
An Advanced Simulation & Computing (ASC)
Academic Strategic Alliance Program (ASAP) Center

at The University of Chicago

The Center for Astrophysical Thermonuclear Flashes

FLASH3 Code Infrastructure:
Driver and Grid Units

Flash Tutorial
September 27, 2010

Dr. Klaus Weide

The ASC/Alliance Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Infrastructure Topics

❑ Driver Unit
❑ Overview and Function

❑ Unsplit vs Split

❑ Grid Unit
❑ Overview: Implementations

❑ Overview: blocks, cells,

❑ PARAMESH: oct-tree

❑ Data structures and Meta-Data

❑ Configuring Variables for Grid Data Structures

❑ Dimensions and Geometries

❑ What the Grid Code Unit Actually Does

❑ Filling Guard Cells

❑ Boundary Conditions

The ASC/Alliance Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Driver Unit

❑ Overview and Function

❑ Unsplit vs Split

The ASC/Alliance Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Driver - Overview and Function

All other units and their subroutines are called, directly or
indirectly, from Driver. There are three phases encompassing
everything FLASH does:

Initialize – Simulate (and probably produce some output) – Finish

The main F90 program, Flash.F90, invokes the rest of the code
like this:

❑ call Driver_initFlash
❑ Initialize parameters, data, Grid incl. variable values, ...

❑ call Driver_evolveFlash
❑ Advance in time (the only kind of “evolution” that FLASH does)

❑ call Driver_finalizeFlash
❑ Clean up nicely

The ASC/Alliance Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Time Evolution - Unsplit and Split

❑ FLASH3 provides two variants of time evolution (two
Driver “implementations”): Split and Unsplit.
❑ Pick the right one for the Hydro implementation used

(normally this is automatically done by including the Hydro
implementation)

❑ Driver_evolveFlash implements the main loop of FLASH3.

❑ The loop ends normally when one of several conditions is
satisfied:
❑ Loop counter dr_nstep = nstart ... nend
❑ Simulation time reaches tmax
❑ Wall clock reaches wall_clock_time_limit

❑ Time step dt can vary between dtmin and dtmax,
Driver_computeDt computes new dt after each loop iteration.

❑ Driver_computeDt calls Hydro_computeDt, Particles_computeDt,
etc. to honor time step requirements of different code units.

The ASC/Alliance Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Time Evolution - Unsplit vs Split

❑ DriverMain/Split/
 Driver_evolveFlash loop for

split Hydro (PPM, default)

Do ...
call Hydro(...,SWEEP_XYZ)
call other physics

.....

call Hydro(...,SWEEP_ZYX)
call other physics

.....
End Do

❑ Each loop iteration advances the
solution by 2 dt

❑ DriverMain/Unsplit/
 Driver_evolveFlash loop for

unsplit Hydro (staggered mesh
MHD etc.)

Do ...
call Hydro(...)
call other physics

.....

End Do

❑ Each loop iteration advances the
solution by dt

The ASC/Alliance Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Grid Unit

❑ Overview: Purpose

❑ Overview: Implementations
❑ Overview: blocks, cells, ...

❑ PARAMESH: oct-tree

❑ Data structures and Meta-Data

❑ Configuring Variables for Grid Data Structures

❑ Dimensions and Geometries

❑ What the Grid Code Unit Actually Does

❑ Filling Guard Cells

❑ Boundary Conditions

The ASC/Alliance Center for Astrophysical Thermonuclear Flashes
The University of Chicago

First Look at Paramesh (and UG) Grids

❑ Purpose of the Grid: represent data

❑ Much more on UNK variables etc. below

❑ Each block of data resides on exactly one processor*
(at a given point in time)

❑ At a given point in time, the number of local blocks on a
processor lies between 1 and MAXBLOCKS. (or even 0, at
least in initialization)

❑ Grid_getLocalNumBlks returns the current local value.

❑ MAXBLOCKS is defined at setup time. This represents a
hardwired limit on how many blocks can exist in total.

❑ Paramesh attempts to balance blocks across processors so that
processor will have approximately equal amounts of work to do.

❑ With the FLASH3 Uniform Grid (UG), the number of blocks is always one
per processor.

 *Here, processor == MPI PE .

