

Adding/Modifying FLASH capabilities

(... you can teach an old dog new tricks!)

FLASH center for Computational Science, University of Chicago

RAL Tutorial 2012, UK

General tips

□ Implement a new geometry: Cylindrical MHD

□ New boundary conditions for our new geometry

□ Test and validate with an appropriate problem!

Know your surroundings

General tips

- ✓ Read the manual! (PDF, html, robodocs) explore flash.uchicago.edu
- ✓ Get to know the code's structure before you start implementing.
- ✓ Follow the general guidelines of existing implementations
- ✓ Get in touch with us! Mailing lists.
 Direct contacts are welcome!

Petros Tzeferacos, 01-06-2012

RAL Tutorial 2012, UK

Know what you want to do

<u>General tips</u>

- ✓ A background in numerical algorithms is desirable but not strictly necessary (depends...).
- ✓ Search the literature for existing implementations, JCP, ApJs, J. Comput. Phys Com. etc
- ✓ See if what you need is already there in some from!

Add a new geometry!

Literature examples

MHD equations

What needs to change& how to go about and do it

RAL Tutorial 2012, UK

Guidelines: unsplit MHD in FLASH, a modified CTU scheme

FLASH User's Guide

Version 4.0-beta February 2012 (last updated February 1, 2012)

A Solution Accurate, Efficient and Stable Unsplit Staggered Mesh Scheme for Three Dimensional Magnetohydrodynamics

Dongwook Lee

The Flash Center for Computational Science, University of Chicago, 5747 S. Ellis, Chicago, IL 60637

Abstract

In this paper, we extend the unsplit staggered mesh scheme (USM) for 2D magnetohydrodynamics (MHD) [D. Lee, A. Deane, An Unsplit Staggered Mesh Scheme for Multidimensional Magnetohydrodynamics, J. Comput. Phys. 228 (2009) 952–975] to a full 3D MHD scheme. The 3D scheme uses the same set of fundamental algorithmic ideas that have been developed in the 2D USM scheme. The scheme is a finite-volume Godunov method consisting of (1) a constrained transport (CT) method for preserving the solenoidal magnetic field evolution on a staggered grid, and (2) an efficient and accurate single-step, directionally unsplit multidimensional data reconstruction-evolution algorithm,

ter for Computational Science niversity of Chicago

RAL Tutorial 2012, UK

Guidelines: Mignone et al. 2007 and Skinner & Ostriker 2010, along with the implementation found in the PLUTO code.

The ideal MHD system of equations can be written in compact form

$$\frac{\partial U}{\partial t} = -\nabla \cdot \mathbf{F} (U) + \mathbf{S}(U)$$
$$U = \begin{pmatrix} \rho \\ m \\ B \\ E \end{pmatrix}, \quad \mathbf{F} (U) = \begin{bmatrix} \rho v \\ mv - BB + p_t \mathbf{I} \\ vB - Bv \\ (E + p_t)v - (v \cdot B)B \end{bmatrix}^T$$

where the source terms **S**(**U**) can account for geometrical corrections.

RAL Tutorial 2012, UK

$$\frac{\partial \vec{U}}{\partial t} + \nabla \cdot \vec{F}(\vec{U}) = 0$$

Petros Tzeferacos, 01-06-2012

 $U + \Delta U$

Petros Tzeferacos, 01-06-2012

RAL Tutorial 2012, UK

For the sake of exposition let's **discretize** in 1D.

$$\bar{u}_i^{n+1} = \bar{u}_i^n - \frac{\Delta t}{\Delta x} \left(\tilde{F}_{i+\frac{1}{2}} - \tilde{F}_{i-\frac{1}{2}} \right)$$

An iterative method! The average quantities will now be

All of this is exact! No approximation yet.

