
The University of Chicago

Visualizing FLASH with yt

June 1st, 2012, RAL
Anthony Scopatz - The FLASH Center

scopatz@flash.uchicago.edu

1

mailto:scopatz@flash.uchicago.edu

Goal

Goal

Make easy, reproducible, publication-quality figures.

2

Context

The existing solutions were inappropriate for the following
reasons:

3

Context

The existing solutions were inappropriate for the following
reasons:

•VisIt: Difficult to make publication worthy and even
more difficult to reproduce.

4

Context

The existing solutions were inappropriate for the following
reasons:

•VisIt: Difficult to make publication worthy and even
more difficult to reproduce.

•yt: Lack of full control over basic objects (labels,
legends, color maps, etc).

5

Context

The existing solutions were inappropriate for the following
reasons:

•VisIt: Difficult to make publication worthy and even
more difficult to reproduce.

•yt: Lack of full control over basic objects (labels,
legends, color maps, etc).

We are going to need a bigger boat...

6

Key Points

•Though it is marketed as a visualization tool, yt is a
fully-fledged analysis platform for FLASH.

7

Key Points

•Though it is marketed as a visualization tool, yt is a
fully-fledged analysis platform for FLASH.

•Since yt is well-factored, the visualization & analysis
feature sets are distinct.

8

Key Points

•Though it is marketed as a visualization tool, yt is a
fully-fledged analysis platform for FLASH.

•Since yt is well-factored, the visualization & analysis
feature sets are distinct.

•Thus we can replace yt's plotting functionality with
something easier and more empowering to the user.

9

Key Points

•Though it is marketed as a visualization tool, yt is a
fully-fledged analysis platform for FLASH.

•Since yt is well-factored, the visualization & analysis
feature sets are distinct.

•Thus we can replace yt's plotting functionality with
something easier and more empowering to the user.

• (cough matplotlib)

10

Enter: FLASH Python Library

In a separate effort to provide a FLASH workflow
management tool, we have Python package which lives in
the source. This is a natural place for the new visualization
tools to live.

Install via:

$ cd flash4/tools/
$ python setup.py install --user

Documentation is available on our website.

11

http://flash.uchicago.edu/site/flashcode/user_support/tools4b/

Output Module

In the flash namespace we now have access to the
output module which contains several functions which
return raw data that is suitable for plotting:
from flash.output import *

lineout(p1, p2, field, pf, **kwargs)
shock_on_lineout(p1, p2, field, pf, threshold=1e-06, min_threshold=1e-36, **kwargs)
slice(axis, coord, field, pf, bounds=None, resolution=600, method='nearest', **kwargs)
slice_gradient(axis, coord, field, pf, bounds=None, resolution=600, method='nearest', **kwargs)

12

Output Module

In the flash namespace we now have access to the
output module which contains several functions which
return raw data that is suitable for plotting:
from flash.output import *

lineout(p1, p2, field, pf, **kwargs)
shock_on_lineout(p1, p2, field, pf, threshold=1e-06, min_threshold=1e-36, **kwargs)
slice(axis, coord, field, pf, bounds=None, resolution=600, method='nearest', **kwargs)
slice_gradient(axis, coord, field, pf, bounds=None, resolution=600, method='nearest', **kwargs)

Lineouts can be piped to the matplotlib plot() function
while the slices can be sent to imshow().

13

Output Module

In the flash namespace we now have access to the
output module which contains several functions which
return raw data that is suitable for plotting:
from flash.output import *

lineout(p1, p2, field, pf, **kwargs)
shock_on_lineout(p1, p2, field, pf, threshold=1e-06, min_threshold=1e-36, **kwargs)
slice(axis, coord, field, pf, bounds=None, resolution=600, method='nearest', **kwargs)
slice_gradient(axis, coord, field, pf, bounds=None, resolution=600, method='nearest', **kwargs)

Lineouts can be piped to the matplotlib plot() function
while the slices can be sent to imshow().

Projections could be easily added.