The ASC/Alliance Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Overview: Implementations

❑ UG – Uniform Grid
❑ Fast, very little overhead

❑ Use when your problem does not profit from varying resolution

❑ Paramesh2 – old AMR for FLASH2 compatibility

❑ Paramesh4.0 (a.k.a. Paramesh3,...)

❑ Currently still the default Grid Implementation, recommended

❑ Paramesh4dev
❑ May become the default; now recommended for large runs.
❑ Same functions as PM4.0, users should see no differences in results.

(only known exception: very small differences possible with face variables.)

❑ Performance can differ from PM4.0:
❑ Faster in handling grid refinement changes

❑ Other Grid operations may be slightly slower

Simplest way to select: setup shortcut +ug or +pm40 or +pm4dev

The ASC/Alliance Center for Astrophysical Thermonuclear Flashes
The University of Chicago

More on Paramesh 4dev

PARAMESH Update – if you used Paramesh 3 or 4.0 before:

We now package FLASH with 3 versions of the PARAMESH library:

❑ Paramesh2 – for old time's sake (comparison with FLASH2)

❑ Paramesh4.0 – as released by K. Olson (some minor modifications)

 In place of what we used to call “Paramesh3” before FLASH3.1 release

❑ Paramesh4dev – currently ~Paramesh4.1 with additional changes

– “LIBRARY mode” is obligatory:

 nxb..nzb, ndim, maxblocks, etc. are runtime parameters (as far as
PARAMESH is concerned!)

 Arrays for unk (solution data) etc. are dynamically allocated at runtime init

(a) Rewritten algorithm by K. Olson for generating mesh metainfo after refinement
changes

 Performance may sometimes be slightly better with Paramesh4.0, therefore we
are offering both.

 Intend to follow Paramesh development.

The ASC/Alliance Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Overview: blocks and cells

❑ The grid is composed of
blocks

❑ FLASH3: In current practice,
all blocks are of same size.

❑ May cover different fraction
of the physical domain,
depending on a block's
resolution.

❑ Each, block reserves space
for some layers of guard
cells.

The ASC/Alliance Center for Astrophysical Thermonuclear Flashes
The University of Chicago

PARAMESH: An Oct-tree of Blocks
 Paramesh specific design:

 Block Structured
 All blocks have same dimensions
 Blocks at different refinement levels have

different grid spacings and thus cover different
fractions of the physical domain

 Fixed sized blocks specified at compile time

 Global block numbers are based on Morton
order, approximates “space-filling” behavior.
(example numbers for PM2; PM4 is very similar.)

 Storage order within each processor follows
this ordering. Re-distribution of blocks after
refinement changes, for load balancing.

 Oct-tree in 3D: A node has either 8 children or
none. (Quad-tree in 2D, binary in 1D)

 Blocks are of type LEAFLEAF, PARENTPARENT, or
ANCESTORANCESTOR.

 Data for PARENT and ANCESTOR blocks
occupies storage space! (not much in 3D)

In choosing Paramesh, the original FLASH code architects
chose simplicity of the Paramesh structure over a patch based

mesh.

The ASC/Alliance Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Limits of Paramesh

❑ PARAMESH is based on blocks, not general patches.

❑Limitations imposed by Paramesh:

❑ Same number of cells in all blocks

❑ Same number of guard cell layers in all blocks, all directions

❑ Resolution (“Delta”) of a block changes by multiples of 2.

❑ Resolution of neighbors differs at most by factor of 2.

(In other words: the local refinement level may change by at most ±1)

The ASC/Alliance Center for Astrophysical Thermonuclear Flashes
The University of Chicago

How Blocks are Identified

❑ At a given time, a block is globally uniquely identified by a pair (PE,
BlockID), where

❑ 0 < PE < numprocs

❑ 1 < BlockID <= MAXBLOCKS

❑ Locally, BlockID is sufficient to specify a block

❑ User code can't directly access remote blocks anyway

❑ Morton Numbers provide another way to identify blocks globally.
(private data of the Grid unit, not exposed to other code at runtime)

❑ The global block number of a block determines the index of the
block's data in output files. (checkpoint, plot files) It is not available to
user code during run time.

