%} The Center for Astrophysical Thermonuclear Flashes

Capabilities and Applications

Sean Couch
An Advanced Simulation & Computing (ASC) \
Academic Strategic Alliances Program (ASAP) Center /‘
at The University of Chicago ‘H S EN

Tuesday, September 28, 2010

Shortly: Relativistic accretion onto NS

s

(=) =i 11651 = 1AL

log P (cm™)

|
PYTPL ST e v

: Cellular detonation
Magnetic

Rayleigh-Taylor

The ASC/Allian

Laser-driven shock instabilities

detonation

Gravitationally confined

Rayleigh-Tavlor instability

Helium burning on neutron stars

nter for Astrophysical Thermon
The University of Chicago

r Fl

Orzag/Tang MHD
vortex

h

Intracluster interaction

Richtmyer-Meshkov instability

Tuesday, September 28, 2010

%) Capabilities

2 Infrastructure JPhysics

J Configuration (setup) 1 Hydrodynamics, MHD, RHD
- Mesh Management 1 Equation of State

d Parallel I/0
- Monitoring

d Performance and progress
J Verification

< Nuclear Physics and other Source Terms
J Gravity
J Particles, active and passive

1 FlashTest - Material Properties
2 Unit and regression testing - Cosmology
The ASC/Allian nter for Astrophysical Thermonuclear Flash

The University of Chicago

Tuesday, September 28, 2010

Physics Capabillities

source

physics

HydroMain

split unsplit

| S

Figure 13.1: The Hydro unit directory tree.

The ASC/Allian nter for Astrophysical Thermonuclear Flash
The University of Chicago

Tuesday, September 28, 2010

Physics Capabillities

source

physics

EosMain

Figure 14.1: The Eos directory tree.

The ASC/Allian nter for Astrophysical Thermonuclear Flash
The University of Chicago

Tuesday, September 28, 2010

Physics Capabillities

source
physics
sourceTerms
BurnMain DiffuseMain TonizeMain StirMain

Figure 15.1: The organizational structure of physics source terms, which include units such as Burn and
Stir. Shaded units include only stub implementations.

The ASC/Allian nter for Astrophysical Thermonuclear Flash
The University of Chicago

Tuesday, September 28, 2010

Physics Capabillities

source

physics

GravityMain

Figure 16.1: The Gravity unit directory tree.

The ASC/Allian

nter for Astrophysical Thermon
The University of Chicago

r Fl

h

Poisson

Tuesday, September 28, 2010

Physics Capabillities

source

ParticlesMain

passive active

B B s Reskwn B Lo Lo

Figure 17.1: The Particles unit main subunit.

source

e

ParticlesInitialization ParticlesMapping ParticlesForces

| |
ﬁ ‘ ﬁ meshWeighting longRange
|

Figure 17.2: The Particles unit with ParticlesInitialization and ParticlesMapping subunits.

The ASC/Allian nter for Astrophysical Thermonuclear Flash
The University of Chicago

Tuesday, September 28, 2010

Physics Capabillities

source

physics

CosmologyMain

Figure 18.1: The Cosmology unit tree.

The ASC/Allian nter for Astrophysical Thermonuclear Flash
The University of Chicago

Tuesday, September 28, 2010

Physics Capabillities

source

physics

materialProperties

ConductivityMain || MagneticResistivityMain ViscosityMain

Figure 19.1: The materialProperties directory tree.

The ASC/Allian nter for Astrophysical Thermonuclear Flash
The University of Chicago

Tuesday, September 28, 2010

FLASH Users Community (2007 survey)

Algorithm
Development

Unknown 3%

2% CFD
Stars and 6%
Stellar Evolution
22%

Cosmology

20%
Misc
7%
ISM
5%
High Energy
Astrophysics
35%

Breakdown of FLASH code research areas
for primary research tool users

The ASC/Allian nter for Astrophysical Thermonuclear Flash
The University of Chicago

Tuesday, September 28, 2010

The Simulation Unit

source

SimulationMain SimulationComposition

unitTest magnetoHD

e . —

Figure 22.1: The Simulation unit directory tree. Only some of the provided simulation implementations
are shown. Users are expected to add their own simulations to the tree.

The ASC/Allian nter for Astrophysical Thermonuclear Flash
The University of Chicago

Tuesday, September 28, 2010

%% The Simulation Unit

JdTypical Unit, obeys architecture, naming conventions,
iInheritance, etc. rules.

JSpecial Unit in that it always “wins” inheritance and
parameter wars.

JFLASH problems is defined by directories in FLASH3/
source/Simulation/SimulationMain.

JThe Simulation directory gives people working on a
particular problem a place to put problem specific code
that replaces the default functionality in the main body
of the code

Jlt's also a place to tell the setup script which units this
problem will need from the rest of the code

The ASC/Allian nter for Astrophysical Thermonuclear Flash
The University of Chicago

Tuesday, September 28, 2010

%% What's in the Simulation Directory?

