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FLASH Basics 

❑  Infrastructure 
❑  Configuration (setup) 
❑  Mesh Management  
❑  Parallel I/O 
❑  Monitoring 

❑  Performance and progress 
❑  Verification 

❑  FlashTest 
❑  Unit and regression 

testing 

❑  An application code, composed of units/modules.  Particular 
modules are set up together to run different physics problems. 

❑  Fortran, C, Python, … 
❑  Very portable, scales to tens of thousand processors 

Capabilities	


❑  Physics	



❑  Hydrodynamics, MHD, RHD	


❑  Equation of State	


❑  Nuclear Physics	


❑  Radiation Diffusion	


❑  Laser Drive	


❑  Gravity	


❑  Particles, active and passive	


❑  Material Properties 	



❑  Opacities, Conductivity, 
Resistivity etc	



❑  Cosmology	
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Architecture : Unit 

❑  FLASH basic architecture unit 
❑  Component of the FLASH code providing a particular 

functionality 
❑  Different combinations of units are used for particular problem 

setups 
❑  Publishes a public interface (API) for other units’ use. 
❑  Ex: Driver, Grid, Hydro, IO etc 

❑  Fake inheritance by use of directory structure 
❑  Interaction between units governed by the Driver 
❑  Not all units are included in all applications 
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FLASH Units: Examples 

Driver 

I/O 
Runtime 
Params 

Grid 

Profiling 

Logfile 
Simulation 

Infrastructure 

monitoring 

Hydro 

Burn Gravity 

MHD 

Physics 



The University of Chicago 

Inside a Unit: The Top Level 

❑  First capitalized directory in a branch of the source tree is a unit 
❑  Contains stubs for every public function (API) in the unit 

❑  Does not contain the data module (unit scope data) 
❑  Individual API functions may be implemented in different subunits 
❑  A unit has a minimum three functions in its API, no limit on the 

maximum 
❑  Unit_init, Unit_finalize and the “do-er” function for the unit  

❑  If necessary, contains a directory for the local API 
❑  May contain the unit test 

❑  Different Unit tests can reside at different levels in the unit hierarchy 
❑   The Config file contains minimal information, no runtime 

parameters except “useUnit” defined 
❑  Makefile includes all the API functions. 
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Subunits 

❑  Every unit has a UnitMain subunit, which must be included in the 
simulation if the unit is included.  
❑  Has implementations for the init, finalize and the main “do-er” 

function 
❑  Also contains the unit scope data module 

❑  The API functions and private functions implemented in different 
subunits are mutually exclusive 

❑  Subunits other than UnitMain may have private Unit scope 
functions that can be called by other subunits. 
❑  un_suInit and un_suFinalize are the most common ones  
❑  (naming convention explained later) 

❑  Subunits can also have private data modules, strictly within the 
scope limited to the specific subunit 

❑  Subunits can have their own unit tests 
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More on Subunits 

❑  A subunit may have multiple alternative implementations 
❑  Alternative implementations of UnitMain also act as 

alternative implementations of the Unit. 
❑  Some subunits have multiple implementations that could be 

included in the same simulation 
❑  GridParticles is one possible example. 
❑  Alternative implementations are specified using the “EXCLUSIVE” 

directive 

❑  The “KERNEL” keyword indicates that subdirectories below 
that level need not follow FLASH architecture, and the 
entire subtree will be  included in the simulation 
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Unit Hierarchy 

Unit 
API/stubs 

Impl_1 
Remaining  
API impl 

kernel 

kernel 

UnitMain 
Common API 

implementation 
UnitSomething 

API  
implementation 

kernel 
Impl_2 

Remaining  
API impl 

kernel 

Impl_3 
Remaining  
API impl 

Common 
Impl	
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Example of a Unit – Grid (simplified) 

Grid	



GridSolvers	

GridMain	

GridParticles	



UG	



Paramesh2	

 paramesh4	



paramesh	



PM4_package	



UG	

 paramesh	



MoveSieve	

 PttoPt	



local 	


API	



Why Local API ? 	


Grid_init calls init 
functions for all 
subunits, if subunit is 
not included code 
won’t build.	