The ASC/Alliance Center for Astrophysical Thermonuclear Flashes
The University of Chicago

How Blocks are Stored

❑ Solution data,

❑ per-block meta data,

❑ tree information (for local blocks!)

 are stored in F90 arrays declared like this:
real, dimension(,,,,MAXBLOCKS) :: UNK
real, dimension(,MAXBLOCKS) :: bnd_box
integer, dimension(,MAXBLOCKS) :: parent

 etc. etc.
❑ MAXBLOCKS is a hardwired constant (from setup

time)
❑ “Inactive” (non-leaf) blocks also use storage
❑ These structures are internal to the Grid unit and should

not be accessed directly by other code.
❑ Use the appropriate Grid_something subroutine calls instead!

The ASC/Alliance Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Grid Data Structures

❑ CENTER
❑ The “normal” way to keep fluid variables: logically cell-centered

❑ Kept internally in an array UNK of dimensions
UNK(NUNK_VARS,NXB+gc,NYB+gc,NZB+gc,MAXBLOCKS)

❑ FACEX, FACEY, FACEZ
❑ Face-centered variables, currently used by unsplit MHD solver

❑ Supported in UG, PM 4.0, PM 4dev

❑ SCRATCH (data that is never updated automatically by Grid)

❑ Additional block-oriented storage provided by FLASH (not PM Kernel)

❑ Guard cell filling or other communications not supported

❑ WORK (only 1 “variable”, not recommended for portability)

❑ Additional block-oriented storage provided by PARAMESH (not in UG)

❑ Used internally by physics units (currently: multigrid)

❑ (FLUX – not a permanent data store, for flux corrections by Hydro)

The ASC/Alliance Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Configuring Variables for Grid Data
Structures

❑ Use VARIABLE vvvv in Config for unk(VVV_VAR,:,:,:,:)**
❑ gridDataStruct=CENTER*

❑ Use SPECIES ssss in Config for unk(SSSS_SPEC,:,:,:,:)
❑ gridDataStruct=CENTER

❑ Use MASS_SCALAR mmm for unk(MMMM_MSCALAR,:,:,:,:)
❑ gridDataStruct=CENTER

❑ Use FACEVAR ffff in Config for facevarx(FFFF_FACE_VAR,:,:,:,:),
facevary(FFFF_FACE_VAR,...), & facevarz(FFFF_FACE_VAR,...)

❑ gridDataStruct=FACEX/FACEY/FACEZ (or for some calls: FACES)

❑ Use GRIDVAR ggg for scratch(:,:,:,GGG_SCRATCH_GRID_VAR,:)
❑ gridDataStruct=SCRATCH

 * Many Grid interfaces have a gridDataStruct argument to specify what kind of data to
act on. Examples: Grid_getBlkPointer, Grid_putBlkData, Grid_getBlkIndexLimits,
Grid_fillGuardCells. See API documentation of these interface for details.

** The internal organization (order of array indices) is important for code working with
block pointers as returned by Grid_getBlkPointer.

The ASC/Alliance Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Configuring Variables for Grid Data
Structures II

❑ Use VARIABLE vvvv in Config for unk(VVV_VAR,:,:,:,:)
❑ gridDataStruct=CENTER

❑ Use SPECIES ssss in Config for unk(SSSS_SPEC,:,:,:,:)
❑ gridDataStruct=CENTER

❑ Use MASS_SCALAR mmm for unk(MMMM_MSCALAR,:,:,:,:)
❑ gridDataStruct=CENTER

Cell-centered variables from VARIABLE, SPECIES, MASS_SCALAR become parts of
the same large array:

❑ unk(1:NPROP_VARS,:,:,:,:) holds NPROP_VARS VARIABLEVARIABLEs

❑ unk(SPECIES_BEGIN:SPECIES_END,:,:,:,:) holds NSPECIES SPECIESSPECIES

❑ Note: often NSPECIES=0, in that case SPECIES_END=SPECIES_BEGIN-1

❑ unk(MASS_SCALARS_BEGIN:NUNK_VARS,:,:,:,:) holds NMASS_SCALARS
MASS_SCALARMASS_SCALARs
❑ Often NMASS_SCALARS=0, in that case MASS_SCALARS_BEGIN =

NUNK_VARS+1

The ASC/Alliance Center for Astrophysical Thermonuclear Flashes
The University of Chicago

More On Variables for Grid Data Structures

❑ The VARIABLE part of unk represents most solution variables
❑❑ VARIABLE dens TYPE: PER_VOLUMEVARIABLE dens TYPE: PER_VOLUME – conserved variable per volume-unit

❑❑ VARIABLE VARIABLE ener ener TYPE: PER_MASSTYPE: PER_MASS – energy in mass-specific form

❑❑ VARIABLE temp TYPE: GENERICVARIABLE temp TYPE: GENERIC – not a conserved entity in any form

Specify the TYPETYPE correctly to ensure correct treatment in Grid interpolation!

