runtime

parameters except “useUnit” defined
❑  Makefile includes all the API functions.

The University of Chicago

Subunits

❑  Every unit has a UnitMain subunit, which must be included in the
simulation if the unit is included.
❑  Has implementations for the init, finalize and the main “do-er”

function
❑  Also contains the unit scope data module

❑  The API functions and private functions implemented in different
subunits are mutually exclusive

❑  Subunits other than UnitMain may have private Unit scope
functions that can be called by other subunits.
❑  un_suInit and un_suFinalize are the most common ones
❑  (naming convention explained later)

❑  Subunits can also have private data modules, strictly within the
scope limited to the specific subunit

❑  Subunits can have their own unit tests

The University of Chicago

More on Subunits

❑  A subunit may have multiple alternative implementations
❑  Alternative implementations of UnitMain also act as

alternative implementations of the Unit.
❑  Some subunits have multiple implementations that could be

included in the same simulation
❑  GridParticles is one possible example.
❑  Alternative implementations are specified using the “EXCLUSIVE”

directive

❑  The “KERNEL” keyword indicates that subdirectories below
that level need not follow FLASH architecture, and the
entire subtree will be included in the simulation

The University of Chicago

Unit Hierarchy

Unit
API/stubs

Impl_1
Remaining
API impl

kernel

kernel

UnitMain
Common API

implementation
UnitSomething

API
implementation

kernel
Impl_2

Remaining
API impl

kernel

Impl_3
Remaining
API impl

Common
Impl	

The University of Chicago

Example of a Unit – Grid (simplified)

Grid	

GridSolvers	

GridMain	

GridParticles	

UG	

Paramesh2	

 paramesh4	

paramesh	

PM4_package	

UG	

 paramesh	

MoveSieve	

 PttoPt	

local 	

API	

Why Local API ? 	

Grid_init calls init
functions for all
subunits, if subunit is
not included code
won’t build.	

PM4dev_���
package	

GridBC	

GPMapToMesh	

 GPMove	

etc…	

The University of Chicago

Functional Component in Multiple Units

❑  Example Particles
❑  Position initialization and time integration in Particles unit
❑  Data movement in Grid unit
❑  Mapping divided between Grid and Particles

❑  Solve the problem by moving control back
and forth between units

Driver	

Init	

Evolve	

Particles	

Init Map Evolve	

Grid	

Init Map Move	

The University of Chicago

Basic Computational Unit, Block

❑  The grid is composed of
blocks

❑  Cover different fraction of
the physical domain.

❑  In AMR blocks at
different levels of
refinement have different
grid spacing.

The University of Chicago

Architecture : Inheritance

❑  Inheritance implemented through directory structure and
Config file directives understood by the setup script

❑  A child directory inherits all functions from the parent directory
❑  If the child directory has its own implementation of a function, it replaces the inherited one.
❑  The implementation in the lowest level offspring replaces all implementations in higher level

directories.
❑  An implementation in the “Simulation/MyProblem” directory overrides all implementations when

running MyProblem

❑  Config files arbitrate on multiple implementations through
“Default” keyword

❑  Runtime environment is created by taking a union of all
variables, fluxes, and runtime parameters in Config files of
included directories.
❑  Value given to a runtime parameter in the “Simulation/MyProblem/Config” overrides any value

given to it in other Config files
❑  Value in “flash.par” overrides any value given in any Config file

Multiple Config file initial values of a runtime parameter in units other than the
simulation unit can lead to non-deterministic behavior since

there are no other precedence rules.

The University of Chicago

Inheritance Through Directories: Eos

Eos_!
init!

Eos!
Eos_!

wrapped!

EosMain!

Gamma!

Multigamma!

• Stub Implementations of the
three functions at the top level

•  There is only one subunit: Eos/
EosMain
•  Replaces the stub with an
implementation common to all
formulations of EOS

Eos/EosMain/Gamma
 implements gamma versions
 of Eos_init and Eos

Eos_init!

Eos_wrapped!

Specific implementation

Eos!

Another implementation, which will have its
own Eos and Eos_init etc.

The University of Chicago

Namespace

❑  Namespace directories are capitalized, organizational
directories are not

❑  All API functions of unit start with Unit_
(i.e.Grid_getBlkPtr, Driver_initFlash etc)

❑  Subunits have composite names that include unit
name followed by a capitalized word describing the
subunit (i.e. ParticlesMain, ParticlesMapping,
GridParticles etc)

❑  Private unit functions and unit scope variables are
named un_routineName (i.e. gr_createDomain,
pt_numLocal etc)

❑  Private functions in subunits other than UnitMain are
encouraged to have names like un_suRoutineName,
as are the variables in subunit scope data module

The University of Chicago

Naming Conventions: Within files

❑  Constants are all uppercase, usually have
preprocessor definition, multiple words are separated
by an underscore.
❑  Permanent constants in “constants.h” or “Unit.h”

❑  #define MASTER_PE 0
❑  #define CYLINDRICAL 3

❑  Generated by setup script in “Flash.h”
❑  #define DENS_VAR 1
❑  #define NFACE_VARS 6

❑  Style within routines
❑  Variables from Unit_data start with unit_variable:

“eos_eintSwitch”
❑  Variables begin lowercase, additional words begin with

uppercase: “massFraction”

The University of Chicago

Naming Conventions – How they help

❑  The significance of capitalizing unit names:
❑  A new unit can be added without the need to modify the setup

script.
❑  If the setup script encounters a top level capitalized directory

without an API function to initialize the unit, it issues a
warning.