PM4dev_���
package	



GridBC	



GPMapToMesh	

 GPMove	



etc…	
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Functional Component in Multiple Units 

❑  Example Particles 
❑  Position initialization and time integration in Particles unit 
❑  Data movement in Grid unit 
❑  Mapping divided between Grid and Particles 

❑  Solve the problem by moving control back 
and forth between units 

Driver	



Init	



Evolve	



Particles	


Init   Map    Evolve	



Grid	


Init Map Move	
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Basic Computational Unit, Block 

❑  The grid is composed of 
blocks 

❑  Cover different fraction of 
the physical domain. 

❑  In AMR blocks at 
different levels of 
refinement have different 
grid spacing. 
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Architecture : Inheritance 

❑  Inheritance implemented through directory structure and 
Config file directives understood by the setup script 

❑  A child directory inherits all functions from the parent directory 
❑  If the child directory has its own implementation of a function, it replaces the inherited one. 
❑  The implementation in the lowest level offspring replaces all implementations in higher level 

directories. 
❑  An implementation in the “Simulation/MyProblem” directory overrides all implementations when 

running MyProblem 

❑  Config files arbitrate on multiple implementations through 
“Default” keyword 

❑  Runtime environment is created by taking a union of all 
variables, fluxes, and runtime parameters in Config files of 
included directories. 
❑  Value given to a runtime parameter in the “Simulation/MyProblem/Config” overrides any value 

given to it in other Config files 
❑  Value in “flash.par” overrides any value given in any Config file 

Multiple Config file initial values of a runtime parameter in units other than the  
simulation unit can lead to non-deterministic behavior since  

there are no other precedence rules. 
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Inheritance Through Directories: Eos 

Eos_!
init!

Eos!
Eos_!

wrapped!

EosMain!

Gamma!

Multigamma!

• Stub Implementations of the 
three functions at the top level 

•  There is only one subunit: Eos/
EosMain 
•  Replaces the stub with an 
implementation common to all  
formulations of EOS 

Eos/EosMain/Gamma 
 implements gamma versions 
 of Eos_init and Eos 

Eos_init!

Eos_wrapped!

Specific implementation 

Eos!

Another implementation, which will have its 
own Eos and Eos_init etc. 
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Namespace 

❑  Namespace directories are capitalized, organizational 
directories are not 

❑  All API functions of unit start with Unit_ 
(i.e.Grid_getBlkPtr, Driver_initFlash etc)  

❑  Subunits have composite names that include unit 
name followed by a capitalized word describing the 
subunit (i.e.  ParticlesMain, ParticlesMapping, 
GridParticles etc) 

❑  Private unit functions and unit scope variables are 
named un_routineName (i.e. gr_createDomain, 
pt_numLocal etc) 

❑  Private functions in subunits other than UnitMain are 
encouraged to have names like un_suRoutineName, 
as are the variables in subunit scope data module 
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Naming Conventions: Within files 

❑  Constants are all uppercase, usually have 
preprocessor  definition, multiple words are separated 
by an underscore. 
❑  Permanent constants in “constants.h” or “Unit.h” 

❑  #define MASTER_PE 0 
❑  #define CYLINDRICAL 3 

❑  Generated by setup script in “Flash.h”  
❑  #define DENS_VAR 1 
❑  #define NFACE_VARS 6 

❑  Style within routines 
❑  Variables from Unit_data start with unit_variable: 

“eos_eintSwitch” 
❑  Variables begin lowercase, additional words begin with 

uppercase: “massFraction” 
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Naming Conventions – How they help 

❑  The significance of capitalizing unit names: 
❑  A new unit can be added without the need to modify the setup 

script. 
❑  If the setup script encounters a top level capitalized directory 

without an API function to initialize the unit, it issues a 
warning. 