See Config files in included code Units for examples: Hydro, Eos, ...

❑ The SPECIES part of unk represents mass fractions
❑ Get automatically advected by Hydro

❑ Should probably be used with Multispecies Unit and Multigamma EOS

❑ Should always add up to 1.0, code may enforce this

❑ Treated as a per-mass variable for purposes of interpolation

❑ The MASS_SCALAR part of unk represents additional variables
❑ Get automatically advected by Hydro

❑ Treated as a per-mass variable for purposes of interpolation

The ASC/Alliance Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Dimensions and Geometries

Geometry Support
 The FLASH3 Grid supports these geometries:

❑ Cartesian - 1D, 2D, 3D1D, 2D, 3D

❑ Cylindrical - 2D2D, (3D?)

❑ Spherical - 1D1D, (2D), (3D)

❑ Polar - (2D)

 Combinations in boldbold have been extensively used & tested at the FLASH Center.
(Note: for a specific application, geometry support may be limited by available solvers!)

The Grid Implementation:

❑ Makes used of Paramesh4 support of geometries

❑ Centralized support by Grid unit, provides routines for cell volumes, face areas, etc.

❑ Grid uses geometry-aware conservative interpolation at refinement boundaries

❑ This is now default interpolation, internally called “monotonic”.

❑ we provide a way to use an alternative Grid implementation's native methods
instead:

./setup ... -gridinterpolation=native
❑ Use setup -3d -geometry= and/or runtime parameter geometry in flash.par to specify.

The ASC/Alliance Center for Astrophysical Thermonuclear Flashes
The University of Chicago

What the Grid Code Unit Actually Does

Note: the following focuses on AMR Grids; UG is simpler.

The Grid unit is responsible for
❑ Keeping account of the spatial domain as a whole:

❑ Extent and size, outer boundaries

❑ Keeping and maintaining block structure:

❑ Which blocks exist?

❑ Where are they?

❑ Sizes and other properties of blocks

❑ Neighbors

❑ Parent / child links for AMR

❑ Initializing block structure:

❑ Initialize the metadata and links mentioned above

❑ Keep Grid structure valid:

❑ Consistent (if A is child of B, then B must be parent of A, etc. etc.)

❑ For PARAMESH: no refinement jumps by more than 1 level

The ASC/Alliance Center for Astrophysical Thermonuclear Flashes
The University of Chicago

What the Grid Unit Actually Does - Cont.

Note: the previous slide was mostly about meta-data; now about the stuff actually
wanted by users...

The Grid unit is also responsible for
❑ Keeping data (“User data”, “Solution data”, “payload”):

❑ Provide storage

❑ UNK, FACEVAR{X,Y,Z}, SCRATCH, (WORK)

❑ FLUXes and other more temporary arrays

❑ Initializing solution data:

❑ Actually left to user, who provides Simulation_initBlock

❑ Grid invokes user function, applies refinement criteria, repeat as necessary

❑ maintaining and keeping track of data during refinement changes:

❑ Apply refinement criteria as requested

❑ Copy data within processor, and/or communicate between procs

❑ Involves prolongation (interpolation)

❑ Involves restriction (valid data in PARENT blocks)

The ASC/Alliance Center for Astrophysical Thermonuclear Flashes
The University of Chicago

What the Grid Unit Actually Does - Cont..

Note: the previous slide was about data and mesh changes; now what's left to do
between those changes?

❑ The Grid unit is also responsible for
❑ Operations that communicate user data between blocks:

❑ Prolong (interpolate) data

❑ After new leaf blocks are created

❑ Restrict (summarize) data

❑ PARENT blocks usually get summarized data as part of guard cell filling

❑ Flux correction (special operation invoked from Hydro)

❑ Edge averaging (special operation invoked from MHD Hydro)

And finally...

❑ Guard cell filling

❑ The most important form of data communication on an established mesh
configuration.

❑ Called frequently, by various code units

❑ May move a lot of data between procs, efficiency is important!