❑  Variable Style:
❑  Immediately clear if variable is CONSTANT, local

(massFraction) or global (eos_eintSwitch) in scope

The University of Chicago

Setup Script Implements Architecture

Python code links together needed physics
and tools for a problem

❑  Traverse the FLASH source tree and link necessary files for a
given application to the object directory

❑  Creates a file defining global constants set at build time
❑  Builds infrastructure for mapping runtime parameters to

constants as needed
❑  Configures Makefiles properly
❑  Determine solution data storage list and create Flash.h
❑  Generate files needed to add runtime parameters to a given

simulation.
❑  Generate files needed to parse the runtime parameter file.

The University of Chicago

Config file: Purpose

❑ Written in a FLASH-dependent syntax
❑  Needed in each Unit or Simulation directory
❑  Define dependencies at all levels in the source tree:

❑  Lists required, requested, exclusive modules

❑  Declare solution variables, fluxes
❑  Declare runtime parameters

❑  Sets defaults and allowable ranges – do it early!
❑  Documentation – start line with “D”

❑  Variables, Units are additive down the directory tree
❑  Provides warnings to prevent dumb mistakes

❑  Better than compiling and then crashing

The University of Chicago

Config file example

Alternate local IO routines

Runtime parameters and
documentation

Required Units

Enforce geometry or other conditions

The University of Chicago

Simple setup
hostname:Flash3> ./setup MySimulation -auto

setup script will automatically generate the object directory based on the
MySimulation problem you specify

INCLUDE Driver/DriverMain/TimeDep
INCLUDE Grid/GridMain/paramesh/Paramesh3/PM3_package/headers
INCLUDE Grid/GridMain/paramesh/Paramesh3/PM3_package/mpi_source
INCLUDE Grid/GridMain/paramesh/Paramesh3/PM3_package/source
INCLUDE Grid/localAPI
INCLUDE IO/IOMain/hdf5/serial/PM
INCLUDE PhysicalConstants/PhysicalConstantsMain
INCLUDE RuntimeParameters/RuntimeParametersMain
INCLUDE Simulation/SimulationMain/Sedov
INCLUDE flashUtilities/general
INCLUDE physics/Eos/EosMain/Gamma
INCLUDE physics/Hydro/HydroMain/split/PPM/PPMKernel
INCLUDE physics/Hydro/HydroMain/utilities

If you don’t use the -auto flag, you must have a valid Units file
in the object FLASH directory (FLASH4/object/setup_units)

Sample Units File

The University of Chicago

setup Shortcuts & help

❑  ./setup –help shows many fascinating options
❑  Shortcuts allows many setup options to be included

with one keyword
❑  To use a shortcut, add +shortcut to your setup line

❑  The shortcut ug is defined as:
❑  ug:--with-unit=Grid/GridMain/:Grid=UG:

❑  prompt> ./setup MySimulation -auto +ug

❑  this is equivalent to typing in unit options with
❑  -unit=Grid/GridMain/UG
❑  -unit=IO/IOMain/hdf5/serial/UG (because the appropriate IO is

included by default)

❑  Look in Flash3/bin/setup_shortcuts.txt for more
examples and to define your own

The University of Chicago

Important Files Generated by setup

setup_call contains the options with which setup was called and the command line
resulting after shortcut expansion

setup_datafiles contains the complete path of data files copied to the object directory

setup_defines contains a list of all pre-process symbols passed to the compiler
invocation directly

setup_flags contains the exact compiler and linker flags

setup_libraries contains the list of libraries and their arguments (if any) which was
linked in to generate the executable

setup_params contains the list of runtime parameters defined in the Config files
processed by setup

setup_units contains the list of all units which were included in the current setup

setup_vars contains the list of variables, fluxes, species, particle properties, and
mass scalars used in the current setup, together with their descriptions

The University of Chicago

Additional Files created by setup

❑  Flash.h contains
❑  Problem dimensionality and size e.g. NDIM, MAXBLOCKS
❑  Fixed block size dimensionality e.g. NXB, GRID_IJI_GC
❑  Variable, species, flux, mass scalar numbers and list e.g. e.g.

NSPECIES, DENS_VAR, EINT_FLUX
❑  Possibly grid geometry GRID_GEOM
❑  PPDEFINE variables showing which units are included e.g.

FLASH_GRID_PARAMESH3

❑  Simulation_mapIntToStr.F90,
Simulation_mapStrToInt.F90
❑  Converts text strings to equivalent index in Flash.h e.g. “dens”

maps to DENS_VAR=1

The University of Chicago

Online Documentation

flash.uchicago.edu