RAL Tutorial 2012, UK

For the sake of exposition let's discretize in 1D

$$\bar{u}_i^{n+1} = \bar{u}_i^n - \frac{\Delta t}{\Delta x} \left(\tilde{F}_{i+\frac{1}{2}} - \tilde{F}_{i-\frac{1}{2}} \right)$$

An iterative method! The average quantities will now be

Petros Tzeferacos, 01-06-2012

RAL Tutorial 2012, UK

The ideal MHD system of equations can be written in compact form

$$\frac{\partial U}{\partial t} = -\nabla \cdot \mathbf{F} (U) + \mathbf{S}(U)$$
$$U = \begin{pmatrix} \rho \\ m \\ B \\ E \end{pmatrix}, \quad \mathbf{F} (U) = \begin{bmatrix} \rho v \\ mv - BB + p_t \mathbf{I} \\ vB - Bv \\ (E + p_t)v - (v \cdot B)B \end{bmatrix}^T$$

where the source terms **S**(**U**) can account for geometrical corrections.

RAL Tutorial 2012, UK

Simple scalars such as density and energy will give

$$\frac{\partial q}{\partial t} + \nabla \cdot \mathbf{F} = 0 \implies \frac{\partial q}{\partial t} + \frac{1}{r} \frac{\partial (rF_r)}{\partial r} + \frac{1}{r} \frac{\partial F_{\phi}}{\partial \phi} + \frac{\partial F_z}{\partial z} = 0$$

whereas momentum will write

$$\frac{\partial \boldsymbol{m}}{\partial t} + \nabla \cdot \boldsymbol{M} = 0 \Longrightarrow$$

$$\begin{pmatrix}
\frac{\partial m_r}{\partial t} + \frac{1}{r} \frac{\partial (rM_{rr})}{\partial r} + \frac{1}{r} \frac{\partial M_{\phi r}}{\partial \phi} + \frac{\partial M_{zr}}{\partial z} = \frac{M_{\phi \phi}}{r} \\
\frac{\partial m_{\phi}}{\partial t} + \frac{1}{r} \frac{\partial (rM_{r\phi})}{\partial r} + \frac{1}{r} \frac{\partial M_{\phi \phi}}{\partial \phi} + \frac{\partial M_{z\phi}}{\partial z} = -\frac{M_{\phi r}}{r} \\
\frac{\partial m_z}{\partial t} + \frac{1}{r} \frac{\partial (rM_{rz})}{\partial r} + \frac{1}{r} \frac{\partial M_{\phi z}}{\partial \phi} + \frac{\partial M_{zz}}{\partial z} = 0
\end{pmatrix}$$

RAL Tutorial 2012, UK

Example: RZ in unsplit MHD

Similarly the induction equation will be

$$\frac{\partial \boldsymbol{B}}{\partial t} + \nabla \cdot \boldsymbol{\Omega} = 0 \implies$$

$$\frac{\partial B_r}{\partial t} + \frac{1}{r} \frac{\partial \Omega_{\phi r}}{\partial \phi} + \frac{\partial \Omega_{zr}}{\partial z} = 0$$

$$\frac{\partial B_{\phi}}{\partial t} + \frac{1}{r} \frac{\partial (r\Omega_{r\phi})}{\partial r} + \frac{\partial \Omega_{z\phi}}{\partial z} = -\frac{\Omega_{\phi r}}{r}$$

$$\frac{\partial B_z}{\partial t} + \frac{1}{r} \frac{\partial (r\Omega_{rz})}{\partial r} + \frac{1}{r} \frac{\partial \Omega_{\phi z}}{\partial \phi} = 0$$

What we end up with is three new source terms

as well as the need of redefining volumes and areas.

x^1	x	r
<i>x</i> ²	У	ϕ
<i>x</i> ³	Z	Z
$\Delta \mathcal{V}^1$	Δx	$\Delta^2 r$
$\Delta \mathcal{V}^2$	Δy	$r\Delta\phi$
$\Delta \mathcal{V}^3$	Δz	Δz
A^{1}_{+}	1	r_+
A^{2}_{\pm}	1	1
$A^{\dot{3}}_{\perp}$	1	1

Petros Tzeferacos, 01-06-2012

RAL Tutorial 2012, UK

Example: RZ in unsplit MHD

Ok, let's plug this in the variable update...

