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Outline 

q General	  (ps	  

q  Implement	  a	  new	  geometry:	  Cylindrical	  MHD	  

	  	  
q New	  boundary	  condi(ons	  for	  our	  new	  geometry	  

q Test	  and	  validate	  with	  an	  appropriate	  problem!	  

 RAL Tutorial 2012, UK         Petros Tzeferacos, 01-06-2012 



Know your surroundings 

An Advanced Simulation & Computing (ASC)   

Academic Strategic Alliances Program (ASAP) Center  

at The University of Chicago

The Center for Astrophysical Thermonuclear Flashes

Anshu Dubey 
June 22, 2009 

FLASH, a Modern, Well Tested, Multiphysics 

Application Code that Scales from Laptops to 

the Largest Supercomputers

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes 

The University of Chicago 

The FLASH Code Contributors 

❑  Current Group: 

❑  Klaus Weide, Chris Daley, Lynn Reid, Paul Rich and Anshu Dubey 

❑  Other Current Contributors: 

❑  Dongwook Lee, Paul Ricker, Dean Townsley, Cal Jordan, John

 Zuhone, Kevin Olson, Marcos Vanella 

❑  Past Major Contributors: 

❑  Katie Antypas, Alan Calder, Jonathan Dursi, Robert Fisher, Timur

 Linde, Tomek Plewa, Katherine Riley, Andrew Siegel, Dan Sheeler,
 Frank Timmes, Natalia Vladimirova, Greg Weirs, Mike Zingale 

General	  (ps	  
	  
ü  Read	  the	  manual!	  (PDF,	  html,	  	  
	  	  	  	  	  robodocs)	  explore	  flash.uchicago.edu	  

ü  Get	  to	  know	  the	  code’s	  structure	  	  	  
	  	  	  	  	  before	  you	  start	  implemen(ng.	  	  

ü  Follow	  the	  general	  guidelines	  of	  	  
	  	  	  	  	  exis(ng	  implementa(ons	  

ü  Get	  in	  touch	  with	  us!	  Mailing	  lists.	  	  
	  	  	  	  Direct	  contacts	  are	  welcome!	  

FLASH User’s Guide
Version 4.0-beta

February 2012 (last updated February 1, 2012)

FLASH Center for Computational Science
University of Chicago
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General	  (ps	  

	  
ü  A	  background	  in	  numerical	  algorithms	  is	  	  
	  	  	  	  	  desirable	  but	  not	  strictly	  necessary	  (depends…).	  	  

ü  Search	  the	  literature	  for	  exis(ng	  implementa(ons,	  
	  	  	  	  JCP,	  	  ApJs,	  J.	  Comput.	  Phys	  Com.	  etc	  

ü  See	  if	  what	  you	  need	  is	  already	  there	  in	  some	  from!	  
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Magne&zed)Noh)(take)two):)going)R5Z)

Magnetized Noh Z Pinch Problem with the Flash code 

Noh, JCP 1987 Giuliani et al, 53d APS 2011  

- The problem: 
     Cylindrically symmetric, pressure-less gas that collapses inwards   

Pure Hydro MHD (azimuthal field) 

Petros Tzeferacos, 02/10/12 

Petros)Tzeferacos)0351652012)

Add	  a	  new	  geometry!	  
	  
Literature	  examples	  
	  
MHD	  equa(ons	  
	  
What	  needs	  to	  change&	  
how	  to	  go	  about	  and	  do	  it	  
	  
!	  
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Guidelines:	  unsplit	  MHD	  in	  FLASH,	  	  
a	  modified	  CTU	  scheme	  

FLASH User’s Guide
Version 4.0-beta

February 2012 (last updated February 1, 2012)

FLASH Center for Computational Science
University of Chicago

A Solution Accurate, Efficient and Stable Unsplit Staggered Mesh
Scheme for Three Dimensional Magnetohydrodynamics

Dongwook Lee
The Flash Center for Computational Science, University of Chicago, 5747 S. Ellis, Chicago, IL 60637

Abstract

In this paper, we extend the unsplit staggered mesh scheme (USM) for 2D magnetohydrodynamics (MHD) [D. Lee,
A. Deane, An Unsplit Staggered Mesh Scheme for Multidimensional Magnetohydrodynamics, J. Comput. Phys. 228
(2009) 952–975] to a full 3D MHD scheme. The 3D scheme uses the same set of fundamental algorithmic ideas that
have been developed in the 2D USM scheme. The scheme is a finite-volume Godunov method consisting of (1) a
constrained transport (CT) method for preserving the solenoidal magnetic field evolution on a staggered grid, and (2)
an efficient and accurate single-step, directionally unsplit multidimensional data reconstruction-evolution algorithm,
which extends Colella’s original 2D corner transport upwind (CTU) method [P. Colella, Multidimensional Upwind
Methods for Hyperbolic Conservation Laws, J. Comput. Phys. 87 (1990) 446–466]. We present two types of data
reconstruction-evolution algorithms for 3D: a reduced CTU scheme and a full CTU scheme. The reduced 3D CTU
scheme is a variant of a direct 3D extension of Collela’s 2D CTU method, whereas our full 3D CTU approach is
a variant of the 3D unsplit CTU method by Saltzman [J. Saltzman, An unsplit 3D upwind method for hyperbolic
conservation laws, J. Comput. Phys. 115 (1994) 153–168] for hyperbolic conservation laws. The key novelty in our
algorithms is a new approach to account for transverse fluxes that stabilize an unsplit hyperbolic system without
solving intermediate Riemann problems. The two schemes use multidimensional characteristic tracing to account for
the stabilizing effects provided by incorporating the transverse fluxes in CTU. The proposed algorithms are simple
and efficient especially when including multidimensional MHD source terms that maintain in-plane magnetic field
dynamics. We also introduce a new CT scheme that makes use of proper upwind information in taking an average
of electric fields. This method enhances numerical accuracy in solving the induction equations using the third-order
spatially accurate modified electric field construction (MEC) scheme developed in 2D USM. We show that the new
3D USM-MHD algorithm provides a full CFL stability limit (CFL number ≤ 1) in most of the MHD test problems
available in the literature, only requiring three Riemann problems (except for the extra three Riemann solves for the
intermediate magnetic field update) per zone per time step in 3D. Our 3D USM schemes can be easily combined
with various reconstruction methods (e.g., first-order Godunov, second-orderMUSCL-Hancock, third-order PPM and
fifth-order WENO), and a wide choice of Riemann solvers (e.g., local Lax-Friedrichs, HLLE, HLLC, HLLD, and
Roe). The 3D USM-MHD solver is available in the University of Chicago Flash Center’s official FLASH release.

Key words: MHD; Magnetohydrodynamics; Constrained Transport; Corner Transport Upwind; Unsplit Scheme; Staggered Mesh; High-Order
Godunov Method; Large CFL Number.

Email address: dongwook@flash.uchicago.edu (Dongwook Lee).

Preprint submitted to Elsevier 29 February 2012
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Guidelines:	   Mignone	   et	   al.	   2007	   and	   Skinner	   &	   Ostriker	  
2010,	  along	  with	  the	   implementa(on	  found	  in	  the	  PLUTO	  
code.	  

PLUTO v. 3.1.1 (April 2011)

User’s Guide
(http://plutocode.ph.unito.it)

Developer: A. Mignone1, 2 (mignone@ph.unito.it, mignone@oato.inaf.it)

Contributors: P. Tzeferacos1 (Viscosity, MHD, STS, Finite-Difference)
(petros.tzeferacos@ph.unito.it)

G. Bodo2 (Parallelization)
T. Matsakos3 (Resistivity, Thermal Conduction, STS)
O. Tesileanu4 (Cooling)
C. Zanni2 (AMR)

1 Dipartimento di Fisica Generale, Turin University, Via P. Giuria 1 -10125 Torino (TO), Italy
2 INAF Osservatorio Astronomico di Torino, Via Osservatorio, 20 10025 Pino Torinese (TO), Italy
3 Department of Physics, University of Athens, Panepistimiopolis, 15784 Zografos-Athens, Greece
4 Department of Physics, University of Bucharest, Str. Atomistilor nr. 405, RO-077125 Magurele, Ilfov, Romania

PLUTO: A NUMERICAL CODE FOR COMPUTATIONAL ASTROPHYSICS

A. Mignone,1,2 G. Bodo,2 S. Massaglia,1 T. Matsakos,1 O. Tesileanu,1 C. Zanni,3 and A. Ferrari1

Received 2006 November 5; accepted 2007 January 28

ABSTRACT

We present a new numerical code, PLUTO, for the solution of hypersonic flows in 1, 2, and 3 spatial dimensions and
different systems of coordinates. The code provides a multiphysics, multialgorithm modular environment particularly
oriented toward the treatment of astrophysical flows in presence of discontinuities. Different hydrodynamic modules
and algorithms may be independently selected to properly describe Newtonian, relativistic, MHD, or relativistic MHD
fluids. The modular structure exploits a general framework for integrating a system of conservation laws, built on mod-
ern Godunov-type shock-capturing schemes. Although a plethora of numerical methods has been successfully de-
veloped over the past two decades, the vast majority shares a common discretization recipe, involving three general
steps: a piecewise polynomial reconstruction followed by the solution of Riemann problems at zone interfaces and a
final evolution stage. We have checked and validated the code against several benchmarks available in literature. Test
problems in 1, 2, and 3 dimensions are discussed.

Subject headinggs: hydrodynamics — methods: numerical — MHD — relativityYshock waves

Online material: color figures

1. INTRODUCTION

Theoretical models based on direct numerical simulations have
unveiled a newway toward a better comprehension of the rich and
complex phenomenology associated with astrophysical plasmas.

Finite difference codes such as ZEUS (Stone&Norman 1992a,
1992b) or NIRVANA+ (Ziegler 1998) inaugurated this novel era
and have been used by an increasingly large fraction of researchers
nowadays. However, as reported in Falle (2002), the lack of up-
winding techniques and conservation properties have progres-
sivelymoved scientist’s attention towardmore accurate and robust
methods. In this respect, the successful employment of the so-
called high-resolution shock-capturing (HRSC) schemes have
revealed a mighty tool to investigate fluid dynamics in nonlinear
regimes. Some of the motivations behind their growing popular-
ity is the ability to model strongly supersonic flows while retain-
ing robustness and stability. The unfamiliar reader is referred to
the books of Toro (1997), LeVeque (1998), and references therein
for a more comprehensive overview.

Implementation of HRSC algorithms is based on a conserva-
tive formulation of the fluid equations and proper upwinding re-
quires an exact or approximate solution (Roe 1986) to theRiemann
problem, i.e., the decay of a discontinuity separating two constant
states. This approach dates back to the pioneeringwork of Godunov
(1959), and it has now become the leading line in developing high-
resolution codes examples of which include FLASH (Fryxell
et al. 2000 for reactive hydrodynamics), the special relativistic
hydro code GENESIS (Aloy et al. 1999), the versatile advection
code (VAC; Tóth 1996), or the new NIRVANA (Ziegler 2004).

Most HRSC algorithms are based on the so-called reconstruct-
solve-average (RSA) strategy. In this approach volume averages
are first reconstructed using piecewise monotonic interpolants in-
side each computational cell. A Riemann problem is then solved
at each interface with discontinuous left and right states, and the

solution is finally evolved in time. It turns out that this sequence of
steps is quite general for many systems of conservation laws, and
therefore, it provides a general framework under which we have
developed a multiphysics, multialgorithm, high-resolution code,
PLUTO. The code is particularly suitable for time-dependent, ex-
plicit computations of highly supersonic flows in the presence of
strong discontinuities, and it can be employed under different re-
gimes, i.e., classical, relativistic unmagnetized, and magnetized
flows. The code is structured in a modular way, allowing a new
module to be easily incorporated. This flexibility turns out to be
quite important, since many aspects of computational fluid dy-
namics are still in rapid development. Besides, the advantage
offered by a multiphysics, multisolver code is also to supply the
user with the most appropriate algorithms and, at the same time,
provide interscheme comparison for a better verification of the
simulation results. PLUTO is entirely written in the C program-
ming language and can run on either single processor or parallel
machines, the latter functionality being implemented through the
message passing interface (MPI) library. The code has already
been successfully employed in the context of stellar and extra-
galactic jets (Bodo et al. 2003; Mignone et al. 2004, 2005a), ra-
diative shocks (Mignone 2005; Massaglia et al. 2005), accretion
disks (Bodo et al. 2005; Tevzadze et al. 2006),magneto-rotational
instability, relativistic Kelvin-Helmholtz instability, and so forth.
The paper is structured as follows: in x 2 we give a description

of the code design; in x 3 we introduce the physics modules
available in the code; in x 4 we give a short overview on source
terms and nonhyperbolicity; and in x 5 the code is validated
against several standard benchmarks.

2. CODE DESIGN

PLUTO is designed to integrate a general system of conserva-
tion laws that we write as

@U

@t
¼ ": = T(U )þ S(U ): ð1Þ

HereU denotes a state vector of conservative quantities,T(U ) is a
rank 2 tensor, the rows of which are the fluxes of each component

A
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THE ATHENA ASTROPHYSICAL MAGNETOHYDRODYNAMICS CODE IN CYLINDRICAL GEOMETRY

M. Aaron Skinner and Eve C. Ostriker
Astronomy Department, University of Maryland, College Park, MD 20742, USA; askinner@astro.umd.edu, ostriker@astro.umd.edu

Received 2009 December 22; accepted 2010 April 7; published 2010 May 4

ABSTRACT

A method for implementing cylindrical coordinates in the Athena magnetohydrodynamics (MHD) code is described.
The extension follows the approach of Athena’s original developers and has been designed to alter the existing
Cartesian-coordinates code as minimally and transparently as possible. The numerical equations in cylindrical
coordinates are formulated to maintain consistency with constrained transport (CT), a central feature of the Athena
algorithm, while making use of previously implemented code modules such as the Riemann solvers. Angular
momentum transport, which is critical in astrophysical disk systems dominated by rotation, is treated carefully.
We describe modifications for cylindrical coordinates of the higher-order spatial reconstruction and characteristic
evolution steps as well as the finite-volume and CT updates. Finally, we present a test suite of standard and novel
problems in one, two, and three dimensions designed to validate our algorithms and implementation and to be of
use to other code developers. The code is suitable for use in a wide variety of astrophysical applications and is
freely available for download on the Web.

Key words: hydrodynamics – magnetohydrodynamics (MHD) – methods: numerical

Online-only material: color figures

1. INTRODUCTION

The Athena code (Gardiner & Stone 2005, hereafter GS05;
Gardiner & Stone 2008, hereafter GS08; Stone et al. 2008) is
a new, second-order Godunov code for solving the equations
of ideal magnetohydrodynamics (MHD). Among its salient
features are that it preserves the divergence-free constraint,
∇·B = 0, to within machine round-off error via unsplit evolution
of the magnetic field, and that it employs fully conservative
updates of the MHD equations. This last feature distinguishes
Athena from its predecessor, Zeus (Stone & Norman 1992a,
1992b), which also preserves the divergence-free constraint,
but employs operator-split finite-difference methods. Athena
has been extensively tested via both comparison to analytic
solutions, and comparison to the results of other numerical MHD
codes. The code package is freely available to the community,
and is highly portable and easily configurable, as it is self-
contained and does not rely on outside libraries other than
MPI for computation on multi-processor distributed memory
platforms.

