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● Laser ray tracing

● Radiation diffusion

● Example problem: The LaserSlab simulation

‒ The setup call

‒ The runtime parameter file

‒ Running the simulation

‒ Visualizing the laser rays

FLASH contains code for modeling laser energy 
deposition and radiation diffusion

Summary
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Many rays are launched on each time step and deposit 
energy within the domain as they travel

● The user's guide (section 
25.7.5) describes the 
LaserSlab simulation which 
models a laser illuminating a 
slab

● The description is very 
detailed and focuses on how 
to define the laser geometry 
and the radiation options

● Please take a look at this 
section



Flash Center for Computational Science
University of Chicago

4 of 31

Many rays are launched on each time step and deposit 
energy within the domain as they travel
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FLASH uses ray-tracing in the geometric optics 
approximation to model laser energy deposition

● In this approximation, the equation of motion of a ray is given 
by:

● The index of refraction is:

● And...
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FLASH uses the Kaiser1 algorithm which assumes that 
the electron number density is linear within a 
computation cell 

● The electron number density is given by:

● The ray equation of motion becomes:

● This shows that when n
e
 is linear within a cell, the rays follow a parabolic 

trajectory through the cell

● The electron number density will not be continuous in general. The 
Kaiser algorithm fixes this by applying Snell's law at the cell interfaces

‒ Thus, rays can reflect or refract off of cell interfaces

1Kaiser, Phys Rev E, 61, 895 (2000)
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Rays follow a parabolic trajectory and turn around as 
they approach the critical surface

Image Source:
Kaiser, Phys Rev E, 61, 895 (2000)
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Over a time-step, the laser energy is exponentially 
reduced with the inverse-Bremsstrahlung rate

● As a ray travels through a cell it's energy (or power) is reduced:

● The energy loss late is:

You can modify this by customizing the file 
ed_inverseBremsstrahlungRate.F90
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Currently, the ray trace works in several geometries and 
additional capabilities are being continuously added

● The supported geometries are: 

‒ “2D-in-2D” for X-Y and R-z ← this is the most stress-tested

‒ 3D X-Y-Z ← implemented, but not well tested

● 2D-in-2D means that the simulation is 2D and the ray trace is also done 
in 2D

● Using the 2D-in-2D ray trace with beams entering the domain obliquely 
can lead to non-physical heating near the z-axis in R-z simulations

● It can also be difficult to correctly define the beam geometry

● We are working on implementing “3D-in-2D” geometry where the ray-
trace is done in 3D but the mesh is 2D

‒ This should be working in the next month

● We are also working to improve the accuracy of the ray trace algorithm 
itself
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FLASH uses flux-limited multigroup diffusion to model  
radiation

● The total radiation internal energy is given by:

● The Hydro unit solves the advection/work parts of this equation. 
So we are left with:

● To compute the flux, absorption, and emission, we use flux 
limited multigroup diffusion

● Let the frequency space be divided into N
g
 groups and u

g
 be the 

energy density in each group
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The total absorption, emission, flux, energy density is 
just a sum over each group

● The energy density within a group obeys:

where:

● The group radiation energy flux is approximated as:

● And the absorption rate is determined by the absorption opacity 
within a particular group:
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The total absorption, emission, flux, energy density is 
just a sum over each group

● Usually, σ
t 
is the Rosseland averaged absorption opacity and σ

a
 

is the Planck averaged absorption opacity

● The plasma is assumed to emit radiation in a blackbody defined 
by a local radiation temperature with an emission opacity 
varying from group to group:

● Using these definitions, we have:

This diffusion equation is solved (semi) implicitly on each time 
step using the HYPRE library within the RadTrans/MGD unit
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The electron internal energy must be updated to 
account for the emission/absorption

● Emission/absorption represents an exchange of energy between 
the electrons and ions

● The change in this energy is given by:

● As you can see, the emission term is evaluated at time level n

● While the solution of the diffusion equation stable for large time 
steps, the coupling between the electrons and radiation field can 
become unstable

● This is especially true when the radiation energy is large and the 
opacity and opacity are large
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General Purpose Implicit Diffusion Solver

● Electron thermal conduction and radiation diffusion require implicit 
solutions of diffusion equations

● FLASH has a general purpose implicit diffusion solver in the Diffuse unit 
that can be used to “diffuse” any cell centered variable over a time step. 
The subroutine is:

Diffuse_solveScalar

● This subroutine can be used to solve an equation of the form:

● You can easily call this subroutine to solve other diffusion equations. For 
example for ion conduction, charged particle diffusion, resistivity, etc...