RAL Tutorial 2012, UK

RAL Tutorial 2012, UK

At each interface i+1/2 we have a uL = $P_i(x_{i+1/2})$ and a uR = $P_{i+1}(x_{i+1/2})$

RAL Tutorial 2012, UK

RAL Tutorial 2012, UK

The flux computation $F_{i+\frac{1}{2}}$ requires the solution of a Riemann problem at the cell interface. It involves the temporal evolution of a discontinuity.

RAL Tutorial 2012, UK

Having all the needed terms we can now advance our solution in time and form new averages.

$$\bar{u}_i^{n+1} = \bar{u}_i^n - \frac{\Delta t}{\Delta x} \left(\tilde{F}_{i+\frac{1}{2}} - \tilde{F}_{i-\frac{1}{2}} \right)$$

This technique is called R-S-A

- ✓ Reconstruct (obtain uL, uR)
- ✓ Solve (the Riemann problem)
- \checkmark Average (evolve in time and form the new averages)

Example: RZ in unsplit MHD

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{F}}{\partial x} + \frac{\partial \mathbf{G}}{\partial y} + \frac{\partial \mathbf{H}}{\partial z} = 0$$

Compact hyperbolic form, CTU formulation

$$\begin{split} \tilde{\mathbf{F}}_{i-1/2,j,k}^{*,n+1/2} &= \operatorname{RP}\left(\mathbf{V}_{i-1,j,k,E}^{n+1/2}, \mathbf{V}_{i,j,k,W}^{n+1/2}\right), \quad \tilde{\mathbf{F}}_{i+1/2,j,k}^{*,n+1/2} = \operatorname{RP}\left(\mathbf{V}_{i,j,k,E}^{n+1/2}, \mathbf{V}_{i+1,j,k,W}^{n+1/2}\right), \\ \tilde{\mathbf{G}}_{i,j-1/2,k}^{*,n+1/2} &= \operatorname{RP}\left(\mathbf{V}_{i,j-1,k,N}^{n+1/2}, \mathbf{V}_{i,j,k,S}^{n+1/2}\right), \quad \tilde{\mathbf{G}}_{i,j+1/2,k}^{*,n+1/2} = \operatorname{RP}\left(\mathbf{V}_{i,j,k,N}^{n+1/2}, \mathbf{V}_{i,j+1,k,S}^{n+1/2}\right), \\ \tilde{\mathbf{H}}_{i,j,k-1/2}^{*,n+1/2} &= \operatorname{RP}\left(\mathbf{V}_{i,j,k-1,T}^{n+1/2}, \mathbf{V}_{i,j,k,B}^{n+1/2}\right), \quad \tilde{\mathbf{H}}_{i,j,k+1/2}^{*,n+1/2} = \operatorname{RP}\left(\mathbf{V}_{i,j,k,T}^{n+1/2}, \mathbf{V}_{i,j,k+1,B}^{n+1/2}\right). \end{split}$$

RAL Tutorial 2012, UK

Where the notation for the discretization is given by

2		$\mathbf{V}_{i,j+1,S}^{n+1/2}$ $\mathbf{V}_{i,j,N}^{n+1/2}$		
$\mathbf{V}_{i-1,j,E}^{n+1/2}$	$\mathbf{V}_{i,j,W}^{n+1/2}$	*(i,j)	$\mathbf{V}_{i,j,E}^{n+1/2}$	$\mathbf{V}_{i+1,j,W}^{n+1/2}$
		$\mathbf{V}_{i,j,S}^{n+1/2}$ $\mathbf{V}_{i,j-1,N}^{n+1/2}$		