The equations of ideal MHD consist of eight coupled par-
tial differential equations, which are not analytically solvable in
general, and fully three-dimensional numerical solutions can be
quite costly. For many astrophysical systems of interest, how-
ever, the computational cost for certain problems can be reduced
by exploiting geometric symmetry. For example, the high angu-
lar velocity of the plasma in accreting systems implies that most
of the mass is confined within a disk. If the properties are sta-
tistically independent of azimuthal angle, φ, these disks can be
studied using radial–vertical (R–z) models, and if vertical vari-
ations are of lesser importance, these disks can be studied using
radial–azimuthal (R–φ) models. The dynamical properties of
winds and jets from astrophysical systems can also be analyzed
using axisymmetric models. Exploiting symmetry in this way to
reduce the effective dimension of the problem can greatly sim-
plify the calculations involved and allow finer resolution when
and where needed. In addition, for either reduced-dimensional
or fully three-dimensional problems, using a curvilinear co-

ordinate system for rotating, grid-aligned flow is superior for
preservation of total angular momentum, and renders impo-
sition of boundary conditions much simpler compared to the
Cartesian-grid case.

There are several other publicly available high-resolution
shock-capturing codes for astrophysical MHD in wide use, in-
cluding VAC (Tóth 1996), BATS-R-US (Powell et al. 1999),
FLASH (Fryxell et al. 2000), RAMSES (Teyssier 2002),
NIRVANA (Ziegler 2004), and PLUTO (Mignone et al. 2007),
to name a few. Although these and other codes enjoy increas-
ing popularity within the community, as of this writing only
VAC and PLUTO have the capability for MHD in curvilinear
coordinates.

In this paper, we describe our adaptation of Athena to support
cylindrical geometry, and present a suite of tests designed to
validate our algorithms and implementation. These tests include
standard as well as novel problems, and may be of use to other
code developers. A guiding principle of our approach is to alter
the existing Athena code as minimally and as transparently as
possible. This will involve a careful formulation of the MHD
equations so that the finite-volume (FV) algorithm remains
consistent with constrained transport (CT), and so that the built-
in Riemann solvers (as well as computation of wavespeeds and
eigenfunctions) need not be changed. Finally, we pay particular
attention to angular momentum transport, which is critical in
systems dominated by rotation.

The plan of this paper is as follows: In Section 2, we
describe the conservative system of mathematical equations
that we shall solve, and in Section 3, we briefly outline the
main steps used in Athena to evolve the system numerically.
In Section 4, we describe the projected primitive variable
system used in the reconstruction step. In Sections 5 and 6, we
describe the modifications needed for cylindrical coordinates
in the higher-order spatial reconstruction and characteristic
evolution steps, respectively. In Sections 7 and 8, we describe
the implementation in cylindrical coordinates of the FV and
CT updates, respectively, and then in Section 9, we summarize
the steps of the whole algorithm in detail. In Section 10, we
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The	   ideal	   MHD	   system	   of	   equa(ons	   can	   be	   wri\en	   in	  
compact	  form	  	  

where	  the	  source	  terms	  S(U)	  can	  account	  for	  geometrical	  
correc(ons.	  	  
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ABSTRACT

We present a new numerical code, PLUTO, for the solution of hypersonic flows in 1, 2, and 3 spatial dimensions and
different systems of coordinates. The code provides a multiphysics, multialgorithm modular environment particularly
oriented toward the treatment of astrophysical flows in presence of discontinuities. Different hydrodynamic modules
and algorithms may be independently selected to properly describe Newtonian, relativistic, MHD, or relativistic MHD
fluids. The modular structure exploits a general framework for integrating a system of conservation laws, built on mod-
ern Godunov-type shock-capturing schemes. Although a plethora of numerical methods has been successfully de-
veloped over the past two decades, the vast majority shares a common discretization recipe, involving three general
steps: a piecewise polynomial reconstruction followed by the solution of Riemann problems at zone interfaces and a
final evolution stage. We have checked and validated the code against several benchmarks available in literature. Test
problems in 1, 2, and 3 dimensions are discussed.
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1. INTRODUCTION

Theoretical models based on direct numerical simulations have
unveiled a newway toward a better comprehension of the rich and
complex phenomenology associated with astrophysical plasmas.

Finite difference codes such as ZEUS (Stone&Norman 1992a,
1992b) or NIRVANA+ (Ziegler 1998) inaugurated this novel era
and have been used by an increasingly large fraction of researchers
nowadays. However, as reported in Falle (2002), the lack of up-
winding techniques and conservation properties have progres-
sivelymoved scientist’s attention towardmore accurate and robust
methods. In this respect, the successful employment of the so-
called high-resolution shock-capturing (HRSC) schemes have
revealed a mighty tool to investigate fluid dynamics in nonlinear
regimes. Some of the motivations behind their growing popular-
ity is the ability to model strongly supersonic flows while retain-
ing robustness and stability. The unfamiliar reader is referred to
the books of Toro (1997), LeVeque (1998), and references therein
for a more comprehensive overview.

Implementation of HRSC algorithms is based on a conserva-
tive formulation of the fluid equations and proper upwinding re-
quires an exact or approximate solution (Roe 1986) to theRiemann
problem, i.e., the decay of a discontinuity separating two constant
states. This approach dates back to the pioneeringwork of Godunov
(1959), and it has now become the leading line in developing high-
resolution codes examples of which include FLASH (Fryxell
et al. 2000 for reactive hydrodynamics), the special relativistic
hydro code GENESIS (Aloy et al. 1999), the versatile advection
code (VAC; Tóth 1996), or the new NIRVANA (Ziegler 2004).

Most HRSC algorithms are based on the so-called reconstruct-
solve-average (RSA) strategy. In this approach volume averages
are first reconstructed using piecewise monotonic interpolants in-
side each computational cell. A Riemann problem is then solved
at each interface with discontinuous left and right states, and the

solution is finally evolved in time. It turns out that this sequence of
steps is quite general for many systems of conservation laws, and
therefore, it provides a general framework under which we have
developed a multiphysics, multialgorithm, high-resolution code,
PLUTO. The code is particularly suitable for time-dependent, ex-
plicit computations of highly supersonic flows in the presence of
strong discontinuities, and it can be employed under different re-
gimes, i.e., classical, relativistic unmagnetized, and magnetized
flows. The code is structured in a modular way, allowing a new
module to be easily incorporated. This flexibility turns out to be
quite important, since many aspects of computational fluid dy-
namics are still in rapid development. Besides, the advantage
offered by a multiphysics, multisolver code is also to supply the
user with the most appropriate algorithms and, at the same time,
provide interscheme comparison for a better verification of the
simulation results. PLUTO is entirely written in the C program-
ming language and can run on either single processor or parallel
machines, the latter functionality being implemented through the
message passing interface (MPI) library. The code has already
been successfully employed in the context of stellar and extra-
galactic jets (Bodo et al. 2003; Mignone et al. 2004, 2005a), ra-
diative shocks (Mignone 2005; Massaglia et al. 2005), accretion
disks (Bodo et al. 2005; Tevzadze et al. 2006),magneto-rotational
instability, relativistic Kelvin-Helmholtz instability, and so forth.
The paper is structured as follows: in x 2 we give a description

of the code design; in x 3 we introduce the physics modules
available in the code; in x 4 we give a short overview on source
terms and nonhyperbolicity; and in x 5 the code is validated
against several standard benchmarks.

2. CODE DESIGN

PLUTO is designed to integrate a general system of conserva-
tion laws that we write as

@U

@t
¼ ": = T(U )þ S(U ): ð1Þ

HereU denotes a state vector of conservative quantities,T(U ) is a
rank 2 tensor, the rows of which are the fluxes of each component
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Upwind (CTU) inside unsplit ctu.c. Schematically, starting with a vector of primitive variables V
n at

t = tn, a single step advance requires:

• boundary conditions through the BOUNDARY function (in Src/boundary.c);

• piecewise polynomial reconstruction (on primitive variables) inside the zone; this yields 1-D left
and right states, V L and V R, at cell interfaces. Interpolation routines are collected all together
under Src/Interpolants;

• computation of 1-D inter-cell fluxes F = F(V L,V R) via the RIEMANN function, a pointer to a
Riemann Solver function, properly initialized in SET SOLVER (file set solver.c in each physics
module). Riemann Solver functions are physics-dependent;

• right hand side evaluation via the function GET RHS (in Src/rhs.c), §1.2;

• conservative update U
n+1 = U

n +RHS;

• conversion of Un+1 → V
n+1.

1.2 Right Hand Side Computation

The GET RHS function properly discretize a 1-D contribution to the right hand side of

U
n+1
ijk −U

n
ijk = R

n
1 +R

n
2 +R

n
3

in the selected system of coordinates. It is called once (or more) for every direction at every stage (e.g.
predictor/corrector). Contributions from the d = i, j, k direction are computed as

Rd = −
∆t

∆Vd

(

F
A

d+ 1
2
−F

A

d− 1
2

)

+∆t
(

S
geo
d + S

grav
d + S

8w
d

)

(1.1)

where ∆Vd is the cell volume, FA
d is the area-weighted flux and S

geo
d ,Sgrav

d ,S8w
d are, respectively, the

geometrical, gravitational and Powell’s1 source terms. Notice that PLUTO discriminate between flux
terms and pressure terms. Flux terms come from the divergence of vectors or tensors and are denoted by
F

d in Eq. (1.1). Pressure terms arise because of gradients and require incrementing R in the component
of the momentum normal to a given direction,

R[md]
d − =

∆t

∆ld

(

pd+ 1
2
− pd− 1

2

)

(1.2)

where ∆ld is a line element.
Curvilinear coordinates are handled by carefully computing volume and area factors differently for

scalar or vector quantities. For scalar quantities such as density or energy, one simply has

∂q

∂t
+∇ · F = 0 =⇒
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so that FA
d = Ad Fd and the different terms contributing to Eq. (1.1) are given in Table 1.1. In this case,

the corresponding component of Sgeo is zero.
For vector quantities such as momentum and magnetic field, we exploit the symmetric or antisym-

metric properties of the corresponding flux tensor.

1only for the MHD and RMHD modules.

with LLLn ! LLLd(Vn) or LLLn ¼
P

d LLL
d(Vn) in the case of a dimen-

sionally split or unsplit method, respectively. The third-order
Runge-Kutta method (RK3) may also be used, at the cost of an
additional step:

U# ¼ Un þ!tLLLn; ð21Þ

U## ¼ 1

4
3Un þ U# þ!tLLL#ð Þ; ð22Þ

U nþ1 ¼ 1

3
Un þ 2U## þ 2!tLLL##ð Þ: ð23Þ

For this class of methods, input states for the Riemann solver
are given by the output of the interpolation routine, see x 2.2.
Besides, boundary conditions must be assigned before each step.
A total of two and three Riemann problems per cell per direction
must be solved by the RK2 and RK3 marching scheme, respec-
tively. Furthermore, fully unsplit Runge-Kutta integrators require
a stronger time step limitation; see Table 2.

3. PHYSICS MODULES

PLUTO is distributed with four independent physics modules
for the explicit numerical integration of the fluid equations under
different regimes and conditions. The hydrodynamics (HD),mag-
netohydrodynamics (MHD), relativistic (RHD), and relativistic
MHD (RMHD) modules solve, respectively, the Euler equations
of gas dynamics, the ideal/resistive MHD equations, the energy-
momentum conservation laws of a special relativistic perfect
gas, and the equations for a (special) relativistic magnetized ideal
plasma.

In what follows, !, p, and E denote, respectively, the
proper density, thermal pressure, and total energy density. Vector
fields such as m ! (m1; m2; m3)

T , v ! (v1; v2; v3)
T , and B !

(B1;B2; B3)
T , define the momentum density, velocity, and mag-

netic field. Finally, " will be used to define the ratio of specific
heats for the ideal equation of state.

3.1. The Hydrodynamics (HD) Module

This module implements the equations of classical fluid dy-
namics with an ideal equation of state. The conservative variables
U and the flux tensor are

U ¼
!

m

E

0

B@

1

CA; T Uð Þ ¼
!v

mvþ pI

(E þ p)v

0

B@

1

CA

T

; ð24Þ

where m ¼ !v is the momentum density and I is the unit, 3 ; 3
tensor. The total energy density E is related to the gas pressure p
by the ideal gas closure:

E ¼ p

"' 1
þ jmj2

2!
: ð25Þ

The set of primitive variables V ! (!; v; p)T is given by den-
sity, velocity v, and thermal pressure p.

This module comes with a set of several Riemann solvers, in-
cluding the nonlinear Riemann solver based on the two-shock ap-
proximations (Colella&Woodward 1984; Fryxell et al. 2000), the
Roe solver (Toro 1997), the AUSM+ scheme (Liou 1996), the

HLL (Einfeldt et al. 1991), HLLC (Toro et al. 1994) solvers,
and the Lax-Friedrichs solver (Rusanov 1961).
The HDmodule contains an implementation of the fast Eulerian

transport algorithm for differentially rotating disk (FARGO;Masset
2000) on polar grids. The FARGO scheme allows much larger
time steps than the standard integration where the Courant con-
dition is traditionally limited by the fast orbital motion at the in-
ner boundary.

3.2. The Magnetohydrodynamics (MHD) Module

The MHD module deals with the equations of classical ideal
or resistive magnetohydrodynamics (MHD). In the ideal case,U
and T may be written as

U ¼

!

m

B

E

0

BBB@

1

CCCA; T Uð Þ ¼

!v

mv' BBþ ptI

vB' Bv

E þ ptð Þv' (v = B)B

2

6664

3

7775

T

; ð26Þ

with m ¼ !v and pt ¼ pþ jBj2/2 being the total (thermal +
magnetic) pressure, respectively. The additional constraint
: = B ¼ 0 complements themagnetic field evolution (see x 3.2.1).
Resistivity is introduced by adding appropriate parabolic terms to
the induction and energy equations; see x 4.3.
Available equations of state implemented are the ideal gas law,

E ¼ p

"' 1
þ 1

2

jmj2

!
þ jBj 2

 !
; ð27Þ

and the isothermal equation of state p ¼ c2s !, where cs is the (con-
stant) isothermal speed of sound.
The set of primitive variables is the same one used for the HD

module, with the addition of magnetic fields. The user can choose
among the following available Riemann solvers: the Roe solver of
Cargo & Gallice (1997), the HLL (Janhunen 2000), HLLC (Li
2005), HLLD (Miyoshi & Kusano 2005), and the Lax-Friedrichs
solvers.