Aside
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Let's go through the LaserSlab simulation and see 
how to put together a laser driven simulation which 
uses all of the HEDP physics in FLASH

● The setup line:

● The species setup variable tells FLASH that there are going to 
be two separate materials in this simulation called targ (target 
material) and cham (chamber material)

● When this is specified many runtime parameters are 
automatically created which let you specify the properties of 
these materials at runtime in the runtime parameters file

-auto LaserSlab -2d +cylindrical +pm4dev 

-nxb=16 -nyb=16 +hdf5typeio 

species=cham,targ +mtmmmt +laser +uhd3t 

+mgd mgd_meshgroups=6 -parfile=example.par
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Let's go through the LaserSlab simulation and see 
how to put together a laser driven simulation which 
uses all of the HEDP physics in FLASH

● The setup line:

● This option turns on a special IO (developed by Chris Daley) unit 
that is really good:

‒ Plotting is easier (trust me)

‒ Allows you to have processes with no blocks

● I now use +hdf5typeio for all simulations

-auto LaserSlab -2d +cylindrical +pm4dev 

-nxb=16 -nyb=16 +hdf5typeio 

species=cham,targ +mtmmmt +laser +uhd3t 

+mgd mgd_meshgroups=6 -parfile=example.par
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Let's go through the LaserSlab simulation and see 
how to put together a laser driven simulation which 
uses all of the HEDP physics in FLASH

● The setup line:

● The +mgd setup shortcut tells FLASH to include the code for 
multigroup radiation diffusion

● The mgd_meshgroups tells FLASH the maximum number of 
energy groups that will be represented on a single process

-auto LaserSlab -2d +cylindrical +pm4dev 

-nxb=16 -nyb=16 +hdf5typeio 

species=cham,targ +mtmmmt +laser +uhd3t 

+mgd mgd_meshgroups=6 -parfile=example.par
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Let's go through the LaserSlab simulation and see 
how to put together a laser driven simulation which 
uses all of the HEDP physics in FLASH

● The setup line:

● The +mtmmmt option turns on the multitemperature, 
multimaterial, multitype EOS

● This 3T EOS lets you specify a different EOS model for each 
species (material) in the simulation very conveniently (through 
the flash.par file)

-auto LaserSlab -2d +cylindrical +pm4dev 

-nxb=16 -nyb=16 +hdf5typeio 

species=cham,targ +mtmmmt +laser +uhd3t 

+mgd mgd_meshgroups=6 -parfile=example.par
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To use radiation diffusion, you need to specify the 
energy group structure and boundary conditions

rt_useMGD       = .true.         ! Turn on radiation diffusion
rt_mgdNumGroups = 6              ! Specify that there are six groups
rt_mgdBounds_1  = 1.0e-01        ! Specify group boundaries in eV
rt_mgdBounds_2  = 1.0e+00
rt_mgdBounds_3  = 1.0e+01
rt_mgdBounds_4  = 1.0e+02
rt_mgdBounds_5  = 1.0e+03
rt_mgdBounds_6  = 1.0e+04
rt_mgdBounds_7  = 1.0e+05
rt_mgdFlMode    = "fl_harmonic"  ! Specify the type of flux limiter
rt_mgdFlCoef    = 1.0            ! Specify the coefficient of the
                                 ! flux-limiter

rt_mgdXlBoundaryType = "reflecting"
rt_mgdXrBoundaryType = "vacuum"
rt_mgdYlBoundaryType = "vacuum"
rt_mgdYrBoundaryType = "reflecting"
rt_mgdZlBoundaryType = "reflecting"
rt_mgdZrBoundaryType = "reflecting"
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The dirichlet and vacuum boundary conditions are 
also useful