Petros Tzeferacos, 01-06-2012

RAL Tutorial 2012, UK

	Compact, linearized primitive form:																
							_			$\int v$	0	ρ	0	0_{R}	0	0	0
	X	7 — ((0μ)	12 142	RR	\mathbf{R} \mathbf{n}	T			0	V	0	0	$-\frac{D_y}{\rho}$	$-\frac{D_{\chi}}{\rho}$	0	0
			(p, u,	<i>v</i> , <i>v</i> ,	$\boldsymbol{D}_{\boldsymbol{X}}, \boldsymbol{D}_{\boldsymbol{Y}}, \boldsymbol{D}_{\boldsymbol{Y}}$	$\mathbf{J}_{z}, \mathbf{P}$				0	0	V	0	$\frac{B_x}{Q}$	$-\frac{\dot{B}_y}{2}$	$\frac{B_z}{Q}$	$\frac{1}{2}$
	∂V	T	∂	V	$\partial \mathbf{V}$		$\partial \mathbf{V}$			0	0	0	v	р 0	$\underline{B_z}^{p}$	$\underline{B_y}$	0
	_ <u></u>]≁	- +	$\mathbf{A}_x - \mathbf{A}_x$	$\frac{-}{r} + I$	A_y	$+\mathbf{A}_{z}$	=	= 0.	$\mathbf{A}_y \equiv$	0	$-B_{\rm v}$	B_r	0	v	$-\mu^{\rho}$	$0^{ ho}$	0
	01		0.	X	бу		02			0	0	0	0	0	0	0	0
										0	0	B_z	$-B_y$	0	-w	V	0
										$\setminus 0$	0	γp	0	0	$-k\mathbf{u} \cdot \mathbf{F}$	6 0	v /
	1 11	0	0	0	0	0	0	0)		(w)	0	0	ρ	0	0	0	0 \
	$\begin{bmatrix} a \\ 0 \end{bmatrix}$	р И	0	0	$\underline{B_x}$	$\overline{B_y}$	$\underline{B_z}$	$\frac{1}{1}$		0	W	0	0	$-\frac{B_z}{\Omega}$	0	$-\frac{B_x}{\Omega}$	0
		0	1/	0	$\underline{B_y}^{\rho}$	$\underline{P}_{\underline{B}_{x}}$	ρ Ο	ρ 0		0	0	W	0	0	$-\frac{B_z}{2}$	$-\frac{B_y}{2}$	0
		0	0	11	$\begin{array}{c} \rho \\ \underline{B_z} \end{array}$	ρ Ο	$\underline{B_x}$		•	0	0	0	w	B_x	B_y	$\underline{B_z}^{P}$	<u>1</u>
$\mathbf{A}_{x} =$		0	0	и О	$-\frac{\rho}{\rho}$	0	$-\frac{\rho}{\rho}$	0,	$\mathbf{A}_{z} =$		_R	0	R	ρ w	ρ Ο	ρ —11	ρ Ο
		D	D	0	0	0	0				D_z	D	D_{χ}	0	0	u N	
		Dy D	$-D_{\chi}$		- <i>v</i>	u O	U				0	$-D_{z}$	D_y	0	W	-v	
		B_{z}	0	$-B_{\chi}$	-w	0	U	U J			0	0	0	0	0	0	0
	$\setminus 0$	γp	0	0	$-k\mathbf{u} \cdot \mathbf{B}$	0	0	и /		$\setminus 0$	0	0	γp	0	0	$-k\mathbf{u} \cdot \mathbf{B}$	w/

