
The University of Chicago

Flash Center for Computational Science

Simulation Directory II

Klaus Weide / Chris Daley / Sean Couch
FLASH Tutorial at RAL

May 2012

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Creating New Problems

❑  A new FLASH problem is created by making a directory for it in

source/Simulation/SimulationMain. This is where the setup script
looks for the problem specific files.

❑  The source files in a simulation directory that a user will need to
modify are:

–  Simulation_data.F90: Fortran module which stores data and
parameters specific to the Simulation.

–  Simulation_init.F90: Fortran routine which reads the runtime
parameters, and performs other necessary initializations.

–  Simulation_initBlock.F90: Fortran routine for setting initial
conditions in a single block.

–  Simulation_initSpecies.F90: Optional Fortran routine for
initializing species properties if multiple species are being used.

❑  Custom implementation of any routine in FLASH can (and

should) be placed here!

❑  Remember to use the save attribute to prevent data going out of
scope.

module Simulation_data
 implicit none
 real, save :: sim_pAmbient, sim_xAngle, &

 sim_yAngle, sim_zAngle
end module Simulation_data

❑  A new FLASH problem is created by making a directory for it in

FLASH3/source/Simulation/SimulationMain. This is where the
setup script looks for the problem specific files.

❑  The source files in a simulation directory that a user will need to
modify are:

–  S

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Simulation_data

❑  A single processor contains some portion of the total grid data in

one or more blocks.
–  Possible to access data in a grid-package specific way.
–  However, we recommend using Grid API functions so

that code is independent of a particular grid-package.

Grid_getListOfBlocks(blockType, listofBlocks, count, optional: refinementLevel)

❑  Returns the actual block IDs in listOfBlocks and the number of
block IDs in count. The returned block IDs must satisfy the criteria
set by blockType and refinementLevel input arguments.

❑  NOTE: Any code using this function must “use” the function
prototype because this function has an optional argument.

❑  A Fortran module containing all data specific to the simulation

unit.

❑  All names should be prefixed with sim_ to make it clear that data
belongs to the simulation unit.

❑  Remember to use the save attribute to prevent data going out of

scope.

 module Simulation_data
 implicit none
 real, save :: sim_pAmbient, sim_xAngle, sim_yAngle, sim_zAngle

 end module Simulation_data

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Simulation_init

❑  Initializes the simulation unit.

–  Called once at the beginning of the simulation in both
new and restarted application runs.

–  Eliminates the need for FLASH2 “if (firstcall)” code
fragments.

❑  Example usage:
–  Stores runtime parameter values in Simulation_data

private variables.
–  Calculates any runtime parameter derived quantities.
–  Reads a lookup table from a file.

❑  A Fortran module containing all data specific to the simulation

unit.

❑  All names should be prefixed with sim_ to make it clear that data
belongs to the simulation unit.

❑  Remember to use the save attribute to prevent data going out of
scope.

module Simulation_data
 implicit none
 real, save :: sim_xAngle, sim_yAngle, sim_zAngle

end module Simulation_data

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

The Config file and Simulation_init

❑  Intializes the simulation unit.

–  Called once at the beginning of the simulation in both
new and restarted application runs.

–  Eliminates the need for FLASH2 firstcall code
fragments.

❑  Obtains the runtime parameter values from the parameter file
(flash.par).

❑  Performs any other simulation specific intialization, e.g.
–  Calculate any runtime parameter derived quantities.
–  Read in a lookup table from a file.

Config file declares the
runtime parameters.

Simulation_init extracts
the value of runtime
parameters.

The runtime parameter's
default value can be
overridden in a flash.par

subroutine Simulation_init(myPE)
 use Simulation_data
 use RuntimeParameters_interface, ONLY : &
 RuntimeParameters_get

 implicit none
#include "constants.h"
#include "Flash.h"

 integer, intent(in) :: myPE
 call RuntimeParameters_get('sim_pAmbient', &
 sim_pAmbient)
end subroutine Simulation_init

D sim_pAmbient Initial ambient pressure
PARAMETER sim_pAmbient REAL 1.E-5

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Simulation_initBlock

❑  Intializes the simulation unit.

–  Called once at the beginning of the simulation in both
new and restarted application runs.