● Dirichlet boundary: 

‒ Set rt_mgdXlBoundaryType = "dirichlet"

‒ Specify a fixed value for the radiation temperature on the boundary:
rt_mgdXlBoundaryTemp = 11604.55 # in Kelvin

‒ If you need more control (for example, a monoenergetic radiation source) 
you can customize the boundary condition on a group-by-group basis in 
your simulation by modifying Simulation_init.F90

● Vacuum:

‒ Set rt_mgdXlBoundaryType = “vacuum”

‒ The “vacuum” boundary condition for diffusion is:

‒ Beware: Vacuum boundary conditions are not very accurate in diffusion 
theory – too much radiation energy can get trapped in the domain!
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To use radiation diffusion, you must also tell FLASH 
how to compute the opacity for each material

useOpacity     = .true.   ! Turn on opacity calculations
                          ! At all times useOpacity must
                          ! equal rt_useMGD

### SET CHAMBER (HELIUM) OPACITY OPTIONS ###
op_chamAbsorb   = "op_tabpa"
op_chamEmiss    = "op_tabpe"
op_chamTrans    = "op_tabro"
op_chamFileType = "ionmix4"
op_chamFileName = "he-imx-005.cn4"

### SET TARGET (ALUMINUM) OPACITY OPTIONS ###
op_targAbsorb   = "op_tabpa"
op_targEmiss    = "op_tabpe"
op_targTrans    = "op_tabro"
op_targFileType = "ionmix4"
op_targFileName = "al-imx-003.cn4"

Please see the opacity section in the user's guide 21.4 for a description of 
the IONMIX4 format. If you can write these files, then you can use your own 
tabulated opacities with FLASH!
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Many rays are launched on each time step and deposit 
energy within the domain as they travel
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To use the laser, you must define at least one beam and 
one pulse

● First, turn on the laser:

● Each “beam” definition provides the following information:

‒ Spatial orientation

‒ Intensity profile

‒ Number of rays

‒ Wavelength (microns)

‒ Which pulse to use

● Each “pulse” defines a power profile as a function of time. 
Multiple beams can use the same pulse

useEnergyDeposition = .true. ! Turn on the laser
ed_maxRayCount      = 2000   ! Max. number of rays per process
ed_gradOrder        = 2      ! Linear density gradient in a cell
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The example simulation has a single beam with rays 
traveling in the +z direction

● Rays are traced from the lens to the target (focal spot)

### SETUP LASER BEAM ###
ed_numBeams = 1 ! Total number of beams
                ! in this simulation

# Setup Gaussian Beam:
ed_lensX_1            =  0.00e-04
ed_lensY_1            = -0.1
ed_targetX_1          =  20.0e-04
ed_targetY_1          =  20.0e-04
ed_semiaxis1_1        =  40.0e-04
ed_pulseNumber_1      =  3            ! Use pulse number 3
ed_wavelength_1       =  1.053        ! In microns
ed_crossSectionID_1   =  3            ! Three means 
                                      ! supergaussian
ed_decayExponent_1    =  1.0          ! Gamma, 1 = Gaussian
ed_decayRadius1_1     =  1.201122e-03 ! Lambda (cm): note, this 
                                      ! is NOT the FWHM
ed_lensEqualsTarget_1 =  .true.       
ed_numRays_1          =  512          ! Number of rays to 
                                      ! launch per cycle for 
                                      ! this beam
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A single pulse is associated with each beam. A pulse is 
a piecewise linear power vs. time function

ed_numSections_3 = 5 # This pulse is described using 5    
                     # points

# Specify times at which power changes(s):
ed_time_3_1  = 0.0
ed_time_3_2  = 1.6e-09
ed_time_3_3  = 1.65e-09
ed_time_3_4  = 1.7e-09
ed_time_3_5  = 3.0e-09