RAL Tutorial 2012, UK

Characteristic tracing on both normal predictor and transverse corrector $\mathbf{V}_{i,j,k,E,W}^{n+1/2} = \mathbf{V}_{i,j,k}^{n} \underbrace{\frac{1}{2} [\pm \mathbf{I} - \frac{\Delta t}{\Delta x} \mathbf{A}_{x}(\mathbf{V}_{i,j,k}^{n})] \Delta_{x,i,j,k}^{n} + \frac{\Delta t}{2\Delta y} \mathbf{A}_{y}(\mathbf{V}_{i,j,k}^{n}) \Delta_{y,i,j,k}^{n} - \frac{\Delta t}{2\Delta z} \mathbf{A}_{z}(\mathbf{V}_{i,j,k}^{n}) \Delta_{z,i,j,k}^{n}, \mathbf{V}_{i,j,k}^{n+1/2} + \frac{\Delta t}{2\Delta x} \mathbf{A}_{x}(\mathbf{V}_{i,j,k}^{n}) \Delta_{x,i,j,k}^{n} + \frac{1}{2} [\pm \mathbf{I} - \frac{\Delta t}{\Delta y} \mathbf{A}_{y}(\mathbf{V}_{i,j,k}^{n})] \Delta_{y,i,j,k}^{n} - \frac{\Delta t}{2\Delta z} \mathbf{A}_{z}(\mathbf{V}_{i,j,k}^{n}) \Delta_{z,i,j,k}^{n}, \mathbf{V}_{i,j,k}^{n+1/2} = \mathbf{V}_{i,j,k}^{n} - \frac{\Delta t}{2\Delta x} \mathbf{A}_{x}(\mathbf{V}_{i,j,k}^{n}) \Delta_{x,i,j,k}^{n} - \frac{\Delta t}{2\Delta y} \mathbf{A}_{y}(\mathbf{V}_{i,j,k}^{n}) \Delta_{y,i,j,k}^{n} + \frac{1}{2} [\pm \mathbf{I} - \frac{\Delta t}{\Delta z} \mathbf{A}_{z}(\mathbf{V}_{i,j,k}^{n})] \Delta_{z,i,j,k}^{n}, \mathbf{V}_{i,j,k}^{n+1/2} = \mathbf{V}_{i,j,k}^{n} - \frac{\Delta t}{2\Delta x} \mathbf{A}_{x}(\mathbf{V}_{i,j,k}^{n}) \Delta_{x,i,j,k}^{n} - \frac{\Delta t}{2\Delta y} \mathbf{A}_{y}(\mathbf{V}_{i,j,k}^{n}) \Delta_{y,i,j,k}^{n} + \frac{1}{2} [\pm \mathbf{I} - \frac{\Delta t}{\Delta z} \mathbf{A}_{z}(\mathbf{V}_{i,j,k}^{n})] \Delta_{z,i,j,k}^{n}, \mathbf{V}_{i,j,k}^{n+1/2} = \mathbf{V}_{i,j,k}^{n} - \frac{\Delta t}{2\Delta x} \mathbf{A}_{x}(\mathbf{V}_{i,j,k}^{n}) \Delta_{x,i,j,k}^{n} - \frac{\Delta t}{2\Delta y} \mathbf{A}_{y}(\mathbf{V}_{i,j,k}^{n}) \Delta_{y,i,j,k}^{n} + \frac{1}{2} [\pm \mathbf{I} - \frac{\Delta t}{\Delta z} \mathbf{A}_{z}(\mathbf{V}_{i,j,k}^{n})] \Delta_{z,i,j,k}^{n}, \mathbf{V}_{i,j,k}^{n} - \frac{\Delta t}{2\Delta x} \mathbf{A}_{z}(\mathbf{V}_{i,j,k}^{n}) \Delta_{z,i,j,k}^{n}, \mathbf{V}_{i,j,k}^{n} - \frac{\Delta t}{2\Delta x} \mathbf{A}_{z}(\mathbf{V}_{i,j,k}^{n})] \Delta_{z,i,j,k}^{n}, \mathbf{V}_{i,j,k}^{n} - \frac{\Delta t}{2\Delta x} \mathbf{A}_{z}(\mathbf{V}_{i,j,k}^{n}) \Delta_{z,i,j,k}^{n}, \mathbf{V}_{i,j,k}^{n} - \frac{\Delta t}{2\Delta x} \mathbf{A}_{z}(\mathbf{V}_{i,j,k}^{n}) \Delta_{z,i,j,k}^{n}, \mathbf{V}_{i,j,k}^{n} - \frac{\Delta t}{\Delta x} \mathbf{A}_{z}(\mathbf{V}_{i,j,k}^{n})] \Delta_{z,i,j,k}^{n}, \mathbf{V}_{i,j,k}^{n} - \frac{\Delta t}{\Delta x} \mathbf{A}_{z}(\mathbf{V}_{i,j,k}^{n}) \Delta_{z,i$