–  Eliminates the need for FLASH2 “if (firstcall)” code
fragments.

❑  Example usage:
–  Stores runtime parameter values in Simulation_data

private variables.
–  Calculates any runtime parameter derived quantities.
–  Reads a lookup table from a file.

❑  Applies initial conditions to the physical domain

–  Initializes Grid data one block at a time.
–  Only called in new application runs (not in restarts).

❑  Block abstraction allows it to be used with different Grid

implementations
–  Called once in UG simulations.
–  Called many times in AMR simulations.

❑  Generating an initial grid in AMR simulations:
–  Simulation_initBlock is applied to all blocks at the base

refinement level.

–  Grid unit refines blocks if refinement criteria are met.
•  Simulation_initBlock is re-applied to all blocks.

•  Eos_wrapped is called on all LEAF blocks.

Repeats {

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Simulation_initBlock: Finding cell types

❑  A single processor contains some portion of the total grid data in

one or more blocks.
–  Possible to access data in a grid-package specific way.
–  However, we recommend using Grid API functions so

that code is independent of a particular grid-package.

Grid_getListOfBlocks(blockType, listofBlocks, count, optional: refinementLevel)

❑  Returns the actual block IDs in listOfBlocks and the number of
block IDs in count. The returned block IDs must satisfy the criteria
set by blockType and refinementLevel input arguments.

❑  NOTE: Any code using this function must “use” the function
prototype because this function has an optional argument.

❑  The Grid API contains a portable way to find the internal cells and

guard cells in a particular block.
–  Essential for NFBS (Non-Fixed Blocksize) Uniform grid

mode where block sizes are not always the same size.

Grid_getBlkIndexLimits(blockId, blkLimits, blkLimitsGC, optional: gridDataStruct)

❑  The arrays blkLimits and blkLimitsGC contain the lower and upper
bounds of a block. For cell-centered PARAMESH data:

blkLimits(LOW,IAXIS)=NGUARD+1; blkLimits(HIGH,IAXIS)=NXB+NGUARD
blkLimitsGC(LOW,IAXIS)=1; blkLimitsGC(HIGH,IAXIS)=NXB+2*NGUARD

❑  The input argument gridDataStruct specifies the underlying grid
datastructure, e.g. cell-centered, face-centered, scratch data
structure.

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Simulation_initBlock: Accessing each cell

❑  Many Grid API functions available to read / write Grid data:

–  Grid_getPointData, Grid_putPointData
–  Grid_getRowData, Grid_putRowData
–  Most general is Grid_getBlkPtr:

Grid_getBlkPtr(blockID, dataPtr, optional: gridDataStruct)

❑  Sets the pointer dataPtr to the block indicated by blockID for the
data structure gridDataStruct. Free the pointer using
Grid_releaseBlkPtr (has same arguments as Grid_getBlkPtr).

❑  To obtain actual cells coordinates use Grid_getCellCoords:

Grid_getCellCoords(axis, blockID, edge, guardcell, coordinates, size)

❑  This stores coordinates for the cells on axis axis (IAXIS, JAXIS,
KAXIS) at cell location edge (LEFT_EDGE, RIGHT_EDGE,
CENTER) in the array coordinates(size).

❑  The Grid API contains a portable way to find the internal cells and

guard cells in a particular block.
–  Essential for NFBS Uniform grid mode where block

sizes are not always the same size.

Grid_getBlkIndexLimits(blockId, blkLimits, blkLimitsGC, optional: gridDataStruct)

❑  The arrays blkLimits and blkLimitsGC contain the lower and upper
bounds of a block. For cell-centered PARAMESH data:

blkLimits(LOW,IAXIS)=NGUARD+1; blkLimits(HIGH,IAXIS)=NXB+NGUARD
blkLimitsGC(LOW,IAXIS)=1; blkLimitsGC(HIGH,IAXIS)=NXB+2*NGUARD

❑  The input argument gridDataStruct specifies the underlying grid
datastructure, e.g. cell-centered, face-centered, scratch data
structure.