3.2.1. Solenoidal Constraint

The solution to the MHD equations must fulfill the solenoidal
constraint,: = B ¼ 0, at all times. Unfortunately, it is well known
that numerical scheme do not naturally preserve this condition
unless special discretization techniques are used. Among the va-
riety of monopole control strategies proposed in literature (for a
review see Tóth 2000), we have implemented (1) the eight wave
formulation (Powell 1994; Powell et al. 1999) and (2) the con-
strained transport (CT) of Balsara & Spicer (1999) and Londrillo
& del Zanna (2004). The CT framework has been incorporated
into the unsplit CTU integrator following the recent work by
Gardiner & Stone (2005). A similar approach is used by Teyssier
et al. (2006).
In the first strategy, the magnetic field has a cell-centered rep-

resentation and an additional source term is added to the MHD
equation. The discretization of the source term is different depend-
ing on the Riemann solver (following Janhunen 2000), a feature
that we found to greatly improve robustness.
In the CT formulation, on the other hand, the induction equa-

tion is integrated directly using the Stokes theorem and the mag-
netic field has a staggered collocation.
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Numerics in here 
 F(u(xi±½,tn+1))!!! 



Example: RZ in unsplit MHD 

An Advanced Simulation & Computing (ASC)   

Academic Strategic Alliances Program (ASAP) Center  

at The University of Chicago

The Center for Astrophysical Thermonuclear Flashes

Anshu Dubey 
June 22, 2009 

FLASH, a Modern, Well Tested, Multiphysics 

Application Code that Scales from Laptops to 

the Largest Supercomputers

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes 

The University of Chicago 

The FLASH Code Contributors 

❑  Current Group: 

❑  Klaus Weide, Chris Daley, Lynn Reid, Paul Rich and Anshu Dubey 

❑  Other Current Contributors: 

❑  Dongwook Lee, Paul Ricker, Dean Townsley, Cal Jordan, John

 Zuhone, Kevin Olson, Marcos Vanella 

❑  Past Major Contributors: 

❑  Katie Antypas, Alan Calder, Jonathan Dursi, Robert Fisher, Timur

 Linde, Tomek Plewa, Katherine Riley, Andrew Siegel, Dan Sheeler,
 Frank Timmes, Natalia Vladimirova, Greg Weirs, Mike Zingale 

 RAL Tutorial 2012, UK         Petros Tzeferacos, 01-06-2012 

The	   ideal	   MHD	   system	   of	   equa(ons	   can	   be	   wri\en	   in	  
compact	  form	  	  

where	  the	  source	  terms	  S(U)	  can	  account	  for	  geometrical	  
correc(ons.	  	  
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ABSTRACT

We present a new numerical code, PLUTO, for the solution of hypersonic flows in 1, 2, and 3 spatial dimensions and
different systems of coordinates. The code provides a multiphysics, multialgorithm modular environment particularly
oriented toward the treatment of astrophysical flows in presence of discontinuities. Different hydrodynamic modules
and algorithms may be independently selected to properly describe Newtonian, relativistic, MHD, or relativistic MHD
fluids. The modular structure exploits a general framework for integrating a system of conservation laws, built on mod-
ern Godunov-type shock-capturing schemes. Although a plethora of numerical methods has been successfully de-
veloped over the past two decades, the vast majority shares a common discretization recipe, involving three general
steps: a piecewise polynomial reconstruction followed by the solution of Riemann problems at zone interfaces and a
final evolution stage. We have checked and validated the code against several benchmarks available in literature. Test
problems in 1, 2, and 3 dimensions are discussed.

Subject headinggs: hydrodynamics — methods: numerical — MHD — relativityYshock waves
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1. INTRODUCTION

Theoretical models based on direct numerical simulations have
unveiled a newway toward a better comprehension of the rich and
complex phenomenology associated with astrophysical plasmas.

Finite difference codes such as ZEUS (Stone&Norman 1992a,
1992b) or NIRVANA+ (Ziegler 1998) inaugurated this novel era
and have been used by an increasingly large fraction of researchers
nowadays. However, as reported in Falle (2002), the lack of up-
winding techniques and conservation properties have progres-
sivelymoved scientist’s attention towardmore accurate and robust
methods. In this respect, the successful employment of the so-
called high-resolution shock-capturing (HRSC) schemes have
revealed a mighty tool to investigate fluid dynamics in nonlinear
regimes. Some of the motivations behind their growing popular-
ity is the ability to model strongly supersonic flows while retain-
ing robustness and stability. The unfamiliar reader is referred to
the books of Toro (1997), LeVeque (1998), and references therein
for a more comprehensive overview.

Implementation of HRSC algorithms is based on a conserva-
tive formulation of the fluid equations and proper upwinding re-
quires an exact or approximate solution (Roe 1986) to theRiemann
problem, i.e., the decay of a discontinuity separating two constant
states. This approach dates back to the pioneeringwork of Godunov
(1959), and it has now become the leading line in developing high-
resolution codes examples of which include FLASH (Fryxell
et al. 2000 for reactive hydrodynamics), the special relativistic
hydro code GENESIS (Aloy et al. 1999), the versatile advection
code (VAC; Tóth 1996), or the new NIRVANA (Ziegler 2004).

Most HRSC algorithms are based on the so-called reconstruct-
solve-average (RSA) strategy. In this approach volume averages
are first reconstructed using piecewise monotonic interpolants in-
side each computational cell. A Riemann problem is then solved
at each interface with discontinuous left and right states, and the

solution is finally evolved in time. It turns out that this sequence of
steps is quite general for many systems of conservation laws, and
therefore, it provides a general framework under which we have
developed a multiphysics, multialgorithm, high-resolution code,
PLUTO. The code is particularly suitable for time-dependent, ex-
plicit computations of highly supersonic flows in the presence of
strong discontinuities, and it can be employed under different re-
gimes, i.e., classical, relativistic unmagnetized, and magnetized
flows. The code is structured in a modular way, allowing a new
module to be easily incorporated. This flexibility turns out to be
quite important, since many aspects of computational fluid dy-
namics are still in rapid development. Besides, the advantage
offered by a multiphysics, multisolver code is also to supply the
user with the most appropriate algorithms and, at the same time,
provide interscheme comparison for a better verification of the
simulation results. PLUTO is entirely written in the C program-
ming language and can run on either single processor or parallel
machines, the latter functionality being implemented through the
message passing interface (MPI) library. The code has already
been successfully employed in the context of stellar and extra-
galactic jets (Bodo et al. 2003; Mignone et al. 2004, 2005a), ra-
diative shocks (Mignone 2005; Massaglia et al. 2005), accretion
disks (Bodo et al. 2005; Tevzadze et al. 2006),magneto-rotational
instability, relativistic Kelvin-Helmholtz instability, and so forth.
The paper is structured as follows: in x 2 we give a description

of the code design; in x 3 we introduce the physics modules
available in the code; in x 4 we give a short overview on source
terms and nonhyperbolicity; and in x 5 the code is validated
against several standard benchmarks.

2. CODE DESIGN

PLUTO is designed to integrate a general system of conserva-
tion laws that we write as

@U

@t
¼ ": = T(U )þ S(U ): ð1Þ

HereU denotes a state vector of conservative quantities,T(U ) is a
rank 2 tensor, the rows of which are the fluxes of each component
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Upwind (CTU) inside unsplit ctu.c. Schematically, starting with a vector of primitive variables V
n at

t = tn, a single step advance requires:

• boundary conditions through the BOUNDARY function (in Src/boundary.c);

• piecewise polynomial reconstruction (on primitive variables) inside the zone; this yields 1-D left
and right states, V L and V R, at cell interfaces. Interpolation routines are collected all together
under Src/Interpolants;

• computation of 1-D inter-cell fluxes F = F(V L,V R) via the RIEMANN function, a pointer to a
Riemann Solver function, properly initialized in SET SOLVER (file set solver.c in each physics
module). Riemann Solver functions are physics-dependent;

• right hand side evaluation via the function GET RHS (in Src/rhs.c), §1.2;

• conservative update U
n+1 = U

n +RHS;

• conversion of Un+1 → V
n+1.

1.2 Right Hand Side Computation

The GET RHS function properly discretize a 1-D contribution to the right hand side of

U
n+1
ijk −U

n
ijk = R

n
1 +R

n
2 +R

n
3

in the selected system of coordinates. It is called once (or more) for every direction at every stage (e.g.
predictor/corrector). Contributions from the d = i, j, k direction are computed as

Rd = −
∆t

∆Vd

(

F
A

d+ 1
2
−F

A

d− 1
2

)

+∆t
(

S
geo
d + S

grav
d + S

8w
d

)

(1.1)

where ∆Vd is the cell volume, FA
d is the area-weighted flux and S

geo
d ,Sgrav

d ,S8w
d are, respectively, the

geometrical, gravitational and Powell’s1 source terms. Notice that PLUTO discriminate between flux
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with LLLn ! LLLd(Vn) or LLLn ¼
P

d LLL
d(Vn) in the case of a dimen-

sionally split or unsplit method, respectively. The third-order
Runge-Kutta method (RK3) may also be used, at the cost of an
additional step:

U# ¼ Un þ!tLLLn; ð21Þ

U## ¼ 1

4
3Un þ U# þ!tLLL#ð Þ; ð22Þ

U nþ1 ¼ 1

3
Un þ 2U## þ 2!tLLL##ð Þ: ð23Þ

For this class of methods, input states for the Riemann solver
are given by the output of the interpolation routine, see x 2.2.
Besides, boundary conditions must be assigned before each step.
A total of two and three Riemann problems per cell per direction
must be solved by the RK2 and RK3 marching scheme, respec-
tively. Furthermore, fully unsplit Runge-Kutta integrators require
a stronger time step limitation; see Table 2.

3. PHYSICS MODULES

PLUTO is distributed with four independent physics modules
for the explicit numerical integration of the fluid equations under
different regimes and conditions. The hydrodynamics (HD),mag-
netohydrodynamics (MHD), relativistic (RHD), and relativistic
MHD (RMHD) modules solve, respectively, the Euler equations
of gas dynamics, the ideal/resistive MHD equations, the energy-
momentum conservation laws of a special relativistic perfect
gas, and the equations for a (special) relativistic magnetized ideal
plasma.

In what follows, !, p, and E denote, respectively, the
proper density, thermal pressure, and total energy density. Vector
fields such as m ! (m1; m2; m3)

T , v ! (v1; v2; v3)
T , and B !

(B1;B2; B3)
T , define the momentum density, velocity, and mag-

netic field. Finally, " will be used to define the ratio of specific
heats for the ideal equation of state.

3.1. The Hydrodynamics (HD) Module

This module implements the equations of classical fluid dy-
namics with an ideal equation of state. The conservative variables
U and the flux tensor are

U ¼
!

m

E

0

B@

1

CA; T Uð Þ ¼
!v

mvþ pI

(E þ p)v

0

B@

1

CA

T

; ð24Þ

where m ¼ !v is the momentum density and I is the unit, 3 ; 3
tensor. The total energy density E is related to the gas pressure p
by the ideal gas closure:

E ¼ p

"' 1
þ jmj2

2!
: ð25Þ

The set of primitive variables V ! (!; v; p)T is given by den-
sity, velocity v, and thermal pressure p.

This module comes with a set of several Riemann solvers, in-
cluding the nonlinear Riemann solver based on the two-shock ap-
proximations (Colella&Woodward 1984; Fryxell et al. 2000), the
Roe solver (Toro 1997), the AUSM+ scheme (Liou 1996), the

HLL (Einfeldt et al. 1991), HLLC (Toro et al. 1994) solvers,
and the Lax-Friedrichs solver (Rusanov 1961).
The HDmodule contains an implementation of the fast Eulerian

transport algorithm for differentially rotating disk (FARGO;Masset
2000) on polar grids. The FARGO scheme allows much larger
time steps than the standard integration where the Courant con-
dition is traditionally limited by the fast orbital motion at the in-
ner boundary.

3.2. The Magnetohydrodynamics (MHD) Module

The MHD module deals with the equations of classical ideal
or resistive magnetohydrodynamics (MHD). In the ideal case,U
and T may be written as

U ¼

!

m

B

E

0

BBB@

1

CCCA; T Uð Þ ¼

!v

mv' BBþ ptI

vB' Bv

E þ ptð Þv' (v = B)B

2

6664

3

7775

T

; ð26Þ

with m ¼ !v and pt ¼ pþ jBj2/2 being the total (thermal +
magnetic) pressure, respectively. The additional constraint
: = B ¼ 0 complements themagnetic field evolution (see x 3.2.1).
Resistivity is introduced by adding appropriate parabolic terms to
the induction and energy equations; see x 4.3.
Available equations of state implemented are the ideal gas law,

E ¼ p

"' 1
þ 1

2

jmj2

!
þ jBj 2

 !
; ð27Þ

and the isothermal equation of state p ¼ c2s !, where cs is the (con-
stant) isothermal speed of sound.
The set of primitive variables is the same one used for the HD

module, with the addition of magnetic fields. The user can choose
among the following available Riemann solvers: the Roe solver of
Cargo & Gallice (1997), the HLL (Janhunen 2000), HLLC (Li
2005), HLLD (Miyoshi & Kusano 2005), and the Lax-Friedrichs
solvers.

3.2.1. Solenoidal Constraint

The solution to the MHD equations must fulfill the solenoidal
constraint,: = B ¼ 0, at all times. Unfortunately, it is well known
that numerical scheme do not naturally preserve this condition
unless special discretization techniques are used. Among the va-
riety of monopole control strategies proposed in literature (for a
review see Tóth 2000), we have implemented (1) the eight wave
formulation (Powell 1994; Powell et al. 1999) and (2) the con-
strained transport (CT) of Balsara & Spicer (1999) and Londrillo
& del Zanna (2004). The CT framework has been incorporated
into the unsplit CTU integrator following the recent work by
Gardiner & Stone (2005). A similar approach is used by Teyssier
et al. (2006).
In the first strategy, the magnetic field has a cell-centered rep-

resentation and an additional source term is added to the MHD
equation. The discretization of the source term is different depend-
ing on the Riemann solver (following Janhunen 2000), a feature
that we found to greatly improve robustness.
In the CT formulation, on the other hand, the induction equa-

tion is integrated directly using the Stokes theorem and the mag-
netic field has a staggered collocation.
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(x1, x2, x3) ∆V1 ∆V2 ∆V3 A1 A2 A3

Cartesian (x, y, z) ∆x ∆x ∆x 1 1 1

Polar (r,φ, z) ∆2r r∆φ ∆z r+ 1 1

Spherical (r, θ,φ) ∆3r ∆3r∆µ ∆3r∆µ∆φ r2+ ∆2rs+ ∆2r∆θ

Table 1.1: Systems of coordinates (i.e. coordinates, volumes and areas) adopted in PLUTO and their meaning. r is the cylindrical
or spherical radius, φ is the azimuthal angle (0 ≤ φ ≤ 2π) and θ is the polar angle (0 ≤ θ ≤ π). Here ∆nr = (rn+ − rn

−

)/n,
∆µ = cos θ

−
− cos θ+, s+ = sin θ+, where + or − refer to the right or left zone interface, respectively.