RAL Tutorial 2012, UK

In cylindrical coordinates the primitive formulation does not come without source terms if we keep the same formalism by substituting x with R... For example, the continuity equation can be written as

$$\partial_t \rho + \rho \partial_R v_R + v_R \partial_R \rho = -\frac{1}{R} \rho v_R$$

whereas momenta will be

$$\begin{split} \partial_t v_R + v_R \partial_R v_R + \frac{1}{\rho} \partial_R P + \frac{1}{\rho} B_{\phi} \partial_R B_{\phi} + \frac{1}{\rho} B_z \partial_R B_z &= \frac{1}{R} \left(v_{\phi}^2 - \frac{1}{\rho} B_{\phi}^2 \right) \\ \partial_t v_{\phi} + v_R \partial_R v_{\phi} - \frac{1}{\rho} B_R \partial_R B_{\phi} &= -\frac{1}{R} (v_{\phi} v_R - \frac{1}{\rho} B_{\phi} B_R), \\ \partial_t v_z + v_R \partial_R v_z - \frac{1}{\rho} B_R \partial_R B_z &= 0. \end{split}$$

RAL Tutorial 2012, UK

The source terms needed for the state calculation will be

$$\boldsymbol{s}_{\text{geom}} \equiv \begin{bmatrix} -\frac{1}{R}\rho v_{R} \\ \frac{1}{R} \left(v_{\phi}^{2} - \frac{1}{\rho} B_{\phi}^{2} \right) \\ -\frac{1}{R} \left(v_{\phi} v_{R} - \frac{1}{\rho} B_{\phi} B_{R} \right) \\ 0 \\ -\frac{1}{R} \gamma P v_{R} \\ -\frac{1}{R} v_{\phi} B_{R} \\ -\frac{1}{R} v_{R} B_{z} \end{bmatrix}$$

for the primitive variable vector:

$$egin{array}{c}
ho \ v_R \ v_\phi \ v_z \ P \ B_\phi \ B_z \end{bmatrix}$$

RAL Tutorial 2012, UK

Example: RZ in unsplit MHD

Ok, let's plug this in the state calculation...

RAL Tutorial 2012, UK

- There are more considerations and details to take care of but what we saw was mainly the core
- Grep is your friend! Use it to find variables and functions you may need from existing implementations.
- □ OK, our new geometry requires new boundary conditions!

Example: Axisym., Eqtsym. BC

The new coordinate system benefits from symmetries ^L that can be exploited if proper boundary conditions are present.

!!	Re	flect	ive	
!!	Vn ->	-Vn,	Bn ->	-Bn
!!	Vp ->	Vp,	Bp ->	Bp
!!	Vt −>	Vt,	Bt ->	Bt
!!				
!!	Ax	isymm	etric	
!!	Vn ->	-Vn,	Bn ->	-Bn
!!	Vp ->	Vp,	Bp ->	Bp
!!	Vt ->	-Vt,	Bt ->	-Bt
!!		-		
!!	Eqt	symme	etric	
!!	Vn ->	-Vn,	Bn −>	Bn
!!	Vp ->	Vp,	Bp ->	-Bp
!!	Vt ->	Vt,	Bt ->	-Bt

RAL Tutorial 2012, UK

The new coordinate system benefits from symmetries that can be exploited if proper boundary conditions are present.

