
An Advanced Simulation & Computing (ASC)
Academic Strategic Alliances Program (ASAP) Center

at The University of Chicago

The Center for Astrophysical Thermonuclear Flashes

Capabilities and Applications

Sean Couch

Tuesday, September 28, 2010

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

FLASH Capabilities Span a Broad Range…

Cellular detonation
Helium burning on neutron stars

Richtmyer-Meshkov instability

Laser-driven shock instabilities
Nova outbursts on white dwarfs Rayleigh-Taylor instability

Gravitational collapse/Jeans instability

Wave breaking on white dwarfs

Shortly: Relativistic accretion onto NS

Orzag/Tang MHD
vortex

Gravitationally confined
detonation

Intracluster interactions

Magnetic
Rayleigh-Taylor

Turbulent Nuclear Burning

Tuesday, September 28, 2010

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Capabilities

❑ Infrastructure
❑ Configuration (setup)
❑ Mesh Management
❑ Parallel I/O
❑ Monitoring

❑ Performance and progress
❑ Verification

❑ FlashTest
❑ Unit and regression testing

❑Physics
❑ Hydrodynamics, MHD, RHD
❑ Equation of State
❑ Nuclear Physics and other Source Terms
❑ Gravity
❑ Particles, active and passive
❑ Material Properties
❑ Cosmology

Tuesday, September 28, 2010

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Physics Capabilities

Chapter 13

Hydrodynamics Units

source

physics

Hydro

HydroMain

split

PPM

PPMKernel

RHD MHD 8Wave

unsplit

Hydro MusclHancockMHD StaggeredMesh

Figure 13.1: The Hydro unit directory tree.

The Hydro unit solves Euler’s equations for compressible gas dynamics in one, two, or three spatial
dimensions. These equations can be written in conservative form as

∂ρ

∂t
+∇ · (ρv) = 0 (13.1)

∂ρv
∂t

+∇ · (ρvv) +∇P = ρg (13.2)

∂ρE

∂t
+∇ · [(ρE + P)v] = ρv · g , (13.3)

155

Tuesday, September 28, 2010

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Physics Capabilities

Chapter 14

Equation of State Unit

source

physics

Eos

EosMain

Gamma

RHD

Multigamma Helmholtz

SpeciesBased

Figure 14.1: The Eos directory tree.

14.1 Introduction

The Eos unit implements the equation of state needed by the hydrodynamics and nuclear burning solvers.
The function Eos provides the interface for operating on a one-dimensional vector. The same interface can
be used for a single cell by reducing the vector size to 1. Additionally, this function can be used to find
the thermodynamic quantities either from the density, temperature, and composition or from the density,
internal energy, and composition. For user’s convenience, a wrapper function (Eos wrapped) is provided,
which takes a section of a block and translates it into the data format required by the Eos function, then
calls the function. Upon return from the Eos function, the wrapper translates the returned data back to the
same section of the block.

171

Tuesday, September 28, 2010

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Physics Capabilities

Chapter 15

Local Source Terms

source

physics

sourceTerms

Burn

BurnMain

Cool Diffuse

DiffuseMain

Heat Ionize

IonizeMain

Nei Eqi

Stir

StirMain

Figure 15.1: The organizational structure of physics source terms, which include units such as Burn and
Stir. Shaded units include only stub implementations.

The physics/sourceTerms organizational directory contains several units that implement forcing terms.
The Burn, Stir, Ionize, and Diffuse units contain implementations in FLASH3. Two other units, Cool
and Heat, contain only stub level routines in their API.

15.1 Burn Unit

The nuclear burning implementation of the Burn unit uses a sparse-matrix semi-implicit ordinary differential
equation (ODE) solver to calculate the nuclear burning rate and to update the fluid variables accordingly
(Timmes 1999). The primary interface routines for this unit are Burn init, which sets up the nuclear isotope
tables needed by the unit, and Burn, which calls the ODE solver and updates the hydrodynamical variables
in a single row of a single block. There is also a helper routine Simulation/SimulationComposition/-

Simulation_initSpecies (see Simulation initSpecies) which provides the properties of ions included in
the burning network.

179

EnergyDepostion

Tuesday, September 28, 2010

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Physics Capabilities

Chapter 16

Gravity Unit

source

physics

Gravity

GravityMain

Constant PlanePar PointMass Poisson

Multipole Multigrid

Figure 16.1: The Gravity unit directory tree.