❑  Variable Style: 
❑  Immediately clear if variable is CONSTANT, local 

(massFraction) or global (eos_eintSwitch) in scope 
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Setup Script Implements Architecture 

Python code links together needed physics  
and tools for a problem 

❑  Traverse the FLASH source tree and link necessary files for a 
given application to the object directory  

❑  Creates a file defining global constants set at build time  
❑  Builds infrastructure for mapping runtime parameters to 

constants as needed 
❑  Configures Makefiles properly 
❑  Determine solution data storage list and create Flash.h 
❑  Generate files needed to add runtime parameters to a given 

simulation.  
❑  Generate files needed to parse the runtime parameter file.  
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Config file: Purpose 

❑ Written in a FLASH-dependent syntax 
❑  Needed in each Unit or Simulation directory 
❑  Define dependencies at all levels in the source tree: 

❑  Lists required, requested, exclusive modules 

❑  Declare solution variables, fluxes 
❑  Declare runtime parameters 

❑  Sets defaults and allowable ranges – do it early! 
❑  Documentation – start line with “D” 

❑  Variables, Units are additive down the directory tree  
❑  Provides warnings to prevent dumb mistakes 

❑  Better than compiling and then crashing 
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Config file example 

Alternate local IO routines 

Runtime parameters and 
documentation 

Required Units 

Enforce geometry or other conditions 
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Simple setup  
hostname:Flash3> ./setup MySimulation -auto   

setup script will automatically generate the object directory based on the 
MySimulation problem you specify  

INCLUDE Driver/DriverMain/TimeDep 
INCLUDE Grid/GridMain/paramesh/Paramesh3/PM3_package/headers 
INCLUDE Grid/GridMain/paramesh/Paramesh3/PM3_package/mpi_source 
INCLUDE Grid/GridMain/paramesh/Paramesh3/PM3_package/source 
INCLUDE Grid/localAPI 
INCLUDE IO/IOMain/hdf5/serial/PM 
INCLUDE PhysicalConstants/PhysicalConstantsMain 
INCLUDE RuntimeParameters/RuntimeParametersMain 
INCLUDE Simulation/SimulationMain/Sedov 
INCLUDE flashUtilities/general 
INCLUDE physics/Eos/EosMain/Gamma 
INCLUDE physics/Hydro/HydroMain/split/PPM/PPMKernel 
INCLUDE physics/Hydro/HydroMain/utilities 

If you don’t use the -auto flag, you must have a valid Units file 
in the object FLASH directory (FLASH4/object/setup_units) 

Sample Units File 
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setup Shortcuts & help 

❑  ./setup –help shows many fascinating options 
❑  Shortcuts allows many setup options to be included 

with one keyword 
❑  To use a shortcut, add +shortcut to your setup line 

❑  The shortcut ug is defined as: 
❑  ug:--with-unit=Grid/GridMain/:Grid=UG: 

❑  prompt> ./setup MySimulation -auto +ug 

❑  this is equivalent to typing in unit options with  
❑  -unit=Grid/GridMain/UG 
❑  -unit=IO/IOMain/hdf5/serial/UG (because the appropriate IO is 

included by default) 

❑  Look in Flash3/bin/setup_shortcuts.txt for more 
examples and to define your own 
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Important Files Generated by setup 

setup_call contains the options with which setup was called and the command line 
resulting after shortcut expansion 

setup_datafiles contains the complete path of data files copied to the object directory  

setup_defines contains a list of all pre-process symbols passed to the compiler 
invocation directly 

setup_flags contains the exact compiler and linker flags 

setup_libraries contains the list of libraries and their arguments (if any) which was 
linked in to generate the executable 

setup_params contains the list of runtime parameters defined in the Config files 
processed by setup 

setup_units contains the list of all units which were included in the current setup  

setup_vars contains the list of variables, fluxes, species, particle properties, and 
mass scalars used in the current setup, together with their descriptions 
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Additional Files created by setup 

❑  Flash.h contains 
❑  Problem dimensionality and size e.g. NDIM, MAXBLOCKS 
❑  Fixed block size dimensionality e.g. NXB, GRID_IJI_GC 
❑  Variable, species, flux, mass scalar numbers and list e.g. e.g. 

NSPECIES, DENS_VAR, EINT_FLUX 
❑  Possibly grid geometry GRID_GEOM 
❑  PPDEFINE variables showing which units are included e.g. 

FLASH_GRID_PARAMESH3 

❑  Simulation_mapIntToStr.F90, 
Simulation_mapStrToInt.F90 
❑  Converts text strings to equivalent index in Flash.h e.g. “dens” 

maps to DENS_VAR=1 
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Online Documentation 

flash.uchicago.edu 