!!	Reflect	ive
!!	Vn -> -Vn,	Bn -> -Bn
!!	Vp -> Vp,	Bp -> Bp
!!	Vt -> Vt,	Bt -> Bt
!!		
!!	Axisymm	etric
!!	Vn -> -Vn,	Bn -> -Bn
!!	Vp -> Vp,	Bp -> Bp
!!	$Vt \rightarrow -Vt$,	Bt -> -Bt
!!		
!!	Eqtsymme	etric
!!	Vn -> -Vn,	Bn -> Bn
!!	$Vp \rightarrow Vp$,	Bp -> -Bp
!!	Vt -> Vt,	Bt -> -Bt

RAL Tutorial 2012, UK

The new coordinate system benefits from symmetries that can be exploited if proper boundary conditions are present.

!!	Reflect	ive
!!	Vn -> -Vn,	Bn -> -Bn
!!	Vp -> Vp,	Bp -> Bp
!!	Vt -> Vt,	Bt -> Bt
!!		
!!	Axisymm	etric
!!	Vn -> -Vn,	Bn -> -Bn
!!	Vp -> Vp,	Bp -> Bp
!!	$Vt \rightarrow -Vt$,	Bt -> -Bt
!!		
!!	Eqtsymme	etric
!!	Vn -> -Vn,	Bn -> Bn
!!	$Vp \rightarrow Vp$,	Bp -> -Bp
!!	Vt -> Vt,	Bt -> -Bt

۱œ				R	ef	le	cti	0	n:					
nguar		sca	ala	irs	8	kt	ra	ns	sv	er	se		+	_
Î			1	2	3	4							_	
цур													-	
ļ			1	2	3	4								
nguard			n	or	m	al	(\	/a	r_	X)				
	-a nguc	ard	-0		nxb				-0-	nguard			-	

RAL Tutorial 2012, UK

The new coordinate system benefits from symmetries that can be exploited if proper boundary conditions are present.

!!	Reflect	ive
!!	Vn -> -Vn,	Bn -> -Bn
!!	Vp -> Vp,	Bp −> Bp
!!	Vt -> Vt,	Bt -> Bt
!!		
!!	Axisymm	etric
!!	Vn -> -Vn,	Bn -> -Bn
!!	Vp -> Vp,	Bp −> Bp
!!	$Vt \rightarrow -Vt$,	Bt -> -Bt
!!		
!!	Eqtsymme	etric
!!	Vn -> -Vn,	Bn -> B <u>n</u>
!!	Vp -> Vp,	Bp -> -Bp
!!	Vt -> Vt,	Bt -> -Bt

ם פ						R	ef	e	cti	0	n:					
plgu			S	ca	la	rs	8	kt	ra	ns	sv	er	se		-	
Å	4	3	2	1	1	2	3	4								
цур																
ļ	-4	-3	-2	-1	1	2	3	4								
nguard					n	or	m	al	(\	/a	r_	x)				
	nguard					nxb						-0-	nguard			-0-

RAL Tutorial 2012, UK

Example: Axisym., Eqtsym. BC

Let's implement these ideas...

● ● ●											
bash	bash	bash	bash	bash	bash bash	bash	. bash	flassh4	bash)		
etros@Pe	tross-MacE	Book-Prol ·	~/Work/FLAS	H4/flash4							
less /lls	ers/netros	./Work/FLA	SH4/flash4/	source/Grid	/GridBoundaryCon	ditions/Grid	l hcAnnlyTo	Region F90			
	01 0, po ci oc			50ai eo, ai ta	, ar taboanaar yeon			.ogronar so			

RAL Tutorial 2012, UK

Example: Axisym., Eqtsym. BC

In order to make them play well with others...

● ● ●											
bash											
[petros@Petross-MacBook-Pro] ~/Work/FLASH4/flash4/source											
> less /Users/petros/Work/FLASH4/flash4/source/RuntimeParameters/RuntimeParametersMain/RuntimeParameters_mapStrToInt.F90											
[petros@Petross-MacBook-Pro] ~/Work/FLASH4/flash4/source											
> less /Users/petros/Work/FLASH4/flash4/source/Simulation/constants.h											
[petros@Petross-MacBook-Pro] ~/Work/FLASH4/flash4/source											
>											

OK, now we have to test our implementation!