• In Cartesian coordinates, vector components are treated as scalar quantities.

• In polar or cylindrical coordinates, for a symmetric tensor Mij = Mji (as in the momentum equa-
tion), one may use either the angular momentum conservation form (AMF) or the standard source
form (SF) of the equations:
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(1.3)

If the tensor is antisymmetric, Ωij = −Ωji (as for the induction equation) the conservation law takes
the form
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where Ω = vB −Bv.

• In spherical coordinates, for a symmetric tensor one has
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(here s ≡ sin θ) whereas, if the tensor is antisymmetric, Ωij = −Ωji, one has

∂B

∂t
+∇ ·Ω = 0 =⇒

CHAPTER 1. INTRODUCTION 3

Upwind (CTU) inside unsplit ctu.c. Schematically, starting with a vector of primitive variables V
n at

t = tn, a single step advance requires:

• boundary conditions through the BOUNDARY function (in Src/boundary.c);

• piecewise polynomial reconstruction (on primitive variables) inside the zone; this yields 1-D left
and right states, V L and V R, at cell interfaces. Interpolation routines are collected all together
under Src/Interpolants;

• computation of 1-D inter-cell fluxes F = F(V L,V R) via the RIEMANN function, a pointer to a
Riemann Solver function, properly initialized in SET SOLVER (file set solver.c in each physics
module). Riemann Solver functions are physics-dependent;

• right hand side evaluation via the function GET RHS (in Src/rhs.c), §1.2;

• conservative update U
n+1 = U

n +RHS;

• conversion of Un+1 → V
n+1.

1.2 Right Hand Side Computation

The GET RHS function properly discretize a 1-D contribution to the right hand side of

U
n+1
ijk −U

n
ijk = R

n
1 +R

n
2 +R

n
3

in the selected system of coordinates. It is called once (or more) for every direction at every stage (e.g.
predictor/corrector). Contributions from the d = i, j, k direction are computed as

Rd = −
∆t

∆Vd

(

F
A

d+ 1
2
−F

A

d− 1
2

)

+∆t
(

S
geo
d + S

grav
d + S

8w
d

)

(1.1)

where ∆Vd is the cell volume, FA
d is the area-weighted flux and S

geo
d ,Sgrav

d ,S8w
d are, respectively, the

geometrical, gravitational and Powell’s1 source terms. Notice that PLUTO discriminate between flux
terms and pressure terms. Flux terms come from the divergence of vectors or tensors and are denoted by
F

d in Eq. (1.1). Pressure terms arise because of gradients and require incrementing R in the component
of the momentum normal to a given direction,

R[md]
d − =

∆t

∆ld

(

pd+ 1
2
− pd− 1

2

)

(1.2)

where ∆ld is a line element.
Curvilinear coordinates are handled by carefully computing volume and area factors differently for

scalar or vector quantities. For scalar quantities such as density or energy, one simply has
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so that FA
d = Ad Fd and the different terms contributing to Eq. (1.1) are given in Table 1.1. In this case,

the corresponding component of Sgeo is zero.
For vector quantities such as momentum and magnetic field, we exploit the symmetric or antisym-

metric properties of the corresponding flux tensor.

1only for the MHD and RMHD modules.
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the corresponding component of Sgeo is zero.
For vector quantities such as momentum and magnetic field, we exploit the symmetric or antisym-

metric properties of the corresponding flux tensor.

1only for the MHD and RMHD modules.
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If the tensor is antisymmetric, Ωij = −Ωji (as for the induction equation) the conservation law takes
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If the tensor is antisymmetric, Ωij = −Ωji (as for the induction equation) the conservation law takes
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Upwind (CTU) inside unsplit ctu.c. Schematically, starting with a vector of primitive variables V
n at

t = tn, a single step advance requires:

• boundary conditions through the BOUNDARY function (in Src/boundary.c);

• piecewise polynomial reconstruction (on primitive variables) inside the zone; this yields 1-D left
and right states, V L and V R, at cell interfaces. Interpolation routines are collected all together
under Src/Interpolants;

• computation of 1-D inter-cell fluxes F = F(V L,V R) via the RIEMANN function, a pointer to a
Riemann Solver function, properly initialized in SET SOLVER (file set solver.c in each physics
module). Riemann Solver functions are physics-dependent;

• right hand side evaluation via the function GET RHS (in Src/rhs.c), §1.2;

• conservative update U
n+1 = U

n +RHS;

• conversion of Un+1 → V
n+1.

1.2 Right Hand Side Computation

The GET RHS function properly discretize a 1-D contribution to the right hand side of

U
n+1
ijk −U

n
ijk = R

n
1 +R

n
2 +R

n
3

in the selected system of coordinates. It is called once (or more) for every direction at every stage (e.g.
predictor/corrector). Contributions from the d = i, j, k direction are computed as

Rd = −
∆t

∆Vd

(

F
A

d+ 1
2
−F

A

d− 1
2

)

+∆t
(

S
geo
d + S

grav
d + S

8w
d

)

(1.1)

where ∆Vd is the cell volume, FA
d is the area-weighted flux and S

geo
d ,Sgrav

d ,S8w
d are, respectively, the

geometrical, gravitational and Powell’s1 source terms. Notice that PLUTO discriminate between flux
terms and pressure terms. Flux terms come from the divergence of vectors or tensors and are denoted by
F

d in Eq. (1.1). Pressure terms arise because of gradients and require incrementing R in the component
of the momentum normal to a given direction,

R[md]
d − =
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∆ld

(

pd+ 1
2
− pd− 1

2

)

(1.2)

where ∆ld is a line element.
Curvilinear coordinates are handled by carefully computing volume and area factors differently for

scalar or vector quantities. For scalar quantities such as density or energy, one simply has
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so that FA
d = Ad Fd and the different terms contributing to Eq. (1.1) are given in Table 1.1. In this case,

the corresponding component of Sgeo is zero.
For vector quantities such as momentum and magnetic field, we exploit the symmetric or antisym-

metric properties of the corresponding flux tensor.

1only for the MHD and RMHD modules.
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(x1, x2, x3) ∆V1 ∆V2 ∆V3 A1 A2 A3

Cartesian (x, y, z) ∆x ∆x ∆x 1 1 1

Polar (r,φ, z) ∆2r r∆φ ∆z r+ 1 1

Spherical (r, θ,φ) ∆3r ∆3r∆µ ∆3r∆µ∆φ r2+ ∆2rs+ ∆2r∆θ

Table 1.1: Systems of coordinates (i.e. coordinates, volumes and areas) adopted in PLUTO and their meaning. r is the cylindrical
or spherical radius, φ is the azimuthal angle (0 ≤ φ ≤ 2π) and θ is the polar angle (0 ≤ θ ≤ π). Here ∆nr = (rn+ − rn

−

)/n,
∆µ = cos θ

−
− cos θ+, s+ = sin θ+, where + or − refer to the right or left zone interface, respectively.

• In Cartesian coordinates, vector components are treated as scalar quantities.

• In polar or cylindrical coordinates, for a symmetric tensor Mij = Mji (as in the momentum equa-
tion), one may use either the angular momentum conservation form (AMF) or the standard source
form (SF) of the equations:
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If the tensor is antisymmetric, Ωij = −Ωji (as for the induction equation) the conservation law takes
the form
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where Ω = vB −Bv.

• In spherical coordinates, for a symmetric tensor one has
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If the tensor is antisymmetric, Ωij = −Ωji (as for the induction equation) the conservation law takes
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If the tensor is antisymmetric, Ωij = −Ωji (as for the induction equation) the conservation law takes
the form
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where Ω = vB −Bv.

• In spherical coordinates, for a symmetric tensor one has
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(here s ≡ sin θ) whereas, if the tensor is antisymmetric, Ωij = −Ωji, one has
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(x1, x2, x3) ∆V1 ∆V2 ∆V3 A1 A2 A3

Cartesian (x, y, z) ∆x ∆x ∆x 1 1 1

Polar (r,φ, z) ∆2r r∆φ ∆z r+ 1 1

Spherical (r, θ,φ) ∆3r ∆3r∆µ ∆3r∆µ∆φ r2+ ∆2rs+ ∆2r∆θ

Table 1.1: Systems of coordinates (i.e. coordinates, volumes and areas) adopted in PLUTO and their meaning. r is the cylindrical
or spherical radius, φ is the azimuthal angle (0 ≤ φ ≤ 2π) and θ is the polar angle (0 ≤ θ ≤ π). Here ∆nr = (rn+ − rn

−

)/n,
∆µ = cos θ

−
− cos θ+, s+ = sin θ+, where + or − refer to the right or left zone interface, respectively.

• In Cartesian coordinates, vector components are treated as scalar quantities.

• In polar or cylindrical coordinates, for a symmetric tensor Mij = Mji (as in the momentum equa-
tion), one may use either the angular momentum conservation form (AMF) or the standard source
form (SF) of the equations:
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If the tensor is antisymmetric, Ωij = −Ωji (as for the induction equation) the conservation law takes
the form
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• In spherical coordinates, for a symmetric tensor one has
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What	  we	  end	  up	  with	  	  
is	  three	  new	  source	  terms	  	  
	  
as	  well	  as	  the	  need	  of	  	  
redefining	  volumes	  and	  	  
areas.	  	  

ofU, and S(U ) defines the source terms. Additional source terms
may implicitly arise when taking the divergence of T(U ) in a cur-
vilinear system of coordinates. An arbitrary number of advection
equations may be added to the original conservation law (eq. [1]).

Although the components of U are the primary variables be-
ing updated, fluxes are more conveniently computed using a dif-
ferent set of physical quantities, which we take as the primitive
vector V. This choice is supported, moreover, by the fact that in-
terpolation on primitive variables enforces physical constraints
such as pressure positivity and subluminal speeds in the case of
relativistic flows.

Numerical integration of the conservation law (1) is achieved
through shock-capturing schemes using the finite volume (FV)
formalismwhere volume averages evolve in time. Generally speak-
ing, these methods are comprised of three steps: an interpolation
routine followed by the solution of Riemann problems at zone
edges and a final evolution stage. In PLUTO, this sequence of
steps provides the necessary infrastructure of the code; see the
schematic diagram in Figure 1.

At the higher level, the original system of equations is inte-
grated by following this general sequence of steps, regardless any
knowledge of the physics involved. The explicit form of U, V,
T(U ), and S(U ), on the other hand, depends on the particular
physical module selected. Thus, at the lower level, a physical
module collects the set of algorithms required to compute the
terms involved in the discretization of the right-hand side of equa-
tion (1). This set should provide one or more Riemann solver(s),
mapper routines for the conversion between primitive and con-
servative variables, a flux routine giving the components of T(U )
in each direction, a source term function (if any), and a routine to
compute the maximum and minimum characteristic speeds of the
Jacobianmatrix.Of course, additional featuresmay be easily added
by exploiting the independent modularity.

From the user’s perspective, a particular configuration can be
defined through a friendly interface entirely written in the Python
scripting language. The interface allows the user to specify all
problem-dependent attributes and algorithms, such as number of
dimensions, geometry, physics module, reconstruction method,
time stepping integration, and so forth.

2.1. Notations

PLUTOemploys logically rectangular grids in a generic system
of orthogonal curvilinear coordinates (x1; x2; x3) (see Table 1).
LetN1,N2, and N3 be the number of points in the three directions.
The lower and upper coordinate bounds of zone (i; j; k) are
(x1i!1/2; x2j!1/2; x3k!1/2) and (x1iþ1/2; x2jþ1/2; x3kþ1/2), respectively,
where 1 # i # N1, 1 # j # N2, and 1 # k # N3. The zonewidths

are then simply given by !x1i ¼ x1iþ1/2 ! x1i!1/2, !x2j ¼ x2jþ1/2 !
x2j!1/2, and!x3k ¼ x3kþ1/2 ! x3k!1/2. Themesh spacing can be either
uniform or (geometrical or logarithmic) stretched.

Parallelization is achieved through domain decomposition:
the global domain is divided in subdomains with an equal num-
ber of points and each of the subdomains is assigned to a proces-
sor. By default the subdomains are created as maximally cubic;
however, the user, at run time can specify a different strategy for
the creation of the subdomains, imposing that a given direction
cannot be subdivided. In the code, parallelization is handled
through the MPI library.

Grid adaptivity techniques are also being provided. A one-
dimensional adaptive mesh refinement (AMR) module based on
the Berger & Colella (1989) method is distributed with the code.4

However, since the main goal of this paper is to focus on the code
modularity and its performance, AMR implementation will be
described in future works.

In order to avoid formulas with cluttered notations we omit
integer-valued subscripts when referring to three-dimensional
quantities. Thus,V i; j;k becomes simplyV.We introduce the stan-
dard two-point difference one-dimensional operator

LLLd(V ) ¼ ! 1

!V d
Ad
þF

d
þ ! Ad

!F
d
!

! "
þ Sd; ð2Þ

where d ¼ 1, 2, 3 is a given direction and Ad
' and !V d are, re-

spectively, the cell’s right (+) and left (!) interface areas and
cell volume in that direction (see Table 1). Here' ( (i' 1

2 ; j; k);
(i; j' 1

2; k); (i; j; k ' 1
2 ) when d ¼ 1, 2, and 3, respectively.

Scalar components of the vectors appearing in equation (2) will
be denoted with a pair of square brackets; e.g., Ld

½m!* is the com-
ponent of LLLd contributing to the m! equation. Furthermore, since
several of the building block algorithms are one-dimensional, we
also omit the superscript d when unnecessary.

The numerical flux functionsF' in equation (2) follow the so-
lution of one-dimensional Riemann problems at cell interfaces.
Since more than one Riemann solver may be available in each
physics module, we set, without loss of generality,

Fþ ¼ R Vþ;L; Vþ;R

! "
; ð3Þ

Fig. 1.—Simplified flow diagram of the reconstruct-solve-average (RSA)
strategy: first, volume averagesU are more conveniently mapped into primitive
quantities V. Left and right states Vþ;L and V!;R are constructed inside each
zone by suitable variable interpolation and/or extrapolation. A Riemann prob-
lem is then solved between Vþ;L and Vþ;R to compute the numerical flux func-
tion Fþ at cell interfaces and the solution is finally advanced in time.

TABLE 1

Systems of Coordinates (i.e., Coordinates, Volumes, and Areas)
Adopted in PLUTO

PLUTO Cartesian Polar Spherical

x1 ............................. x r r

x2 ............................. y ! "
x3 ............................. z z !
!V1 ......................... !x !2r !3r

!V2 ......................... !y r!! !3r!#
!V3 ......................... !z !z !3r!#!!
A1
þ ............................ 1 rþ r2þ

A2
þ ............................ 1 1 !2rsþ

A3
þ ............................ 1 1 !2r!"