JNormal UnitMain implementation requirements

JdSimulation _data, Simulation_init, (Simulation_finalize),
Simulation_initBlock

JMakefile (with usually Simulation_data only)
JConfig file
JPossibly other API functions: e.g. Simulation_initSpecies

JSpecific to simulations:
JParameter files flash.par, testUG.par, etc.
JReplacements for routines located elsewhere in directory tree

JRoutines that implement local functions e.q.
sim_derivedVariables.F90

The ASC/Allian nter for Astrophysical Thermonuclear Flash
The University of Chicago

Tuesday, September 28, 2010

%% Required Code for a New Simulation

JThere are certain pieces of code that all simulations
must implement:

JdSimulation data.F90: Fortran module which stores data and
parameters specific to the Simulation.

JdSimulation_init.F90: Reads the runtime parameters, and performs
other necessary unit initializations.

JdSimulation_initBlock.F90: Sets initial conditions in a single block.

JOptionally, a simulation could implement:

JdSimulation_initSpecies.F90: To give the properties of the species
iInvolved in a multispecies simulation

The ASC/Allian nter for Astrophysical Thermonuclear Flash
The University of Chicago

Tuesday, September 28, 2010

%% Customized Code for a new Simulation

Jdln a FLASH simulation directory, you can place code
that overrides the functionality you would pick up from
other code units

JdlIn the custom code you can modify:
JBoundary conditions (Grid_applyBCEdge.F90)
JRefinement criterion (Grid_markRefineDerefine.F90)

JdDiagnostic integrated quanties for output (in the flash.dat file),
e.g., total mass (a default) or vorticity
(10 _writelntegralQuantities.F90)

- Diagnostics to compute new grid scope variables
(Grid_computeUserVars.F90)
dlIn general, this is a place to hack the code in ways
specific to your problem, and you can hack basically
anything

The ASC/Allian nter for Astrophysical Thermonuclear Flash
The University of Chicago

Tuesday, September 28, 2010

%} Creating New Problems

J A new FLASH problem is created by making a directory for it in
FLASH3/source/Simulation/SimulationMain. This is where the setup
script looks for the problem specific files.

- The source files in a simulation directory that a user will need to
modify are:

— Simulation_data.F90: Fortran module which stores data and parameters
specific to the Simulation.

— Simulation_init.F90: Fortran routine which reads the runtime parameters,
and performs other necessary initializations.

— Simulation_initBlock.F90: Fortran routine for setting initial conditions in a
single block.

— Simulation_initSpecies.F90: Optional Fortran routine for initializing
species properties if multiple species are being used.

J Custom implementation of any kernel routine in FLASH can be placed
here.

The ASC/Allian nter for Astrophysical Thermonuclear Flash
The University of Chicago

Tuesday, September 28, 2010

%} Simulation_data

- A Fortran module containing all data specific to the simulation unit.

- All names should be prefixed with sim__ to make it clear that data
belongs to the simulation unit.

J Remember to use the save attribute to prevent data going out of
scope.

module Simulation_data
implicit none
real, save :: sim_pAmbient, sim_xAngle, sim_yAngle, sim_zAngle

end module Simulation_data

The ASC/Allian nter for Astrophysical Thermonuclear Flash
The University of Chicago

Tuesday, September 28, 2010

%} Simulation_init

J Initializes the simulation unit.

— Called once at the beginning of the simulation in both new
and restarted application runs.

— Eliminates the need for FLASHZ2 “if (firstcall)” code
fragments.

J Example usage:

— Stores runtime parameter values in Simulation_data private
variables.

— Calculates any runtime parameter derived quantities.
— Reads a lookup table from a file.

The ASC/Allian nter for Astrophysical Thermonuclear Flash
The University of Chicago

Tuesday, September 28, 2010

The Config file and Simulation_init

Config file declares the

runtime parameters.

Simulation 1nit extracts
the value of runtime

parameters.

The runtime parameter's
default value can be
overridden in a flash.par

The ASC/Allian

D sim_pAmbient Initial ambient pressure
PARAMETER sim pAmbient REAL 1.E-5

subroutine Simulation init(myPE)
use Simulation data
use RuntimeParameters interface, ONLY : &
RuntimeParameters get

implicit none
#include "constants.h"
#include "Flash.h"

integer, intent(in) :: myPE
call RuntimeParameters get('sim pAmbient', &
sim_pAmbient)
end subroutine Simulation_1nit

nter for Astrophysical Thermonuclear Flash

The University of Chicago

Tuesday, September 28, 2010

%} Simulation_initBlock

- Applies initial conditions to the physical domain
— Initializes Grid data one block at a time.
— Only called in new application runs (not in restarts).

1 Block abstraction allows it to be used with different Grid
Implementations

— Called once in UG simulations.
— Called many times in AMR simulations.

J Generating an initial grid in AMR simulations:

— Simulation_initBlock is applied to all blocks at the base
refinement level.

— Grid unit refines blocks if refinement criteria met.

« Simulation_initBlock is re-applied to all blocks.
Repeats

The ASC/Allian nter for Astrophysical Thermonuclear Flash
The University of Chicago

Tuesday, September 28, 2010

%} Simulation_initBlock: Finding cell types

- The Grid API contains a portable way to find the internal cells and
guard cells in a particular block.