16.1 Introduction

The Gravity unit supplied with FLASH3 computes gravitational source terms for the code. These source

terms can take the form of the gravitational potential φ(x) or the gravitational acceleration g(x),

g(x) = −∇φ(x) . (16.1)

The gravitational field can be externally imposed or self-consistently computed from the gas density via the

Poisson equation,

∇2φ(x) = 4πGρ(x) , (16.2)

189

Tuesday, September 28, 2010

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Physics Capabilities

Chapter 17

Particles Unit

source

Particles

ParticlesMain

passive

Euler EstiMid2 Midpoint RungeKutta

active

Euler Leapfrog LeapfrogCosmo

Figure 17.1: The Particles unit main subunit.

source

Particles

ParticlesInitialization

Lattice WithDensity

ParticlesMapping

Quadratic meshWeighting

CIC MapToMesh

ParticlesForces

shortRange longRange

gravity

Figure 17.2: The Particles unit with ParticlesInitialization and ParticlesMapping subunits.

193

Tuesday, September 28, 2010

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Physics Capabilities
Chapter 18

Cosmology Unit

source

physics

Cosmology

CosmologyMain

MatterLambdaKernel

Figure 18.1: The Cosmology unit tree.

The Cosmology unit solves the Friedmann equation for the scale factor in an expanding universe, ap-
plies a cosmological redshift to the hydrodynamical quantities, and supplies library functions for various
routine cosmological calculations needed by the rest of the code for initializing, performing, and analyzing
cosmological simulations.

18.1 Algorithms and Equations

The Cosmology unit makes several assumptions about the interpretation of physical quantities that enable
any hydrodynamics or materials units written for a non-expanding universe to work unmodified in a cos-
mological context. All calculations are assumed to take place in comoving coordinates x = r/a, where r
is a proper position vector and a(t) is the time-dependent cosmological scale factor. The present epoch is
defined to correspond to a = 1; in the following discussion we use t = t0 to refer to the age of the Universe
at the present epoch. The gas velocity v is taken to be the comoving peculiar velocity ẋ. The comoving gas

207

Tuesday, September 28, 2010

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Physics Capabilities

Chapter 19

Material Properties Units

source

physics

materialProperties

Conductivity

ConductivityMain

Constant Constant-diff

MagneticResistivity

MagneticResistivityMain

Constant

Viscosity

ViscosityMain

Constant

MassDiffusivity

Figure 19.1: The materialProperties directory tree.

FLASH3 Transition

In this release, FLASH’s implementation of the material properties units is minimal. For

Heat Conductivity and Viscosity, we provide implementations for effects with constant

coefficients; these can be used as models for implementing effects that follow other laws. For

MassDiffusivity, only no-operation stubs are provided. A routine that calculates constant

magnetic resistivity and viscosity is provided in the MagneticResistivity unit and can be

used in non-ideal magnetohydrodynamics simulations. Several add-on capabilities are being

made available to the users from the Code Support Web Page.

211

Tuesday, September 28, 2010

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

FLASH Users Community (2007 survey)

Breakdown of FLASH code research areas
for primary research tool users

Tuesday, September 28, 2010

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

The Simulation Unit

Chapter 22

The Supplied Test Problems

source

Simulation

SimulationMain

Sedov ... unitTest

Eos ...

magnetoHD

Rotor ...

SimulationComposition

Figure 22.1: The Simulation unit directory tree. Only some of the provided simulation implementations
are shown. Users are expected to add their own simulations to the tree.

To verify that FLASH works as expected and to debug changes in the code, we have created a suite
of standard test problems. Many of these problems have analytical solutions that can be used to test the
accuracy of the code. Most of the problems that do not have analytical solutions produce well-defined flow
features that have been verified by experiments and are stringent tests of the code. For the remaining
problems, converged solutions, which can be used to test the accuracy of lower resolution simulations, are
easy to obtain. The test suite configuration code is included with the FLASH source tree (in the Simulation/
directory), so it is easy to configure and run FLASH with any of these problems ‘out of the box.’ Sample
runtime parameter files are also included.

22.1 Hydrodynamics Test Problems

These problems are primarily designed to test the functioning of the hydrodynamics solvers within FLASH3.

227

Tuesday, September 28, 2010

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

The Simulation Unit

❑Typical Unit, obeys architecture, naming conventions,
inheritance, etc. rules.

❑Special Unit in that it always “wins” inheritance and
parameter wars.

❑FLASH problems is defined by directories in FLASH3/
source/Simulation/SimulationMain.

❑The Simulation directory gives people working on a
particular problem a place to put problem specific code
that replaces the default functionality in the main body
of the code

❑It’s also a place to tell the setup script which units this
problem will need from the rest of the code

Tuesday, September 28, 2010

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

What’s in the Simulation Directory?