Notes.—Here r is the cylindrical or spherical radius, 0 # ! # 2$ is
the azimuthal angle, and 0 # " # $ is the polar angle. Here !nr ¼
(rnþ ! rn!)/n, !# ¼ cos "! ! cos "þ, and sþ ¼ sin "þ, where + or !
refer to the right or left zone interface, respectively.

4 Extension to multiple spatial dimensions is currently being developed using
the CHOMBO library available at http://seesar.lbl.gov/ANAG/chombo/.
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Ok,	  let’s	  plug	  this	  in	  the	  variable	  update…	  
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At any given time we do not have u(x,tn) 
We have discrete values at each cell, u(xi,tn) 
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piecewise polynomial reconstruction  
u(xi,tn)  = Pi(x), for x ϵ (xi-½,xi+½) 

At each interface i+½ we have a uL = Pi(xi+½)  and a uR = Pi+1 (xi+½) 
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At each interface i+½ we solve a Riemann problem and obtain  
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Riemann problem 

The flux computation           requires the solution of a Riemann problem 
at the cell interface. It involves the temporal evolution of a discontinuity. 
  

x 
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Fast mode 

left state right state 
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Having all the needed terms we can now advance our solution in 
time and form new averages. 

This technique is called R-S-A 
 
 Reconstruct (obtain uL, uR ) 
 Solve  (the Riemann problem) 
 Average (evolve in time and form the new averages ) 
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2.6. Advancing the Normal Fields from n to n+ 1/2 Time Step using CT

In updating the normal fields to n+ 1/2, it is important to meet two conditions. The first is a continuity
restriction of the normal magnetic field across cell interfaces [5,10,16,23,33]. The second is the divergence-
free constraint of the normal fields on a computational grid. As a last step of our Riemann state calculations,
we must evolve the normal field components at each cell boundary by a half time step, while satisfying the
two conditions.We therefore follow the CT approach using the high-order Godunov fluxes that are solutions
to a Riemann problem using the Riemann states Vn+1/2i, j,N,S,E,W,T,B described in Sections 2.5.2 and 2.5.3. Our
approach here is the 3D extension of the 2D method in using the same approach as in [23]. We first solve a
set of Riemann problems in each direction,

F̃∗,n+1/2i−1/2, j,k = RP
(

Vn+1/2i−1, j,k,E,V
n+1/2
i, j,k,W

)

, F̃∗,n+1/2i+1/2, j,k = RP
(

Vn+1/2i, j,k,E ,V
n+1/2
i+1, j,k,W

)

, (73)

G̃∗,n+1/2
i, j−1/2,k = RP

(

Vn+1/2i, j−1,k,N,V
n+1/2
i, j,k,S

)

, G̃∗,n+1/2
i, j+1/2,k = RP

(

Vn+1/2i, j,k,N ,V
n+1/2
i, j+1,k,S

)

, (74)

H̃∗,n+1/2
i, j,k−1/2 = RP

(

Vn+1/2i, j,k−1,T ,V
n+1/2
i, j,k,B

)

, H̃∗,n+1/2
i, j,k+1/2 = RP

(

Vn+1/2i, j,k,T ,V
n+1/2
i, j,k+1,B

)

. (75)

With these high-order Godunov fluxes at the half time step we evolve the normal fields by a half time step
using the CT update

bn+1/2x,i+1/2, j,k = bnx,i+1/2, j,k

−
Δt
2Δy

{

Ẽ∗,n+1/2
z,i+1/2, j+1/2,k− Ẽ∗,n+1/2

z,i+1/2, j−1/2,k

}

−
Δt
2Δz

{

− Ẽ∗,n+1/2
y,i+1/2, j,k+1/2+ Ẽ∗,n+1/2

y,i+1/2, j,k−1/2

}

, (76)

bn+1/2y,i, j+1/2,k = bny,i, j+1/2,k

−
Δt
2Δx

{

− Ẽ∗,n+1/2
z,i+1/2, j+1/2,k+ Ẽ∗,n+1/2

z,i−1/2, j+1/2,k

}

−
Δt
2Δz

{

Ẽ∗,n+1/2
x,i, j+1/2,k+1/2− Ẽ∗,n+1/2

x,i, j+1/2,k−1/2

}

, (77)

bn+1/2z,i, j,k+1/2 = bnz,i, j,k+1/2

−
Δt
2Δx

{

Ẽ∗,n+1/2
y,i+1/2, j,k+1/2− Ẽ∗,n+1/2

y,i−1/2, j,k+1/2

}

−
Δt
2Δy

{

− Ẽ∗,n+1/2
x,i, j+1/2,k+1/2+ Ẽ∗,n+1/2

x,i, j−1/2,k+1/2

}

, (78)

where the duality relationship between the electric fields and the high-order Godunov fluxes [4] is assumed
in the expressions. The electric fields Ẽ∗,n+1/2 ¶ in Equations (76)-(78) can be constructed based on the MEC
method [23] that takes an arithmetic average of four Taylor series expansions of the fluxes in (73)–(75) to
obtain them (see Equations (87)–(89) in Section 2.8.1). In Section 2.8.2, we introduce a new upwind biased
MEC algorithm which improves numerical stability for advection dominated problems. This upwind-MEC
scheme is our default method in advancing the normal fields by half time step in this paper. The normal
fields that are advanced by half time step either by the standard-MEC or the upwind biased MEC satisfy
the divergence-free constraint as well as the continuity restriction across cell interfaces as they are direct
solutions to numerical induction equations via the CT approach.
Given these updated cell interface-centered divergence-free fields, the Riemann states at interfaces are

updated as

Vn+1/2i, j,k,E · eBx = bn+1/2x,i+1/2, j,k, Vn+1/2i, j,k,W · eBx = bn+1/2x,i−1/2, j,k, (79)

Vn+1/2i, j,k,N · eBy = bn+1/2y,i, j+1/2,k, Vn+1/2i, j,k,S · eBy = bn+1/2y,i, j−1/2,k, (80)

¶ Note here that we use a consistent superscript (e.g., F̃∗ and Ẽ∗) between the Godunov fluxes and the electric fields that are in the duality
relationship. The superscript is used for the intermediate Riemann solutions in Section 2.6, whereas the superscript ∗ (e.g., F∗ and E∗) is used for
the final Riemann solutions in Section 2.7.
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∂∇ ·B
∂t

= ∇ · (−∇×E) = 0. (5)

Thus, if ∇ ·B = 0 at t = 0, the dynamical evolution preserves this constraint at later times. Different nu-
merical MHD algorithms take different approaches to satisfy the ∇ ·B = 0 condition on a discrete grid
[4, 6, 10, 12, 16, 17, 23, 27–29, 34, 42]. We write the above equations in matrix form in 3D as follows:

∂U
∂t

+
∂F
∂x

+
∂G
∂y

+
∂H
∂z

= 0, (6)

where U contains the eight MHD conservative variables, and F, G, and H ∗ represent the corresponding
conservative fluxes in x,y and z directions. They are given by

U=











































ρ

ρu

ρv

ρw

Bx

By

Bz

E











































, F=











































ρu

ρu2+ ptot −B2x

ρuv−ByBx

ρuw−BzBx

0

uBy− vBx(=−Ez)

uBz−wBx(= Ey)

(E+ ptot)u−Bx(uBx+ vBy+wBz)











































, (7)

G=











































ρv

ρvu−BxBy

ρv2+ ptot −B2y

ρvw−BzBy

vBx−uBy(= Ez)

0

vBz−wBy(=−Ex)

(E+ ptot)v−By(uBx+ vBy+wBz)











































, H=











































ρw

ρwu−BxBz

ρwv−ByBz

ρw2+ ptot −B2z

wBx−uBz(=−Ey)

wBy− vBz(= Ex)

0

(E+ ptot)w−Bz(uBx+ vBy+wBz)











































. (8)

See Figure 1 for a 3D control volume of the staggered grid for CT. All the conservative variables are lo-
cated at cell centers (i, j,k), except for the divergence-free magnetic fields bx,by,bz at cell interface centers.
These interface-centered magnetic fields are evolved separately by solving the induction equations via CT
on the staggered grid (see Sections 2.6 and 2.8). The electric fields are secondary derived quantities that are
located at cell edges in 3D (cell corners in 2D).

∗ Although we reserve boldface notation to represent state vectors, flux vectors and matrices, with some abuse of notation, in what follows we will
occasionally use normal fonts for fluxes where there is no confusion.
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Fig. 1. A 3D control volume on the CT staggered grid with the cell center at (i, j,k). The divergence-free magnetic fields are collocated at the
cell face centers and the electric fields at the cell edge centers. The line integral of the electric fields

∫
∂Fn E ·Tdl along the four edges of the face

F x,i+1/2, j,k gives rise to the negative of the rate of change of the magnetic field flux in x-direction through the area enclosed by the four edges (e.g.,
the area of F x,i+1/2, j,k).

2.2. Quasi-Linearization, Linearization and Multidimensional MHD Source Terms

In order to discretize the coupled system of MHD equations (1)-(4), it is often convenient to cast the
conservative form of Equation (6) into a quasi-linearized representation in terms of primitive variables
V=(ρ,u,v,w,Bx,By,Bz, p)

T ,

∂V
∂t

+Ax
∂V
∂x

+Ay
∂V
∂y

+Az
∂V
∂z

= 0. (9)

The coefficient matrices Ax, Ay, and Az are given by

Ax =



























u ρ 0 0 0 0 0 0
0 u 0 0 −Bx

ρ
By
ρ

Bz
ρ

1
ρ

0 0 u 0 −By
ρ −Bx

ρ 0 0
0 0 0 u −Bz

ρ 0 −Bx
ρ 0

0 0 0 0 0 0 0 0
0 By −Bx 0 −v u 0 0
0 Bz 0 −Bx −w 0 u 0
0 γp 0 0 −ku ·B 0 0 u



























, (10)
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Fig. 1. A 3D control volume on the CT staggered grid with the cell center at (i, j,k). The divergence-free magnetic fields are collocated at the
cell face centers and the electric fields at the cell edge centers. The line integral of the electric fields

∫
∂Fn E ·Tdl along the four edges of the face

F x,i+1/2, j,k gives rise to the negative of the rate of change of the magnetic field flux in x-direction through the area enclosed by the four edges (e.g.,
the area of F x,i+1/2, j,k).

2.2. Quasi-Linearization, Linearization and Multidimensional MHD Source Terms

In order to discretize the coupled system of MHD equations (1)-(4), it is often convenient to cast the
conservative form of Equation (6) into a quasi-linearized representation in terms of primitive variables
V=(ρ,u,v,w,Bx,By,Bz, p)

T ,

∂V
∂t

+Ax
∂V
∂x

+Ay
∂V
∂y

+Az
∂V
∂z

= 0. (9)

The coefficient matrices Ax, Ay, and Az are given by

Ax =



























u ρ 0 0 0 0 0 0
0 u 0 0 −Bx

ρ
By
ρ

Bz
ρ

1
ρ

0 0 u 0 −By
ρ −Bx

ρ 0 0
0 0 0 u −Bz

ρ 0 −Bx
ρ 0

0 0 0 0 0 0 0 0
0 By −Bx 0 −v u 0 0
0 Bz 0 −Bx −w 0 u 0
0 γp 0 0 −ku ·B 0 0 u



























, (10)
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Ay =



























v 0 ρ 0 0 0 0 0
0 v 0 0 −By

ρ −Bx
ρ 0 0

0 0 v 0 Bx
ρ −By

ρ
Bz
ρ

1
ρ

0 0 0 v 0 −Bz
ρ −By

ρ 0
0 −By Bx 0 v −u 0 0
0 0 0 0 0 0 0 0
0 0 Bz −By 0 −w v 0
0 0 γp 0 0 −ku ·B 0 v



























, (11)

Az =



























w 0 0 ρ 0 0 0 0
0 w 0 0 −Bz

ρ 0 −Bx
ρ 0

0 0 w 0 0 −Bz
ρ −By

ρ 0
0 0 0 w Bx

ρ
By
ρ −Bz

ρ
1
ρ

0 −Bz 0 Bx w 0 −u 0
0 0 −Bz By 0 w −v 0
0 0 0 0 0 0 0 0
0 0 0 γp 0 0 −ku ·B w



























, (12)

with k = 1− γ. Consider solving the approximate Riemann problems of Roe [41], constructed by replacing
each of the above matrices by constant coefficient matrices  A ≡  A(VL,VR) =  A(  Vavg) that depends on the
left (VL) and right (VR) states (and hence on the average state Vavg). We get a linear system with constant
coefficients matrices,

∂V
∂t

+  A ·∇V =
∂V
∂t

+(  Ax,  Ay,  Az) ·∇V = 0. (13)

Note that, from the relations (7)-(8), when solving a given one-dimensional problem in each direction,
there are seven non-trivial equations and one trivial equation. This trivial equation only appears when solv-
ing the induction equation in the given one-dimensional direction. As first noted in [10] and [16], employing
this truly one-dimensional sub-system for each direction sequentially to solve the full three-dimensional
MHD problems omits the so-called MHD multidimensional source terms that are proportional to the gra-
dients of the normal magnetic fields, ∂Bx/∂x, ∂By/∂y, and ∂Bz/∂z. These terms are crucial to guarantee the
correct evolution of the magnetic field (e.g., see [16,17,23]) in multidimensional problems, and they should
be explicitly formulated when discretizing the linear system in Equation (13).

For high-order Godunov-type algorithms, the place where the one-dimensional linear sub-systems are dis-
cretized for the three-dimensional full system, and therefore the MHD source terms are needed, is the data
reconstruction-evolution step that computes Riemann interface states. There are a few variant approaches
suggested by several authors [10,16,17,23,29] . The common idea of these variants is to design an optimal
way to balance the MHD source terms subject to the ∇ ·B = 0 condition.

The approaches by Gardiner and Stone for two dimensions [16] and three dimensions (for their 6-solve
CTU) [17] include the source terms proportional to ∂BN/∂N (N is the normal direction) to the N−interface
states. The authors designed their algorithms to include the MHD source terms at some specific stage,
which is when the normal predictor states are corrected using the transverse flux gradients (we call this a
“transverse corrector” hereafter), not at the extrapolation of the cell-centered data in the normal directional
calculation step (a “normal predictor” hereafter). As a consequence, their 2D and 3D algorithms success-
fully balance the source terms. Their “6-solve CTU” 3D algorithm carefully uses the minmod slope limiter
to achieve the perfect cancellation required to balance the source terms. Both of their 2D and 3D algorithms
reduce to the 1D and 2D CTU respectively for grid-aligned flows, preserving the correct in-plane field
evolution.
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Fig. 1. A 3D control volume on the CT staggered grid with the cell center at (i, j,k). The divergence-free magnetic fields are collocated at the
cell face centers and the electric fields at the cell edge centers. The line integral of the electric fields

∫
∂Fn E ·Tdl along the four edges of the face

F x,i+1/2, j,k gives rise to the negative of the rate of change of the magnetic field flux in x-direction through the area enclosed by the four edges (e.g.,
the area of F x,i+1/2, j,k).