— Essential for NFBS Uniform grid mode where block sizes are
not always the same size.

Grid_getBlkindexLimits(blockld, blkLimits, blkLimitsGC, optional: gridDataStruct)

J The arrays blkLimits and blkLimitsGC contain the lower and upper
bounds of a block. For cell-centered PARAMESH data:

blkLimits(LOW,IAXIS)=NGUARD+1; blkLimits(HIGH,IAXIS)=NXB+NGUARD
blkLimitsGC(LOW,IAXIS)=1; blkLimitsGC(HIGH,IAXIS)=NXB+2*NGUARD

- The input argument gridDataStruct specifies the underlying grid
datastructure, e.g. cell-centered, face-centered, scratch data
structure.

The ASC/Allian nter for Astrophysical Thermonuclear Flash
The University of Chicago

Tuesday, September 28, 2010

%} Simulation_initBlock: Accessing each cell

J Many Grid API functions available to read / write Grid data:
— Grid_getPointData, Grid_putPointData
— Grid_getRowData, Grid_putRowData
— Most general is Grid_getBIkPtr:

Grid_getBIlkPtr(blocklD, dataPtr, optional: gridDataStruct)

J Sets the pointer dataPtr to the block indicated by blockID for the
data structure gridDataStruct. Free the pointer using
Grid_releaseBIkPtr (has same arguments as Grid_getBIkPtr).

- To obtain actual cells coordinates use Grid getCellCoords:
Grid_getCellCoords(axis, blocklD, edge, guardcell, coordinates, size)

- This stores coordinates for the cells on axis axis (IAXIS, JAXIS,
KAXIS) at cell location edge (LEFT_EDGE, RIGHT EDGE,
CENTER) in the array coordinates(size).

The ASC/Allian nter for Astrophysical Thermonuclear Flash
The University of Chicago

Tuesday, September 28, 2010

%) Excerpt from a Simulation_initBlock

subroutine Simulation_initBlock(blockID, myPE)

call Grid_getBlkindexLimits(blocklID,blkLimits,blkLimitsGC)
sizeX = blkLimitsGC(HIGH,IAXIS) - blkLimitsGC(LOW,IAXIS) + 1 INum cells inc. guard.

allocate(xCoord(sizeX))
call Grid_getCellCoords(IAXIS, blocklD, CENTER, .true., xCoord, sizeX)

call Grid_getBIkPtr(blockld,solnData)
ILoop over each internal cell and initialize data

do i = blkLimits(LOW,IAXIS), blkLimits(HIGH,IAXIS)

If (xCoord(i) > sim_xpos) solnData(DENS_VAR,i,j,k) = ...
end do
call Grid_releaseBIlkPtr(blockID,solnData)

end subroutine Simulation_initBlock

The ASC/Allian nter for Astrophysical Thermonuclear Flash
The University of Chicago

Tuesday, September 28, 2010

%} Simulation_initSpecies

- Implementation only required when working with multiple species.
— Called from Multispecies_Init to initialize fluid properties.
— Called in new and restarted application runs.
— Called before Simulation_init.

- General purpose Simulation_initSpecies implementations are
available for nuclear networks and ionization (See Simulation/
SimulationComposition directory).

J May want to create derived quantities in Simulation_init from the
fluids initialized in Simulation_initSpecies.

The ASC/Allian nter for Astrophysical Thermonuclear Flash
The University of Chicago

Tuesday, September 28, 2010

Q}é The Config file and Simulation_initSpecies

Config file declares the SPECIES FLDI
. SPECIES FLD2
species.

subroutine Simulation initSpecies()
use Multispecies interface, ONLY : Multispecies setProperty

implicit none
#include "Flash.h"

Simulati()n_initSpeCies #include "Multispecies.h"

initializes fluid call Multispecies_setProperty(FLD1 SPEC, A, 1.)
pr()perties_ \ call Multispecies setProperty(FLD1 SPEC, Z, 1.)
call Multispecies setProperty(FLD1 SPEC, GAMMA, &
1.66666666667¢0)

call Multispecies setProperty(FLD2 SPEC, A, 4.0)
call Multispecies setProperty(FLD2 SPEC, Z, 2.0)
call Multispecies setProperty(FLD2 SPEC, GAMMA, 2.0)

end subroutine Simulation initSpecies

The ASC/Allian nter for Astrophysical Thermonuclear Flash
The University of Chicago

Tuesday, September 28, 2010

%} Working with block lists

J A single processor contains some portion of the total grid data in
one or more blocks.

— Possible to access data in a grid-package specific way.

— However, we recommend using Grid API functions so that
code is independent of a particular grid-package.

Grid_getListOfBlocks(blockType, listofBlocks, count, optional: refinementLevel)

- Returns the actual block IDs in listOfBlocks and the number of block
IDs in count. The returned block IDs must satisfy the criteria set by
blockType and refinementLevel input arguments.

JNOTE: Any code using this function must “use” the function
prototype because this function has an optional argument.

The ASC/Allian nter for Astrophysical Thermonuclear Flash
The University of Chicago

Tuesday, September 28, 2010