14

A Quick Example

In a terminal, run:

$./setup -auto Sedov; cd object/
$ make -j 20
$ mpirun -n 20

Then in Python, run:

from flash import output
import matplotlib.pyplot as plt
x, y, z = output.slice(2, 0.0, 'dens', "<path to chk>")
plt.imshow(z)

15

A Quick Example

You should see something like:

16

What is yt doing?

•Under the covers, yt has file handlers called plotfiles
(pf) which live in plot collections (pc).

17

What is yt doing?

•Under the covers, yt has file handlers called plotfiles
(pf) which live in plot collections (pc).

•On the pf live Hierarchy objects (aliased h) which
provide a common interface for common operations (ray,
slice, projection, etc) for all supported file type.

18

What is yt doing?

•Under the covers, yt has file handlers called plotfiles
(pf) which live in plot collections (pc).

•On the pf live Hierarchy objects (aliased h) which
provide a common interface for common operations (ray,
slice, projection, etc) for all supported file type.

•These operations follow a pattern whereby they return
special mappings keyed by fields (dens, etc). For flash,
pf.h.slice() will return an amr_slice[field].

19

What is yt doing?

If this wasn't confusing enough, these mapping are lazily
evaluated. The fields don't necessarily exist until you ask
for them:

In [7]: amr_slice.fields
Out[7]: ['dens', 'px', 'py', 'pz', 'pdx', 'pdy', 'pdz', 'x', 'y', 'z']

In [8]: amr_slice['targ']
Out[8]: array([0.47239542, 0.47150037, 0.4828257 , ..., 0. ,
 0. , 0.])

In [9]: amr_slice.fields
Out[9]: ['dens', 'px', 'py', 'pz', 'pdx', 'pdy', 'pdz', 'x', 'y', 'z', 'targ']

20

What is the output module doing?

•The point of the output module is to abstract a lot of
these under-the-cover yt issues.

21

What is the output module doing?

•The point of the output module is to abstract a lot of
these under-the-cover yt issues.

•Moreover, it is faster than pure yt because it caches the
special hierarchy mappings to prevent excessive re-reads
(ie changing the resolution will only read in all the slice
data the first time).

22

What is the output module doing?

•The point of the output module is to abstract a lot of
these under-the-cover yt issues.

•Moreover, it is faster than pure yt because it caches the
special hierarchy mappings to prevent excessive re-reads
(ie changing the resolution will only read in all the slice
data the first time).

output.ray_cache
output.slice_cache

23

What is the output module doing?

Furthermore since we are sitting on the yt analysis layer,
we have access to all of their capabilities - including
derived fields.

24

What is the output module doing?

Furthermore since we are sitting on the yt analysis layer,
we have access to all of their capabilities - including
derived fields.

from yt.data_objects.field_info_container import add_field

register electron density field
def _edens(field, data):
 return data['ye'] * data['dens'] * data['sumy'] * 6.022E23

add_field ('edens', function=_edens, take_log=True)

use this field with output functions
x, y, z = output.slice(2, 0.0, 'edens', "<path to chk>")

25

Summary

•The yt back-end is great and gets us 90% of the way
there. However, its front end visualization is a little too
crippled for daily use.

26

Summary

•The yt back end is great and gets us 90% of the way
there. However, its front end visualization is a little too
crippled for daily use.

•Using matplotlib instead gives us the perfect
combination of data model and view.

27

Summary

•The yt back end is great and gets us 90% of the way
there. However, its front end visualization is a little too
crippled for daily use.

•Using matplotlib instead gives us the perfect
combination of data model and view.

•Some convenience functions which glue these two
together have already been written. More can be added
and already have a place to live!

28

Questions

Image source: http://www.fotopedia.com/items/flickr-2200500024

29

http://www.fotopedia.com/items/flickr-2200500024

	The University of Chicago
	Goal
	Context
	Context
	Context
	Context
	Key Points
	Key Points
	Key Points
	Key Points
	Enter: FLASH Python Library
	Output Module
	Output Module
	Output Module
	A Quick Example
	A Quick Example
	What is yt doing?
	What is yt doing?
	What is yt doing?
	What is yt doing?
	What is the output module doing?
	What is the output module doing?
	What is the output module doing?
	What is the output module doing?
	What is the output module doing?
	Summary
	Summary
	Summary
	Questions