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Excerpt from a Simulation_initBlock

subroutine Simulation_initBlock(blockID)
...
call Grid_getBlkIndexLimits(blockID,blkLimits,blkLimitsGC)
sizeX = blkLimitsGC(HIGH,IAXIS) - blkLimitsGC(LOW,IAXIS) + 1 !Num cells inc. guard.
allocate(xCoord(sizeX))
call Grid_getCellCoords(IAXIS, blockID, CENTER, .true., xCoord, sizeX)

call Grid_getBlkPtr(blockId,solnData)
!Loop over each internal cell and initialize data
...
do i = blkLimits(LOW,IAXIS), blkLimits(HIGH,IAXIS)
 If (xCoord(i) > sim_xpos) solnData(DENS_VAR,i,j,k) = …
end do
call Grid_releaseBlkPtr(blockID,solnData)

end subroutine Simulation_initBlock

❑  The Grid API contains a portable way to find the internal cells and

guard cells in a particular block.
–  Essential for NFBS Uniform grid mode where block

sizes are not always the same size.

Grid_getBlkIndexLimits(blockId, blkLimits, blkLimitsGC, optional: gridDataStruct)

❑  The arrays blkLimits and blkLimitsGC contain the lower and upper
bounds of a block. For cell-centered PARAMESH data:

blkLimits(LOW,IAXIS)=NGUARD+1; blkLimits(HIGH,IAXIS)=NXB+NGUARD
blkLimitsGC(LOW,IAXIS)=1; blkLimitsGC(HIGH,IAXIS)=NXB+2*NGUARD

❑  The input argument gridDataStruct specifies the underlying grid
datastructure, e.g. cell-centered, face-centered, scratch data
structure.

❑  When do we need to initialize the guard cells in

Simulation_initBlock?

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Simulation_initSpecies

❑  Pre-defined particle initialization available:

–  Regular lattice based distribution.
–  Density based distribution - more particles where the

density is higher.

❑  May want to define your own particle initialization.
–  Create a pt_initPositions.F90 in your simulation

directory.

❑  Key variables for particle initialization:
–  pt_maxPerProc: Maximum number of particles that can

exist on a single processor.
–  pt_numLocal: Number of particles currently initialized

on this processor.

❑  A valid initialization requires: pt_numLocal <= pt_maxPerProc.

❑  Implementation only required when working with multiple species.

❑  This is an older interface for doing Multispecies initialization
manually

❑  Not required if you use ./setup –auto … species=…,…,…!
–  Called from Multispecies_init to initialize fluid

properties.
–  Called in new and restarted application runs.
–  Called before Simulation_init.

❑  General purpose Simulation_initSpecies implementations are

available for nuclear networks and ionization in 1T simulations
(See Simulation/SimulationComposition directory)

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Config file and Simulation_initSpecies (the old way)

Config file declares the
species.

Simulation_initSpecies
initializes fluid
properties.

subroutine Simulation_init(myPE)
 use Simulation_data
 use RuntimeParameters_interface, ONLY : &
 RuntimeParameters_get

 implicit none
#include "constants.h"
#include "Flash.h"

 integer, intent(in) :: myPE
 call RuntimeParameters_get('sim_pAmbient', &
 sim_pAmbient)
end subroutine Simulation_init

SPECIES FLD1
SPECIES FLD2

subroutine Simulation_initSpecies()
 use Multispecies_interface, ONLY : Multispecies_setProperty

 implicit none
#include "Flash.h"
#include "Multispecies.h"

 call Multispecies_setProperty(FLD1_SPEC, A, 1.)
 call Multispecies_setProperty(FLD1_SPEC, Z, 1.)
 call Multispecies_setProperty(FLD1_SPEC, GAMMA, &
1.66666666667e0)

 call Multispecies_setProperty(FLD2_SPEC, A, 4.0)
 call Multispecies_setProperty(FLD2_SPEC, Z, 2.0)
 call Multispecies_setProperty(FLD2_SPEC, GAMMA, 2.0)

end subroutine Simulation_initSpecies

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Working with block lists

❑  A single processor contains some portion of the total grid data in

one or more blocks.
–  Possible to access data in a grid-package specific way.
–  However, we recommend using Grid API functions so

that code is independent of a particular grid-package.

Grid_getListOfBlocks(blockType, listofBlocks, count, optional: refinementLevel)

❑  Returns the actual block IDs in listOfBlocks and the number of
block IDs in count. The returned block IDs must satisfy the criteria
set by blockType and refinementLevel input arguments.