❑Normal UnitMain implementation requirements
❑Simulation_data, Simulation_init, (Simulation_finalize),

Simulation_initBlock
❑Makefile (with usually Simulation_data only)
❑Config file
❑Possibly other API functions: e.g. Simulation_initSpecies

❑Specific to simulations:
❑Parameter files flash.par, testUG.par, etc.
❑Replacements for routines located elsewhere in directory tree
❑Routines that implement local functions e.g.

sim_derivedVariables.F90

Tuesday, September 28, 2010

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Required Code for a New Simulation

❑There are certain pieces of code that all simulations
must implement:
❑Simulation_data.F90: Fortran module which stores data and

parameters specific to the Simulation.
❑Simulation_init.F90: Reads the runtime parameters, and performs

other necessary unit initializations.
❑Simulation_initBlock.F90: Sets initial conditions in a single block.

❑Optionally, a simulation could implement:
❑Simulation_initSpecies.F90: To give the properties of the species

involved in a multispecies simulation

Tuesday, September 28, 2010

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Customized Code for a new Simulation

❑In a FLASH simulation directory, you can place code
that overrides the functionality you would pick up from
other code units

❑In the custom code you can modify:
❑Boundary conditions (Grid_applyBCEdge.F90)
❑Refinement criterion (Grid_markRefineDerefine.F90)
❑Diagnostic integrated quanties for output (in the flash.dat file),

e.g., total mass (a default) or vorticity
(IO_writeIntegralQuantities.F90)

❑Diagnostics to compute new grid scope variables
(Grid_computeUserVars.F90)

❑In general, this is a place to hack the code in ways
specific to your problem, and you can hack basically
anything

Tuesday, September 28, 2010

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Creating New Problems

❑A new FLASH problem is created by making a directory for it in

FLASH3/source/Simulation/SimulationMain. This is where the setup
script looks for the problem specific files.

❑ The source files in a simulation directory that a user will need to
modify are:

– Simulation_data.F90: Fortran module which stores data and parameters
specific to the Simulation.

– Simulation_init.F90: Fortran routine which reads the runtime parameters,
and performs other necessary initializations.

– Simulation_initBlock.F90: Fortran routine for setting initial conditions in a
single block.

– Simulation_initSpecies.F90: Optional Fortran routine for initializing
species properties if multiple species are being used.

❑Custom implementation of any kernel routine in FLASH can be placed
here.

Tuesday, September 28, 2010

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Simulation_data

❑A Fortran module containing all data specific to the simulation unit.

❑All names should be prefixed with sim_ to make it clear that data
belongs to the simulation unit.

❑Remember to use the save attribute to prevent data going out of
scope.

 module Simulation_data
 implicit none
 real, save :: sim_pAmbient, sim_xAngle, sim_yAngle, sim_zAngle

 end module Simulation_data

Tuesday, September 28, 2010

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Simulation_init

❑ Initializes the simulation unit.

– Called once at the beginning of the simulation in both new
and restarted application runs.

– Eliminates the need for FLASH2 “if (firstcall)” code
fragments.

❑Example usage:
– Stores runtime parameter values in Simulation_data private

variables.
– Calculates any runtime parameter derived quantities.
– Reads a lookup table from a file.

Tuesday, September 28, 2010

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

The Config file and Simulation_init

Config file declares the
runtime parameters.

Simulation_init extracts
the value of runtime
parameters.

The runtime parameter's
default value can be
overridden in a flash.par

subroutine Simulation_init(myPE)
 use Simulation_data
 use RuntimeParameters_interface, ONLY : &
 RuntimeParameters_get

 implicit none
#include "constants.h"
#include "Flash.h"

 integer, intent(in) :: myPE
 call RuntimeParameters_get('sim_pAmbient', &
 sim_pAmbient)
end subroutine Simulation_init

D sim_pAmbient Initial ambient pressure
PARAMETER sim_pAmbient REAL 1.E-5

Tuesday, September 28, 2010

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Simulation_initBlock

❑Applies initial conditions to the physical domain

– Initializes Grid data one block at a time.
– Only called in new application runs (not in restarts).

❑Block abstraction allows it to be used with different Grid
implementations

– Called once in UG simulations.
– Called many times in AMR simulations.

❑Generating an initial grid in AMR simulations:
– Simulation_initBlock is applied to all blocks at the base

refinement level.
– Grid unit refines blocks if refinement criteria met.

• Simulation_initBlock is re-applied to all blocks. Repeats {

Tuesday, September 28, 2010

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Simulation_initBlock: Finding cell types

❑ The Grid API contains a portable way to find the internal cells and

guard cells in a particular block.
– Essential for NFBS Uniform grid mode where block sizes are

not always the same size.