2.2. Quasi-Linearization, Linearization and Multidimensional MHD Source Terms

In order to discretize the coupled system of MHD equations (1)-(4), it is often convenient to cast the
conservative form of Equation (6) into a quasi-linearized representation in terms of primitive variables
V=(ρ,u,v,w,Bx,By,Bz, p)

T ,

∂V
∂t

+Ax
∂V
∂x

+Ay
∂V
∂y

+Az
∂V
∂z

= 0. (9)

The coefficient matrices Ax, Ay, and Az are given by

Ax =



























u ρ 0 0 0 0 0 0
0 u 0 0 −Bx

ρ
By
ρ

Bz
ρ

1
ρ

0 0 u 0 −By
ρ −Bx

ρ 0 0
0 0 0 u −Bz

ρ 0 −Bx
ρ 0

0 0 0 0 0 0 0 0
0 By −Bx 0 −v u 0 0
0 Bz 0 −Bx −w 0 u 0
0 γp 0 0 −ku ·B 0 0 u



























, (10)
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 Vy =





V̂y

By



 ,  Ay =





Ây ABy

0 0



 , ABy =

[

0,−
Bx
ρ
,−

By
ρ
,−

Bz
ρ
,−u,−w,−ku ·B

]T

, (16)

 Vz =





V̂z

Bz



 ,  Az =





Âz ABz

0 0



 , ABz =

[

0,−Bx
ρ
,−

By
ρ
,−

Bz
ρ
,−u,−v,−ku ·B

]T

. (17)

The term ABN for each N will be our representation of the corresponding multidimensional MHD source
term in this paper.
The first step of the MH data reconstruction-evolution algorithm is to extrapolate Vn

i, j,k to construct the
six multidimensional Riemann states Vn+1/2

i, j,k,N,S,E,W,T,B (see Figure 2 for a schematic in 2D) at cell interfaces †

to achieve second-order accuracy by using a total variation diminishing (TVD) slope limiter ‡ . Although
the slope limiter can be applied to either primitive or characteristic variables, we prefer the latter since it is
less prone to generating spurious oscillations as noted in the literature [41, 43]. When limiting, we do not
apply any limiting to BN , allowing theC0 continuity of the normal field at cell faces (e.g., see discussion in
[23]).

∗(i, j)

Vn+1/2
i, j−1,N

Vn+1/2
i, j,S

Vn+1/2
i, j,N

Vn+1/2
i, j+1,S

Vn+1/2
i−1, j,E Vn+1/2

i, j,W Vn+1/2
i, j,E Vn+1/2

i+1, j,W

Fig. 2. The boundary extrapolated values on a 2D cell geometry. The values are subscripted by N,S,E andW accordingly. These represent the state
values for solving a Riemann problem at each cell interface.

Given the linearized MHD system (13), the single-step, data reconstruction-evolution takes the form

Vn+1/2
i, j,k,E,W = Vn

i, j,k+
1
2
[±I−

Δt
Δx

Ax(Vn
i, j,k)]Δ

n
x,i, j,k−

Δt
2Δy

Ay(Vn
i, j,k)Δ

n
y,i, j,k−

Δt
2Δz

Az(Vn
i, j,k)Δ

n
z,i, j,k, (18)

Vn+1/2
i, j,k,N,S = Vn

i, j,k−
Δt
2Δx

Ax(Vn
i, j,k)Δ

n
x,i, j,k+

1
2
[±I−

Δt
Δy

Ay(Vn
i, j,k)]Δ

n
y,i, j,k−

Δt
2Δz

Az(Vn
i, j,k)Δ

n
z,i, j,k, (19)

Vn+1/2
i, j,k,T,B = Vn

i, j,k−
Δt
2Δx

Ax(Vn
i, j,k)Δ

n
x,i, j,k−

Δt
2Δy

Ay(Vn
i, j,k)Δ

n
y,i, j,k+

1
2
[±I−

Δt
Δz

Az(Vn
i, j,k)]Δ

n
z,i, j,k, (20)

† Our notations N,S,E,W,T,B represent respectively north, south, east, west, top and bottom that are based on a reference point at the local cell
center node (i, j,k).
‡ For instance, limiters such as minmod, van Leer’s, monotonized central (MC), or a hybrid combination of them on different wave structures [5]
can be used.
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In	  cylindrical	  coordinates	  the	  primi(ve	  formula(on	  does	  	  
not	  come	  without	  source	  terms	  if	  we	  keep	  the	  same	  	  
formalism	  by	  subs(tu(ng	  x	  with	  R…	  For	  example,	  the	  	  
con(nuity	  equa(on	  can	  be	  wri\en	  as	  
	  
	  
whereas	  momenta	  will	  be	  
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Although no changes are required for the solution of the
Riemann problem at interfaces, several changes are required in
other parts of the Athena algorithm in order to accommodate
non-Cartesian coordinates. In the next sections, we discuss the
geometry-specific details of computing the L/R states (steps
1–2; see Sections 4–6), the FV method (steps 8–9; see Section 7),
and the incorporation of CT into the corner transport upwind
(CTU) method of Colella (1990; see Section 8). Finally, we
will recapitulate the steps of the algorithm in greater detail
and explain the computation of the new timestep (step 11; see
Section 9).

4. THE LINEARIZED EVOLUTION EQUATIONS

In Athena, the left and right (L/R) interface states (the inputs
to the Riemann solver) are computed using a modified form of
the system in Equation (2). The equations, written in primitive
variable form, are projected in a single coordinate direction,
and the resulting system is linearized and then evolved. The
projection in the φ-direction yields a system that can be obtained
from the corresponding Cartesian projection (see GS05, Section
3.1) by making the substitution ∂y !→ R−1∂φ . However, the
projection in the R-direction differs more significantly as a result
of geometric scale factors.

For the projection in the R-direction, we begin with the
primitive variable form of Equation (2), take ∂φ ≡ 0 and ∂z ≡ 0,
expand the remaining R-partials, and move the non-derivative
terms to the right-hand side to obtain the system:

∂tw + A∂Rw = s, (21)

where

w =





ρ
vR

vφ

vz

P
Bφ

Bz





(22)

is the vector of primitive variables, omitting the parallel com-
ponent of the magnetic field,

A =





vR ρ 0 0 0 0 0
0 vR 0 0 1/ρ Bφ/ρ Bz/ρ
0 0 vR 0 0 −BR/ρ 0
0 0 0 vR 0 0 −BR/ρ
0 γP 0 0 vR 0 0
0 Bφ −BR 0 0 vR 0
0 Bz 0 −BR 0 0 vR





(23)

is the wave matrix, and s = sMHD+sgrav+sgeom is the source term
vector, a combination of the MHD source terms arising from the
∇ · B constraint, gravity source terms from a static potential, and
the geometric source terms inherent in the cylindrical coordinate
system. As in the Cartesian version of Athena, the form of the
MHD source terms differs slightly in the two-dimensional and
three-dimensional cases (see Section 4.4 below), but the forms
of the gravity and geometric source terms are independent of
dimension.

The hyperbolic wave matrix, A, given in Equation (23), is
linearized by taking it to be a constant function of the primitive
variable state w at time tn. However, it is only indirectly accessed

through the system of eigenvectors and eigenvalues of A (see
Section 6 below). We write the projected equations in cylindrical
coordinates using this specific form in order to make use of the
eigensystem solution previously implemented in Athena.

In the remainder of this section, we derive the cylindrical
coordinate form of the primitive variable system given in
Equation (21), and in the process obtain the geometric source
terms.

4.1. Continuity Equation

Expanding the derivative operators in cylindrical coordinates
in Equation (1a) and projecting in the R-direction, we have for
the continuity equation in primitive variable form:

∂tρ + ρ∂RvR + vR∂Rρ = − 1
R

ρvR. (24)

The left-hand side of Equation (24) contains all the terms
from Equation (21), and the term on the right-hand side is
the first component of the geometric source term vector, sgeom.
Furthermore, if we make the substitution R !→ x and ignore
the source term, we recover the x-projection of the continuity
equation in Cartesian coordinates.

4.2. Momentum Equation

For the momentum equation, we begin with the conservative
form of Equation (1b) and use the continuity equation and
divergence-free constraint to eliminate terms and obtain

ρ ∂tv + ρ(v · ∇)v − (B · ∇)B + ∇P ∗ = 0. (25)

By explicitly enforcing ∇ · B = 0 here, we ensure that any
numerical error in the divergence of the magnetic field cannot
influence the evolution of momentum during the reconstruction
step.

Next, we divide through by ρ, substitute P ∗ = P + B2/2,
project in the R-direction, expand the partials, and move the
source terms to the right-hand side to obtain
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∂t vz + vR∂Rvz − 1
ρ

BR∂RBz = 0. (26c)

Recall that the φ-momentum Equation (13) can be expressed
in angular momentum conserving form and thus avoid a geo-
metric source term. However, we must include the source term
on the right-hand side of Equation (26b) in primitive variable
form in order to preserve the specific structure of the coefficient
matrix, A, on the left-hand side of Equation (21). Finally, the
gravity source terms in the momentum equation are given by
the components of −∇Φ in cylindrical coordinates.

4.3. Energy Equation

We begin with the internal energy equation in coordinate-free
form:

∂tP + v · ∇P + γP ∇ · v = 0. (27)
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projection in the R-direction differs more significantly as a result
of geometric scale factors.

For the projection in the R-direction, we begin with the
primitive variable form of Equation (2), take ∂φ ≡ 0 and ∂z ≡ 0,
expand the remaining R-partials, and move the non-derivative
terms to the right-hand side to obtain the system:
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is the vector of primitive variables, omitting the parallel com-
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0 γP 0 0 vR 0 0
0 Bφ −BR 0 0 vR 0
0 Bz 0 −BR 0 0 vR





(23)

is the wave matrix, and s = sMHD+sgrav+sgeom is the source term
vector, a combination of the MHD source terms arising from the
∇ · B constraint, gravity source terms from a static potential, and
the geometric source terms inherent in the cylindrical coordinate
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MHD source terms differs slightly in the two-dimensional and
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of the gravity and geometric source terms are independent of
dimension.

The hyperbolic wave matrix, A, given in Equation (23), is
linearized by taking it to be a constant function of the primitive
variable state w at time tn. However, it is only indirectly accessed

through the system of eigenvectors and eigenvalues of A (see
Section 6 below). We write the projected equations in cylindrical
coordinates using this specific form in order to make use of the
eigensystem solution previously implemented in Athena.

In the remainder of this section, we derive the cylindrical
coordinate form of the primitive variable system given in
Equation (21), and in the process obtain the geometric source
terms.

4.1. Continuity Equation

Expanding the derivative operators in cylindrical coordinates
in Equation (1a) and projecting in the R-direction, we have for
the continuity equation in primitive variable form:

∂tρ + ρ∂RvR + vR∂Rρ = − 1
R

ρvR. (24)

The left-hand side of Equation (24) contains all the terms
from Equation (21), and the term on the right-hand side is
the first component of the geometric source term vector, sgeom.
Furthermore, if we make the substitution R !→ x and ignore
the source term, we recover the x-projection of the continuity
equation in Cartesian coordinates.

4.2. Momentum Equation

For the momentum equation, we begin with the conservative
form of Equation (1b) and use the continuity equation and
divergence-free constraint to eliminate terms and obtain

ρ ∂tv + ρ(v · ∇)v − (B · ∇)B + ∇P ∗ = 0. (25)

By explicitly enforcing ∇ · B = 0 here, we ensure that any
numerical error in the divergence of the magnetic field cannot
influence the evolution of momentum during the reconstruction
step.

Next, we divide through by ρ, substitute P ∗ = P + B2/2,
project in the R-direction, expand the partials, and move the
source terms to the right-hand side to obtain
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Recall that the φ-momentum Equation (13) can be expressed
in angular momentum conserving form and thus avoid a geo-
metric source term. However, we must include the source term
on the right-hand side of Equation (26b) in primitive variable
form in order to preserve the specific structure of the coefficient
matrix, A, on the left-hand side of Equation (21). Finally, the
gravity source terms in the momentum equation are given by
the components of −∇Φ in cylindrical coordinates.

4.3. Energy Equation

We begin with the internal energy equation in coordinate-free
form:

∂tP + v · ∇P + γP ∇ · v = 0. (27)
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For the projection in the R-direction, we begin with the
primitive variable form of Equation (2), take ∂φ ≡ 0 and ∂z ≡ 0,
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is the wave matrix, and s = sMHD+sgrav+sgeom is the source term
vector, a combination of the MHD source terms arising from the
∇ · B constraint, gravity source terms from a static potential, and
the geometric source terms inherent in the cylindrical coordinate
system. As in the Cartesian version of Athena, the form of the
MHD source terms differs slightly in the two-dimensional and
three-dimensional cases (see Section 4.4 below), but the forms
of the gravity and geometric source terms are independent of
dimension.

The hyperbolic wave matrix, A, given in Equation (23), is
linearized by taking it to be a constant function of the primitive
variable state w at time tn. However, it is only indirectly accessed

through the system of eigenvectors and eigenvalues of A (see
Section 6 below). We write the projected equations in cylindrical
coordinates using this specific form in order to make use of the
eigensystem solution previously implemented in Athena.

In the remainder of this section, we derive the cylindrical
coordinate form of the primitive variable system given in
Equation (21), and in the process obtain the geometric source
terms.

4.1. Continuity Equation

Expanding the derivative operators in cylindrical coordinates
in Equation (1a) and projecting in the R-direction, we have for
the continuity equation in primitive variable form:

∂tρ + ρ∂RvR + vR∂Rρ = − 1
R

ρvR. (24)

The left-hand side of Equation (24) contains all the terms
from Equation (21), and the term on the right-hand side is
the first component of the geometric source term vector, sgeom.
Furthermore, if we make the substitution R !→ x and ignore
the source term, we recover the x-projection of the continuity
equation in Cartesian coordinates.

4.2. Momentum Equation

For the momentum equation, we begin with the conservative
form of Equation (1b) and use the continuity equation and
divergence-free constraint to eliminate terms and obtain

ρ ∂tv + ρ(v · ∇)v − (B · ∇)B + ∇P ∗ = 0. (25)

By explicitly enforcing ∇ · B = 0 here, we ensure that any
numerical error in the divergence of the magnetic field cannot
influence the evolution of momentum during the reconstruction
step.