❑  NOTE: Any code using this function must “use” the function
prototype because this function has an optional argument.

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Particle initialization

❑  Pre-defined particle initialization available:

–  Regular lattice based distribution.
–  Density based distribution - more particles where the

density is higher.

❑  May want to define your own particle initialization.
–  Create a pt_initPositions.F90 in your simulation

directory.

❑  Key variables for particle initialization:
–  pt_maxPerProc: Maximum number of particles that can

exist on a single processor.
–  pt_numLocal: Number of particles currently initialized

on this processor.

❑  A valid initialization requires: pt_numLocal <= pt_maxPerProc.

❑  The Grid API also contains a portable way to find the internal cells

and guard cells in a particular block.
–  Essential for NFBS Uniform grid mode where block

sizes are not always the same size.

Grid_getBlkIndexLimits(blockId, blkLimits, blkLimitsGC, gridDataStruct)

❑  The arrays blkLimits and blkLimitsGC contain the lower and upper
bounds of a block. For cell-centered PARAMESH data:

blkLimits(LOW,IAXIS)=NGUARD+1; blkLimits(HIGH,IAXIS)=NXB+NGUARD
blkLimitsGC(LOW,IAXIS)=1; blkLimitsGC(HIGH,IAXIS)=NXB+2*NGUARD

❑  The input argument gridDataStruct specifies the underlying grid
datastructure, e.g. cell-centered, face-centered, scratch data
structure.

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Particle initialization

❑  Pre-defined particle initialization available:

–  Regular lattice based distribution.
–  Density based distribution - more particles where the

density is higher.

❑  May want to define your own particle initialization.
–  Create a pt_initPositions.F90 in your simulation

directory.

❑  Key variables for particle initialization:
–  pt_maxPerProc: Maximum number of particles that can

exist on a single processor.
–  pt_numLocal: Number of particles currently initialized

on this processor.

❑  A valid initialization requires: pt_numLocal <= pt_maxPerProc.
Key variables for particle initialization:

–  must satisfy is an iterative procedure. Refining on
particle count: Iterative procedure that requires the
user to work with side-effects.

–  Initialize one particle at a time in pt_initPositions.
Update the value stored in pt_numLocal each time a
particle is successfully initialized. Each time we
Return success = .false. If the number of particles
exceeds storage space. However, you must update

❑  Normally particle initialization happens after we have laid down our

initial grid.
–  A significant clustering of particles can make it hard to

satisfy pt_numLocal < pt_maxPerProc!

❑  But we can influence the refinement pattern of the initial AMR grid
by refining on particle count.

–  Set refine_on_particles_count = .true. and
max_particles_per_blk = value in flash.par.

–  FLASH will abort if max_particles_per_blk criterion not
satisfied when we reach lrefine_max.

–  Can be used on its own or in conjunction with the
standard refinement criteria in Grid_markRefineDerefine.

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Code pattern for particle initialization

❑  Pre-defined particle initialization available:

–  Regular lattice based distribution.
–  Density based distribution - more particles where the

density is higher.

❑  May want to define your own particle initialization.
–  Create a pt_initPositions.F90 in your simulation

directory.

❑  Refining on particle count: Iterative procedure that requires the
user to work with side-effects.

–  Initialize one particle at a time in pt_initPositions.
Update the value stored in pt_numLocal each time a
particle is successfully initialized. Each time we
Return success = .false. If the number of particles
exceeds storage space. However, you must update

subroutine pt_initPositions(blockID, success)
 ...
 do i = 1, sim_globalNumParticles
 particlePosition = ... !Generate a position for particle i, i.e. from a file or function.

 !work out if particlePosition is within the bounding box of blockID.
 if (isInBlock) then
 if (pt_numLocal + 1 > pt_maxPerProc) then
 success = .false. ; return !Exceeded max # of particles/processor.
 end if
 pt_numLocal = pt_numLocal + 1 !Retains value between pt_initPositions calls.
 particles(BLK_PART_PROP,pt_numLocal) = real(blockID)
 particles(...,pt_numLocal) = … !Some initialization of particle array fields.
 end if
 end do
 success = .true. !Successful initialization of particles on this block.
end subroutine pt_initPositions