Grid_getBlkIndexLimits(blockId, blkLimits, blkLimitsGC, optional: gridDataStruct)

❑ The arrays blkLimits and blkLimitsGC contain the lower and upper
bounds of a block. For cell-centered PARAMESH data:

blkLimits(LOW,IAXIS)=NGUARD+1; blkLimits(HIGH,IAXIS)=NXB+NGUARD
blkLimitsGC(LOW,IAXIS)=1; blkLimitsGC(HIGH,IAXIS)=NXB+2*NGUARD

❑ The input argument gridDataStruct specifies the underlying grid
datastructure, e.g. cell-centered, face-centered, scratch data
structure.

Tuesday, September 28, 2010

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Simulation_initBlock: Accessing each cell

❑Many Grid API functions available to read / write Grid data:

– Grid_getPointData, Grid_putPointData
– Grid_getRowData, Grid_putRowData
– Most general is Grid_getBlkPtr:

Grid_getBlkPtr(blockID, dataPtr, optional: gridDataStruct)
❑Sets the pointer dataPtr to the block indicated by blockID for the

data structure gridDataStruct. Free the pointer using
Grid_releaseBlkPtr (has same arguments as Grid_getBlkPtr).

❑ To obtain actual cells coordinates use Grid_getCellCoords:
Grid_getCellCoords(axis, blockID, edge, guardcell, coordinates, size)

❑ This stores coordinates for the cells on axis axis (IAXIS, JAXIS,
KAXIS) at cell location edge (LEFT_EDGE, RIGHT_EDGE,
CENTER) in the array coordinates(size).

Tuesday, September 28, 2010

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Excerpt from a Simulation_initBlock

subroutine Simulation_initBlock(blockID, myPE)
...
call Grid_getBlkIndexLimits(blockID,blkLimits,blkLimitsGC)
sizeX = blkLimitsGC(HIGH,IAXIS) - blkLimitsGC(LOW,IAXIS) + 1 !Num cells inc. guard.
allocate(xCoord(sizeX))
call Grid_getCellCoords(IAXIS, blockID, CENTER, .true., xCoord, sizeX)

call Grid_getBlkPtr(blockId,solnData)
!Loop over each internal cell and initialize data
...
do i = blkLimits(LOW,IAXIS), blkLimits(HIGH,IAXIS)
 If (xCoord(i) > sim_xpos) solnData(DENS_VAR,i,j,k) = …
end do
call Grid_releaseBlkPtr(blockID,solnData)

end subroutine Simulation_initBlock

Tuesday, September 28, 2010

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Simulation_initSpecies

❑ Implementation only required when working with multiple species.

– Called from Multispecies_init to initialize fluid properties.
– Called in new and restarted application runs.
– Called before Simulation_init.

❑General purpose Simulation_initSpecies implementations are
available for nuclear networks and ionization (See Simulation/
SimulationComposition directory).

❑May want to create derived quantities in Simulation_init from the
fluids initialized in Simulation_initSpecies.

Tuesday, September 28, 2010

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

The Config file and Simulation_initSpecies

Config file declares the
species.

Simulation_initSpecies
initializes fluid
properties.

SPECIES FLD1
SPECIES FLD2

subroutine Simulation_initSpecies()
 use Multispecies_interface, ONLY : Multispecies_setProperty

 implicit none
#include "Flash.h"
#include "Multispecies.h"

 call Multispecies_setProperty(FLD1_SPEC, A, 1.)
 call Multispecies_setProperty(FLD1_SPEC, Z, 1.)
 call Multispecies_setProperty(FLD1_SPEC, GAMMA, &
1.66666666667e0)

 call Multispecies_setProperty(FLD2_SPEC, A, 4.0)
 call Multispecies_setProperty(FLD2_SPEC, Z, 2.0)
 call Multispecies_setProperty(FLD2_SPEC, GAMMA, 2.0)

end subroutine Simulation_initSpecies

Tuesday, September 28, 2010

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Working with block lists

❑A single processor contains some portion of the total grid data in

one or more blocks.
– Possible to access data in a grid-package specific way.
– However, we recommend using Grid API functions so that

code is independent of a particular grid-package.

Grid_getListOfBlocks(blockType, listofBlocks, count, optional: refinementLevel)

❑Returns the actual block IDs in listOfBlocks and the number of block
IDs in count. The returned block IDs must satisfy the criteria set by
blockType and refinementLevel input arguments.

❑NOTE: Any code using this function must “use” the function
prototype because this function has an optional argument.

Tuesday, September 28, 2010