Next, we divide through by ρ, substitute P ∗ = P + B2/2,
project in the R-direction, expand the partials, and move the
source terms to the right-hand side to obtain
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∂t vz + vR∂Rvz − 1
ρ

BR∂RBz = 0. (26c)

Recall that the φ-momentum Equation (13) can be expressed
in angular momentum conserving form and thus avoid a geo-
metric source term. However, we must include the source term
on the right-hand side of Equation (26b) in primitive variable
form in order to preserve the specific structure of the coefficient
matrix, A, on the left-hand side of Equation (21). Finally, the
gravity source terms in the momentum equation are given by
the components of −∇Φ in cylindrical coordinates.

4.3. Energy Equation

We begin with the internal energy equation in coordinate-free
form:

∂tP + v · ∇P + γP ∇ · v = 0. (27)
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For the projection in the R-direction, we begin with the
primitive variable form of Equation (2), take ∂φ ≡ 0 and ∂z ≡ 0,
expand the remaining R-partials, and move the non-derivative
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where

w =





ρ
vR

vφ

vz

P
Bφ

Bz





(22)

is the vector of primitive variables, omitting the parallel com-
ponent of the magnetic field,

A =





vR ρ 0 0 0 0 0
0 vR 0 0 1/ρ Bφ/ρ Bz/ρ
0 0 vR 0 0 −BR/ρ 0
0 0 0 vR 0 0 −BR/ρ
0 γP 0 0 vR 0 0
0 Bφ −BR 0 0 vR 0
0 Bz 0 −BR 0 0 vR





(23)

is the wave matrix, and s = sMHD+sgrav+sgeom is the source term
vector, a combination of the MHD source terms arising from the
∇ · B constraint, gravity source terms from a static potential, and
the geometric source terms inherent in the cylindrical coordinate
system. As in the Cartesian version of Athena, the form of the
MHD source terms differs slightly in the two-dimensional and
three-dimensional cases (see Section 4.4 below), but the forms
of the gravity and geometric source terms are independent of
dimension.

The hyperbolic wave matrix, A, given in Equation (23), is
linearized by taking it to be a constant function of the primitive
variable state w at time tn. However, it is only indirectly accessed

through the system of eigenvectors and eigenvalues of A (see
Section 6 below). We write the projected equations in cylindrical
coordinates using this specific form in order to make use of the
eigensystem solution previously implemented in Athena.

In the remainder of this section, we derive the cylindrical
coordinate form of the primitive variable system given in
Equation (21), and in the process obtain the geometric source
terms.

4.1. Continuity Equation

Expanding the derivative operators in cylindrical coordinates
in Equation (1a) and projecting in the R-direction, we have for
the continuity equation in primitive variable form:

∂tρ + ρ∂RvR + vR∂Rρ = − 1
R

ρvR. (24)

The left-hand side of Equation (24) contains all the terms
from Equation (21), and the term on the right-hand side is
the first component of the geometric source term vector, sgeom.
Furthermore, if we make the substitution R !→ x and ignore
the source term, we recover the x-projection of the continuity
equation in Cartesian coordinates.

4.2. Momentum Equation

For the momentum equation, we begin with the conservative
form of Equation (1b) and use the continuity equation and
divergence-free constraint to eliminate terms and obtain

ρ ∂tv + ρ(v · ∇)v − (B · ∇)B + ∇P ∗ = 0. (25)

By explicitly enforcing ∇ · B = 0 here, we ensure that any
numerical error in the divergence of the magnetic field cannot
influence the evolution of momentum during the reconstruction
step.

Next, we divide through by ρ, substitute P ∗ = P + B2/2,
project in the R-direction, expand the partials, and move the
source terms to the right-hand side to obtain
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Recall that the φ-momentum Equation (13) can be expressed
in angular momentum conserving form and thus avoid a geo-
metric source term. However, we must include the source term
on the right-hand side of Equation (26b) in primitive variable
form in order to preserve the specific structure of the coefficient
matrix, A, on the left-hand side of Equation (21). Finally, the
gravity source terms in the momentum equation are given by
the components of −∇Φ in cylindrical coordinates.

4.3. Energy Equation

We begin with the internal energy equation in coordinate-free
form:

∂tP + v · ∇P + γP ∇ · v = 0. (27)
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is the wave matrix, and s = sMHD+sgrav+sgeom is the source term
vector, a combination of the MHD source terms arising from the
∇ · B constraint, gravity source terms from a static potential, and
the geometric source terms inherent in the cylindrical coordinate
system. As in the Cartesian version of Athena, the form of the
MHD source terms differs slightly in the two-dimensional and
three-dimensional cases (see Section 4.4 below), but the forms
of the gravity and geometric source terms are independent of
dimension.

The hyperbolic wave matrix, A, given in Equation (23), is
linearized by taking it to be a constant function of the primitive
variable state w at time tn. However, it is only indirectly accessed

through the system of eigenvectors and eigenvalues of A (see
Section 6 below). We write the projected equations in cylindrical
coordinates using this specific form in order to make use of the
eigensystem solution previously implemented in Athena.

In the remainder of this section, we derive the cylindrical
coordinate form of the primitive variable system given in
Equation (21), and in the process obtain the geometric source
terms.

4.1. Continuity Equation

Expanding the derivative operators in cylindrical coordinates
in Equation (1a) and projecting in the R-direction, we have for
the continuity equation in primitive variable form:

∂tρ + ρ∂RvR + vR∂Rρ = − 1
R

ρvR. (24)

The left-hand side of Equation (24) contains all the terms
from Equation (21), and the term on the right-hand side is
the first component of the geometric source term vector, sgeom.
Furthermore, if we make the substitution R !→ x and ignore
the source term, we recover the x-projection of the continuity
equation in Cartesian coordinates.

4.2. Momentum Equation

For the momentum equation, we begin with the conservative
form of Equation (1b) and use the continuity equation and
divergence-free constraint to eliminate terms and obtain

ρ ∂tv + ρ(v · ∇)v − (B · ∇)B + ∇P ∗ = 0. (25)

By explicitly enforcing ∇ · B = 0 here, we ensure that any
numerical error in the divergence of the magnetic field cannot
influence the evolution of momentum during the reconstruction
step.

Next, we divide through by ρ, substitute P ∗ = P + B2/2,
project in the R-direction, expand the partials, and move the
source terms to the right-hand side to obtain
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Recall that the φ-momentum Equation (13) can be expressed
in angular momentum conserving form and thus avoid a geo-
metric source term. However, we must include the source term
on the right-hand side of Equation (26b) in primitive variable
form in order to preserve the specific structure of the coefficient
matrix, A, on the left-hand side of Equation (21). Finally, the
gravity source terms in the momentum equation are given by
the components of −∇Φ in cylindrical coordinates.

4.3. Energy Equation

We begin with the internal energy equation in coordinate-free
form:

∂tP + v · ∇P + γP ∇ · v = 0. (27)
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∂tBφ + Bφ∂RvR + vR∂RBφ − BR∂Rvφ

= vφ minmod
[

1
R

∂R(RBR), − 1
R

∂φBφ

]
− 1

R
vφBR, (34b)

∂tBz + Bz∂RvR + vR∂RBz − BR∂Rvz

= vz minmod
[

1
R

∂R(RBR), −∂zBz

]
− 1

R
vRBz. (34c)

Note that for the two-dimensional case with ∂z ≡ 0, the ∇ · B
constraint implies that the arguments of the minmod function
in Equation (34b) are equal and that the minmod function in
Equation (34c) evaluates to zero, so that we recover the two-
dimensional system in Equations (30). The minmod terms on
the right-hand side of Equations (34b) and (34c) are analogous
to the corresponding terms in Cartesian coordinates derived in
GS08, and the remaining terms are geometric.

4.5. Source Terms

In summary, for the primitive variable equations in cylin-
drical coordinates, the MHD source term vectors are given
by Equations (18) and (19) of GS08 via the substitutions
∂xBx $→ R−1∂R(RBR) and ∂yBy $→ R−1∂φBφ , and the geo-
metric source term vector is given by

sgeom ≡





− 1
R

ρvR

1
R

(
v2

φ − 1
ρ

B2
φ

)

− 1
R

(
vφvR − 1

ρ
BφBR

)

0

− 1
R

γPvR

− 1
R

vφBR

− 1
R

vRBz





. (35)

Since the geometric source terms arise directly from the scale
factors in the R-partials, we associate the geometric source term
sgeom exclusively with the R-direction. Note that ‖sgeom‖ → 0
in the limit of vanishing curvature, i.e., as R → ∞.

We emphasize that the geometric source terms in Equa-
tion (35) are used only in obtaining the L/R states, not for
the final FV update. Finally, the gravity source terms for the
L/R states are given by the cylindrical coordinate components
of −∇Φ in the momentum equation, and there is no gravity
source term in the energy equation.

5. SPATIAL RECONSTRUCTION

In Athena, spatial reconstruction is performed in a direction-
ally split fashion using piecewise polynomial approximations
as outlined in Colella & Woodward (1984, hereafter CW), and
Colella (1990, hereafter Colella). Here, we focus on piecewise
linear and quadratic reconstructions, which yield second- and
third-order approximations to smooth profiles, respectively. For
a given coordinate direction, ξ , we form the piecewise linear or
quadratic reconstruction of each primitive variable, a(ξ ), from

the set {ai} of cell-centered volume averages (including ghost-
zones) at time tn, holding indices j and k fixed. In each case,
we require for consistency that the volume average of the re-
construction equal the volume-averaged data in the ith cell, i.e.,

ai = 〈a(ξ )〉i ≡ 1
Vijk

∫

Vijk

a(ξ ) dV . (36)

Instead of defining a(ξ ) in the ith zone explicitly, i.e., for
ξ ∈ [ξi−1/2, ξi+1/2], we find it more convenient to define the
auxiliary parameter s ∈ [0, 1] by

s ≡ ξ − ξi−1/2

∆ξ
, (37)

where ∆ξ ≡ ξi+1/2 − ξi−1/2 is the width of the interval, so that
ξ = ξi−1/2 + s ∆ξ .

We also employ slope-limiting and monotonization proce-
dures to ensure that the resulting reconstructions are total-
variation-diminishing (TVD) while providing somewhat steeper
slopes at discontinuities. Of course, this can destroy the local
formal order of the reconstruction, especially at extrema, but
we pay this price for stability. Note, however, that while mono-
tonicity is a sufficient condition for a reconstruction to be TVD,
it is not always necessary (Leveque 2002). Recently, Colella
& Sekora (2008) have described a slope-limiting method that,
when combined with piecewise quadratic reconstruction, pre-
serves the local order of convergence of the reconstruction at
extrema. This has been implemented for Cartesian coordinates
in the latest versions of Athena, but not for cylindrical coordi-
nates, hence will not be described further here.

For reconstructions in Cartesian coordinates, the procedures
for the y- and z-directions are identical to the procedure for the
x-direction. For the reconstructions in cylindrical coordinates,
the only non-trivial difference from the Cartesian procedure
occurs in the R-direction since the discrete cell-volumes change
with R, but not with φ or z. Thus, we take ξ = x for the Cartesian
cases and ξ = R for the cylindrical cases. The Cartesian
formulae apply, with suitable relabeling of coordinates, for
φ- and z-reconstructions.

5.1. Piecewise Linear (Second-order) Reconstruction

The piecewise linear method (PLM) of reconstruction ap-
proximates each primitive variable by defining in the ith zone,

a(s) ≡ aL,i + s ∆ai ≡ aR,i − (1 − s) ∆ai, (38)

where ∆ai ≡ aR,i − aL,i represents the difference of some
quantity a over the zone, and aL,i and aR,i are the values of a
at the left and right interfaces of the zone, respectively. Thus, to
specify a(s) completely, we need only to define ∆ai and aL,i for
each zone as functions of the volume averages, ai.

5.1.1. PLM in Cartesian Coordinates

From the consistency requirement in Equation (36) with
Cartesian coordinates,

ai = 1
∆x

∫ xi+1/2

xi−1/2

a(x) dx =
∫ 1

0
a(s) ds. (39)

Substituting Equation (38) into Equation (39) and integrating,
we obtain

ai = aL,i +
1
2

∆ai = aR,i − 1
2

∆ai, (40)
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Although no changes are required for the solution of the
Riemann problem at interfaces, several changes are required in
other parts of the Athena algorithm in order to accommodate
non-Cartesian coordinates. In the next sections, we discuss the
geometry-specific details of computing the L/R states (steps
1–2; see Sections 4–6), the FV method (steps 8–9; see Section 7),
and the incorporation of CT into the corner transport upwind
(CTU) method of Colella (1990; see Section 8). Finally, we
will recapitulate the steps of the algorithm in greater detail
and explain the computation of the new timestep (step 11; see
Section 9).

4. THE LINEARIZED EVOLUTION EQUATIONS

In Athena, the left and right (L/R) interface states (the inputs
to the Riemann solver) are computed using a modified form of
the system in Equation (2). The equations, written in primitive
variable form, are projected in a single coordinate direction,
and the resulting system is linearized and then evolved. The
projection in the φ-direction yields a system that can be obtained
from the corresponding Cartesian projection (see GS05, Section
3.1) by making the substitution ∂y !→ R−1∂φ . However, the
projection in the R-direction differs more significantly as a result
of geometric scale factors.

For the projection in the R-direction, we begin with the
primitive variable form of Equation (2), take ∂φ ≡ 0 and ∂z ≡ 0,
expand the remaining R-partials, and move the non-derivative
terms to the right-hand side to obtain the system:

∂tw + A∂Rw = s, (21)

where

w =





ρ
vR

vφ

vz

P
Bφ

Bz





(22)

is the vector of primitive variables, omitting the parallel com-
ponent of the magnetic field,

A =





vR ρ 0 0 0 0 0
0 vR 0 0 1/ρ Bφ/ρ Bz/ρ
0 0 vR 0 0 −BR/ρ 0
0 0 0 vR 0 0 −BR/ρ
0 γP 0 0 vR 0 0
0 Bφ −BR 0 0 vR 0
0 Bz 0 −BR 0 0 vR





(23)

is the wave matrix, and s = sMHD+sgrav+sgeom is the source term
vector, a combination of the MHD source terms arising from the
∇ · B constraint, gravity source terms from a static potential, and
the geometric source terms inherent in the cylindrical coordinate
system. As in the Cartesian version of Athena, the form of the
MHD source terms differs slightly in the two-dimensional and
three-dimensional cases (see Section 4.4 below), but the forms
of the gravity and geometric source terms are independent of
dimension.

The hyperbolic wave matrix, A, given in Equation (23), is
linearized by taking it to be a constant function of the primitive
variable state w at time tn. However, it is only indirectly accessed

through the system of eigenvectors and eigenvalues of A (see
Section 6 below). We write the projected equations in cylindrical
coordinates using this specific form in order to make use of the
eigensystem solution previously implemented in Athena.

In the remainder of this section, we derive the cylindrical
coordinate form of the primitive variable system given in
Equation (21), and in the process obtain the geometric source
terms.