# Specify powers (Watts):
ed_power_3_1 = 2.333333e+07
ed_power_3_2 = 2.333333e+07
ed_power_3_3 = 6.233333e+08
ed_power_3_4 = 2.333333e+07
ed_power_3_5 = 2.333333e+07
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Specify the EOS/properties of each material

# Target material defaults set for Aluminum at room temperature:
sim_rhoTarg  = 2.7
sim_teleTarg = 290.11375
sim_tionTarg = 290.11375
sim_tradTarg = 290.11375
ms_targA = 26.9815386
ms_targZ = 13.0
ms_targZMin = 0.02
eos_targEosType = "eos_tab"
eos_targSubType = "ionmix4"
eos_targTableFile = "al-imx-003.cn4"

# Chamber material defaults set for Helium at pressure 1.6 mbar:
sim_rhoCham  = 1.0e-05
sim_teleCham = 290.11375
sim_tionCham = 290.11375
sim_tradCham = 290.11375
ms_chamA = 4.002602
ms_chamZ = 2.0
eos_chamEosType = "eos_tab"
eos_chamSubType = "ionmix4"
eos_chamTableFile = "he-imx-005.cn4"
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Lets look at the output!

● We will examine the output in visit, I won't go into a lot of detail 
on how to use visit, but will give some basic information

● Useful variables:

‒ depo → the amount of laser energy deposited in a cell per unit 
mass

‒ tele, tion, trad → the electron, ion, radiation temperature (K)

‒ r001, …, r006 → the specific radiation energy in each group 
(ergs/g)
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You can visualize the trajectories in VisIt, but it requires 
a few steps

● These runtime parameters setup the laser ray visualization:

● The rays are automatically written to the plot files every time a 
plot file is generated

● You must use the extract_rays.py script (in the 
tools/scripts directory in the FLASH source tree)

../tools/scripts/extract_rays.py lasslab_hdf5_plt_cnt_*

● The extract_rays.py script has several dependencies, including 
NumPy and PyTables, so you need to install these to use it!

### LASER IO OPTIONS ###
ed_useLaserIO             = .true. # Turn on ray visualization
ed_laserIOMaxNumPositions = 10000
ed_laserIONumRays         = 128    # Number of rays to write
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FLASH now contains a laser ray trace model and 
radiation diffusion

● Development is ongoing – especially in the laser package:

‒ 3D-in-2D R-z ray-trace will be available in the next release

‒ This will be followed by continued improvements to the accuracy of 
the ray trace algorithm

‒ Improve radiation/matter coupling to eliminate (or at least reduce) 
stability

● The radiation diffusion documentation in the user's guide is 
currently out-of-date

‒ This will be rewritten for the next release (my fault)

Conclusions
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FLASH now contains a laser ray trace model and 
radiation diffusion

● Development is ongoing – especially in the laser package:

‒ 3D-in-2D R-z ray-trace will be available in the next release

‒ This will be followed by continued improvements to the accuracy of 
the ray trace algorithm

‒ Improve radiation/matter coupling to eliminate (or at least reduce) 
stability

● The radiation diffusion documentation in the user's guide is 
currently out-of-date

‒ This will be rewritten for the next release (my fault)

● Thanks to     Norbert Flocke     for writing the laser ray trace 
package!!

Conclusions
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FLASH now contains a laser ray trace model and 
radiation diffusion

● Development is ongoing – especially in the laser package:

‒ 3D-in-2D R-z ray-trace will be available in the next release

‒ This will be followed by continued improvements to the accuracy of 
the ray trace algorithm

‒ Improve radiation/matter coupling to eliminate (or at least reduce) 
stability

● The radiation diffusion documentation in the user's guide is 
currently out-of-date

‒ This will be rewritten for the next release (my fault)

● Thanks to     Norbert Flocke     for writing the laser ray trace 
package!!

Conclusions
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