Magnetized Noh, take two: Cylindrical geometry!

OK, now we have to test our implementation and the new boundary conditions!

Magnetized Noh, take two: Cylindrical geometry!

RAL Tutorial 2012, UK

>The magnetized Noh is an inherently cylindrical setup

>Even easier to initialize than the Cartesian setup we saw.

>Let's see the initial conditions

We'll view the initialization

Modify the par file

Setup the test problem

Compile

Run

Visualize the data & compare with the analytical solution

Hands on

000	🚞 object — bash — 126×12			R M
bash bash bash bash bash	bash bash bash	bash flasash4	bash bash	bash 🔉
[petros@Petross-MacBook-Pro] ~/Work/FLASH4/flash	4/object			_
> less /Users/petros/Work/FLASH4/flash4/source/S	imulation/SimulationMain/mag	netoHD/NohCylindrica	l/Simulation_initB	lock.F90
				_

Let's take a look...

RAL Tutorial 2012, UK

00	📄 object — bash — 126×12		R _M
bash bash bash bash	bash bash bash	bash flasash4 bash bash	bash 🔉
<pre>[petros@Petross-MacBook-Pro] ~/Work/FLASH4/flash4/</pre>	object		
<pre>> vi /Users/petros/Work/FLASH4/flash4/source/Simule</pre>	ation/SimulationMain/magneto	HD/NohCylindrical/flash.par	

Modify the par file: use your preferred text editor, e.g. vim, emacs and so on.

ASK FOR HELP IF YOU SHOULD HAVE ANY TROUBLE

00					0	bject — bash —	126×12						R <u>M</u>
bash	bash	bash	bash	bash	bash	bash	bash	bash	flasash4	bash	bash	bash	>>>
[petros@Pe	tross-MacB	ook-Pro] ~	-/Work/FL#	\SH4/flash	4/object								
∣> vi ∕User	s∕petros/₩	ork/FLASH4	l/flash4/s	source/Sim	ulation/S	imulation	Main∕magnet	:oHD/NohCy	/lindrical/	flash.par			
							<u> </u>	-					
													_

We will set the refinement conditions and comment some conflicting arguments. Define: lrefine_min, lrefine_max, nrefs, refine_var_1

ASK FOR HELP IF YOU SHOULD HAVE ANY TROUBLE

000	🚞 flash4 — bash —	126×12					
bash bash bash bash bash	bash bash	bash	bash	flasash4	bash	bash	bash
[petros@Petross-MacBook-Pro] ~/Work/FLASH4/flash	14						
> ./setup -auto magnetoHD/NohCylindrical +usm -2	d +pm4dev +cylindr?	ical -site=H	orassica	asci.uchica	igo.edu		
00	📄 object — bash —	126×12					
bash bash bash bash	bash bash	bash	bash	flasash4	bash	bash	bash
[petros@Petross-MacBook-Pro] ~/Work/FLASH4/flash	14						
> cd object							
[petros@Petross-MacBook-Pro] ~/Work/FLASH4/flash	4/object						
> make −j4							
00	📄 object — bash —	126×12					
bash bash bash bash bash	bash bash	bash	bash	flasash4	bash	bash	bash
[petros@Petross-MacBook-Pro] ~/Work/FLASH4/flash	4/object						
> mpirun -np 4 ./flash4	3						
Sotup compile and	d run thay	arabla	m				
Setup, complie, and	a run une p	JIODIE					

ASK FOR HELP IF YOU SHOULD HAVE ANY TROUBLE

RAL Tutorial 2012, UK

That was it! Now let's take a look at the results.

RAL Tutorial 2012, UK

RAL Tutorial 2012, UK

□ Follow the guidelines in existing implementations

Done!

 Make sure that your implementation does not conflict (#ifdefs are the salt and pepper of coding life!)

Test and validation are important, have more than one problems to capture your bugs!

RAL Tutorial 2012, UK