4.1. Continuity Equation

Expanding the derivative operators in cylindrical coordinates
in Equation (1a) and projecting in the R-direction, we have for
the continuity equation in primitive variable form:

∂tρ + ρ∂RvR + vR∂Rρ = − 1
R

ρvR. (24)

The left-hand side of Equation (24) contains all the terms
from Equation (21), and the term on the right-hand side is
the first component of the geometric source term vector, sgeom.
Furthermore, if we make the substitution R !→ x and ignore
the source term, we recover the x-projection of the continuity
equation in Cartesian coordinates.

4.2. Momentum Equation

For the momentum equation, we begin with the conservative
form of Equation (1b) and use the continuity equation and
divergence-free constraint to eliminate terms and obtain

ρ ∂tv + ρ(v · ∇)v − (B · ∇)B + ∇P ∗ = 0. (25)

By explicitly enforcing ∇ · B = 0 here, we ensure that any
numerical error in the divergence of the magnetic field cannot
influence the evolution of momentum during the reconstruction
step.

Next, we divide through by ρ, substitute P ∗ = P + B2/2,
project in the R-direction, expand the partials, and move the
source terms to the right-hand side to obtain

∂t vR + vR∂RvR +
1
ρ

∂RP +
1
ρ

Bφ∂RBφ +
1
ρ

Bz∂RBz

= 1
R

(
v2

φ − 1
ρ

B2
φ

)
, (26a)

∂t vφ + vR∂Rvφ − 1
ρ

BR∂RBφ = − 1
R

(vφvR − 1
ρ

BφBR), (26b)

∂t vz + vR∂Rvz − 1
ρ

BR∂RBz = 0. (26c)

Recall that the φ-momentum Equation (13) can be expressed
in angular momentum conserving form and thus avoid a geo-
metric source term. However, we must include the source term
on the right-hand side of Equation (26b) in primitive variable
form in order to preserve the specific structure of the coefficient
matrix, A, on the left-hand side of Equation (21). Finally, the
gravity source terms in the momentum equation are given by
the components of −∇Φ in cylindrical coordinates.

4.3. Energy Equation

We begin with the internal energy equation in coordinate-free
form:

∂tP + v · ∇P + γP ∇ · v = 0. (27)

	  	  	  for	  the	  primi(ve	  	  
	  	  	  variable	  vector:	  

The	  source	  terms	  needed	  for	  the	  state	  calcula(on	  will	  be	  	  
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Ok,	  let’s	  plug	  this	  in	  the	  state	  calcula(on…	  
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q There	  are	  more	  considera(ons	  and	  details	  to	  take	  
	  	  	  	  	  care	  of	  but	  what	  we	  saw	  was	  mainly	  the	  core	  

q Grep	  is	  your	  friend!	  Use	  it	  to	  find	  variables	  and	  	  
	  	  	  	  	  func(ons	  you	  may	  need	  from	  exis(ng	  implementa(ons.	  	  

	  	  
q OK,	  our	  new	  geometry	  requires	  new	  boundary	  condi(ons!	  
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The	  new	  coordinate	  system	  benefits	  from	  symmetries	  
that	  can	  be	  exploited	  if	  proper	  boundary	  condi(ons	  are	  	  
present.	  	  

!! 	 	Reflective	
!! 	Vn -> -Vn,  Bn -> -Bn	
!! 	Vp ->  Vp,  Bp ->  Bp	
!! 	Vt ->  Vt,  Bt ->  Bt	
!!	
!!   	Axisymmetric	
!! 	Vn -> -Vn,  Bn -> -Bn	
!! 	Vp ->  Vp,  Bp ->  Bp	
!! 	Vt -> -Vt,  Bt -> -Bt	
!!	
!!     Eqtsymmetric	
!! 	Vn -> -Vn,  Bn ->  Bn	
!! 	Vp ->  Vp,  Bp -> -Bp	
!! 	Vt ->  Vt,  Bt -> -Bt	



Example: Axisym., Eqtsym. BC 

An Advanced Simulation & Computing (ASC)   

Academic Strategic Alliances Program (ASAP) Center  

at The University of Chicago

The Center for Astrophysical Thermonuclear Flashes

Anshu Dubey 
June 22, 2009 

FLASH, a Modern, Well Tested, Multiphysics 

Application Code that Scales from Laptops to 

the Largest Supercomputers

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes 

The University of Chicago 

The FLASH Code Contributors 

❑  Current Group: 

❑  Klaus Weide, Chris Daley, Lynn Reid, Paul Rich and Anshu Dubey 

❑  Other Current Contributors: 

❑  Dongwook Lee, Paul Ricker, Dean Townsley, Cal Jordan, John

 Zuhone, Kevin Olson, Marcos Vanella 

❑  Past Major Contributors: 

❑  Katie Antypas, Alan Calder, Jonathan Dursi, Robert Fisher, Timur

 Linde, Tomek Plewa, Katherine Riley, Andrew Siegel, Dan Sheeler,
 Frank Timmes, Natalia Vladimirova, Greg Weirs, Mike Zingale 

 RAL Tutorial 2012, UK         Petros Tzeferacos, 01-06-2012 

The	  new	  coordinate	  system	  benefits	  from	  symmetries	  
that	  can	  be	  exploited	  if	  proper	  boundary	  condi(ons	  are	  	  
present.	  	  

!! 	 	Reflective	
!! 	Vn -> -Vn,  Bn -> -Bn	
!! 	Vp ->  Vp,  Bp ->  Bp	
!! 	Vt ->  Vt,  Bt ->  Bt	
!!	
!!   	Axisymmetric	
!! 	Vn -> -Vn,  Bn -> -Bn	
!! 	Vp ->  Vp,  Bp ->  Bp	
!! 	Vt -> -Vt,  Bt -> -Bt	
!!	
!!     Eqtsymmetric	
!! 	Vn -> -Vn,  Bn ->  Bn	
!! 	Vp ->  Vp,  Bp -> -Bp	
!! 	Vt ->  Vt,  Bt -> -Bt	

8.1. OVERVIEW 95

Figure 8.4: A single 2-D block showing the interior cells (shaded) and the perimeter of guard cells.

8.1 Overview

The Grid unit has four subunits: GridMain is responsible for maintaining the Eulerian grid used to discretize
the spatial dimensions of a simulation; GridParticles manages the data movement related to active, and
Lagrangian tracer particles; GridBoundaryConditions handles the application of boundary conditions at
the physical boundaries of the domain; and GridSolvers provides services for solving some types of partial
di↵erential equations on the grid. In the Eulerian grid, discretization is achieved by dividing the computa-
tional domain into one or more sub-domains or blocks, and using these blocks as the primary computational
entity visible to the physics units. A block contains a number of computational cells (nxb in the x-direction,
nyb in the y-direction, and nzb in the z-direction). A perimeter of guardcells, of width nguard cells in each
coordinate direction, surrounds each block of local data, providing it with data from the neighboring blocks
or with boundary conditions, as shown in Figure 8.4. Since the majority of physics solvers used in FLASH
are explicit, a block with its surrounding guard cells becomes a self-contained computational domain. Thus
the physics units see and operate on only one block at a time, and this abstraction is reflected in their design.

Therefore any mesh package that can present a self contained block as a computational domain to a client
unit can be used with FLASH. However, such interchangeability of grid packages also requires a careful design
of the Grid API to make the underlying management of the discretized grid completely transparent to outside
units. The data structures for physical variables, the spatial coordinates, and the management of the grid
are kept private to the Grid unit, and client units can access them only through accessor functions. This
strict protocol for data management along with the use of blocks as computational entities enables FLASH
to abstract the grid from physics solvers and facilitates the ability of FLASH to use multiple mesh packages.

Any unit in the code can retrieve all or part of a block of data from the Grid unit along with the
coordinates of corresponding cells; it can then use this information for internal computations, and finally
return the modified data to the Grid unit. The Grid unit also manages the parallelization of FLASH. It
consists of a suite of subroutines which handle distribution of work to processors and guard cell filling. When
using an adaptive mesh, the Grid unit is also responsible for refinement/derefinement and conservation of
flux across block boundaries.

FLASH can interchangeably use either a uniform or adaptive grid for most problems. Additionally,
a new feature in FLASH4-beta is an option to replicate the mesh; that is processors are assumed to be
partitioned into groups, each group gets a copy of the entire domain mesh. This feature is useful when it
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The Grid unit has four subunits: GridMain is responsible for maintaining the Eulerian grid used to discretize
the spatial dimensions of a simulation; GridParticles manages the data movement related to active, and
Lagrangian tracer particles; GridBoundaryConditions handles the application of boundary conditions at
the physical boundaries of the domain; and GridSolvers provides services for solving some types of partial
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coordinate direction, surrounds each block of local data, providing it with data from the neighboring blocks
or with boundary conditions, as shown in Figure 8.4. Since the majority of physics solvers used in FLASH
are explicit, a block with its surrounding guard cells becomes a self-contained computational domain. Thus
the physics units see and operate on only one block at a time, and this abstraction is reflected in their design.

Therefore any mesh package that can present a self contained block as a computational domain to a client
unit can be used with FLASH. However, such interchangeability of grid packages also requires a careful design
of the Grid API to make the underlying management of the discretized grid completely transparent to outside
units. The data structures for physical variables, the spatial coordinates, and the management of the grid
are kept private to the Grid unit, and client units can access them only through accessor functions. This
strict protocol for data management along with the use of blocks as computational entities enables FLASH
to abstract the grid from physics solvers and facilitates the ability of FLASH to use multiple mesh packages.

Any unit in the code can retrieve all or part of a block of data from the Grid unit along with the
coordinates of corresponding cells; it can then use this information for internal computations, and finally
return the modified data to the Grid unit. The Grid unit also manages the parallelization of FLASH. It
consists of a suite of subroutines which handle distribution of work to processors and guard cell filling. When
using an adaptive mesh, the Grid unit is also responsible for refinement/derefinement and conservation of
flux across block boundaries.

FLASH can interchangeably use either a uniform or adaptive grid for most problems. Additionally,
a new feature in FLASH4-beta is an option to replicate the mesh; that is processors are assumed to be
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The Grid unit has four subunits: GridMain is responsible for maintaining the Eulerian grid used to discretize
the spatial dimensions of a simulation; GridParticles manages the data movement related to active, and
Lagrangian tracer particles; GridBoundaryConditions handles the application of boundary conditions at
the physical boundaries of the domain; and GridSolvers provides services for solving some types of partial
di↵erential equations on the grid. In the Eulerian grid, discretization is achieved by dividing the computa-
tional domain into one or more sub-domains or blocks, and using these blocks as the primary computational
entity visible to the physics units. A block contains a number of computational cells (nxb in the x-direction,
nyb in the y-direction, and nzb in the z-direction). A perimeter of guardcells, of width nguard cells in each
coordinate direction, surrounds each block of local data, providing it with data from the neighboring blocks
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are explicit, a block with its surrounding guard cells becomes a self-contained computational domain. Thus
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Therefore any mesh package that can present a self contained block as a computational domain to a client
unit can be used with FLASH. However, such interchangeability of grid packages also requires a careful design
of the Grid API to make the underlying management of the discretized grid completely transparent to outside
units. The data structures for physical variables, the spatial coordinates, and the management of the grid
are kept private to the Grid unit, and client units can access them only through accessor functions. This
strict protocol for data management along with the use of blocks as computational entities enables FLASH
to abstract the grid from physics solvers and facilitates the ability of FLASH to use multiple mesh packages.

Any unit in the code can retrieve all or part of a block of data from the Grid unit along with the
coordinates of corresponding cells; it can then use this information for internal computations, and finally
return the modified data to the Grid unit. The Grid unit also manages the parallelization of FLASH. It
consists of a suite of subroutines which handle distribution of work to processors and guard cell filling. When
using an adaptive mesh, the Grid unit is also responsible for refinement/derefinement and conservation of
flux across block boundaries.
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Let’s	  implement	  these	  ideas…	  
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In	  order	  to	  make	  them	  play	  well	  with	  others…	  
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OK,	  now	  we	  have	  to	  test	  our	  implementa(on!	  
	  
	  
Magne(zed	  Noh,	  take	  two:	  Cylindrical	  geometry!	  	  	  
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OK,	  now	  we	  have	  to	  test	  our	  implementa(on	  	  
and	  the	  new	  boundary	  condi(ons!	  
	  
Magne(zed	  Noh,	  take	  two:	  Cylindrical	  geometry!	  	  	  
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Consider"a"pressure@less"gas"which"implodes"""
radially"in"a"cylindrical"chamber,"retaining"the""
symmetry"

"
Hydro,"Noh"JCP"1987"""

"
MHD,"Giuliani"et"al.""
53rd"APS"2011"
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>The	  magne(zed	  Noh	  is	  an	  
inherently	  cylindrical	  setup	  
	  
>Even	  easier	  to	  ini(alize	  than	  
the	  Cartesian	  setup	  we	  saw.	  
	  
	  
>Let’s	  see	  the	  ini(al	  condi(ons	  

Magnetized Noh 
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Analytic solution for the Magnetized Noh 

- There exists a class of self similar solutions that describe  
the expansion of the accretion shock. (Velikovich et al. 2012, 
Phys. Plasmas).  

Giuliani et al,  
53d APS 2011  
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Analytic solution for the Magnetized Noh 

- There exists a class of self similar solutions that describe  
the expansion of the accretion shock. (Velikovich et al. 2012, 
Phys. Plasmas).  
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Velikovich"et"al."2012"discovered""a"class"of"SS"solu3ons"
that"describe"the"expansion"of"the"accre3on"shock.""

 RAL Tutorial 2012, UK         Petros Tzeferacos, 31-05-2012 
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We’ll	  view	  the	  ini(aliza(on	  
	  
Modify	  the	  par	  file	  
	  
Setup	  the	  test	  problem	  
	  
Compile	  
	  
Run	  
	  
Visualize	  the	  data	  &	  compare	  with	  	  
the	  analy(cal	  solu(on	  	  
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Let’s	  take	  a	  look…	  
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Modify	  the	  par	  file:	  use	  your	  preferred	  text	  editor,	  
e.g.	  vim,	  emacs	  and	  so	  on.	  
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We	  will	  set	  the	  refinement	  condi(ons	  and	  comment	  some	  	  
conflic(ng	  arguments.	  	  
Define:	  lrefine_min,	  lrefine_max,	  nrefs,	  refine_var_1	  
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Setup,	  compile,	  and	  run	  the	  problem	  
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That	  was	  it!	  Now	  let’s	  take	  a	  look	  at	  the	  results.	  
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Done! 
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q Follow	  the	  guidelines	  in	  exis(ng	  implementa(ons	  

q Make	  sure	  that	  your	  implementa(on	  does	  not	  conflict	  

	  (#ifdefs	  are	  the	  salt	  and	  pepper	  of	  coding	  life!)	  
	  

q Test	  and	  valida(on	  are	  important,	  have	  more	  than	  one	  
problems	  to	  capture	  your	  bugs!	  
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Thanks	  for	  listening!	  Happy	  coding!	  	  