The ASC/Alliance Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Guard Cell Filling – When

Note: the following focused on Paramesh4, but high-level calls apply to all
grids

❑ When are guard cells filled?

❑ Directly: High-level call to Grid_fillGuardCells (or maybe amr_guardcell)

❑ Always a global operation involving all processors

❑ Usually fills guard cells of LEAF blocks and their parents – but don't count on it
for PARENT blocks.

❑ Indirectly: internally as part of some other Grid operation

❑ As part of amr_prolong (filling new leaf blocks)

❑ Indirectly during global direct filling:

❑ Auxiliary filling of a PARENT block's guard cells in order to provide
input for interpolation to this PARENT's child, a finer-resolution
LEAF node.

The ASC/Alliance Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Guard Cell Filling - Usage

When should you fill guard cells?
❑ Before a subroutine you wrote uses guard cells, you need to make

sure they are filled with valid and current data.

❑ FLASH3 does not guarantee that guard cells are valid on entry to a
solver, source term code unit, etc.!

❑ How should you fill guard cells?
❑ Only worry about direct filling of LEAF guard cells – that is nearly

always what is needed.

❑ Basic high-level call:
Call Grid_fillGuardCells(myPE,CENTER_FACES,ALLDIR)

❑ High-level call with automatic Eos call on guard cells:
Call Grid_fillGuardCells(myPE,CENTER_FACES,ALLDIR,doEos=.true.)
❑ Eos often needs to be called to get cells at refinement boundaries, where data was

interpolated, into thermodynamic balance.

❑ There are many additional optional arguments, see API docs. They are
for increasing performance, and can all be initially ignored.

The ASC/Alliance Center for Astrophysical Thermonuclear Flashes
The University of Chicago

GC Overview: blocks, cells, regions

❑ Blocks consist of cells: guard cells and
interior cells.

❑ For purposes of guard cell filling, guard
cells are organized into guard cell
regions.

❑ During guard cell filling, each guard
cell region may get filled from a
different data source:

❑ A local neighbor block

❑ A remote neighbor block

❑ A boundary condition

❑ using data from adjacent
interior cells

❑ Using fixed or coordinate-
based data

❑ Interpolation from parent (if the
block touches a fine/coarse
boundary)

❑ In PARAMESH4, diagonal regions are
treated just like “face-sharing” regions!
(not so in PARAMESH2)

The ASC/Alliance Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Filling guard cells I

❑ For purposes of guard cell filling, guard
cells are organized into guard cell
regions. ❑ During guard cell filling, each guard

cell region may get filled from a
different data source:

❑ A local neighbor block

❑ A remote neighbor block

❑ A boundary condition

❑ using data from adjacent
interior cells

❑ Using fixed or coordinate-
based data

❑ Interpolation from parent (if the
block touches a fine/coarse
boundary)

The ASC/Alliance Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Filling guard cells Ia

❑ For purposes of guard cell filling, guard
cells are organized into guard cell
regions.

In 2D, a block has 8 guard cell regions.

In 3D, a block has 26 guard cell regions!

❑ During guard cell filling, each guard
cell region may get filled from a
different data source:

❑ A local neighbor block

❑ A remote neighbor block

❑ A boundary condition

❑ using data from adjacent
interior cells

❑ Using fixed or coordinate-
based data

❑ Interpolation from parent (if the
block touches a fine/coarse
boundary)

-1,-1 0,-1 1,-1

1,0

-1,1 0,1 1,1

-1,0

The ASC/Alliance Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Filling guard cells Ib

❑ For purposes of guard cell filling, guard
cells are organized into guard cell
regions.

In 2D, a block has 8 guard cell regions.

In 3D, a block has 26 guard cell regions!

❑ During guard cell filling, each guard
cell region may get filled from a
different data source:

❑ A local neighbor block

❑ A remote neighbor block

❑ A boundary condition

❑ using data from adjacent
interior cells

❑ Using fixed or coordinate-
based data

❑ Interpolation from parent (if the
block touches a fine/coarse
boundary)

-1,-1 0,-1 1,-1

1,0

-1,1 0,1 1,1

face direction

diagonal direction

-1,0

The ASC/Alliance Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Filling guard cells Ic

❑ For purposes of guard cell filling, guard
cells are organized into guard cell
regions.

In 2D, a block has 8 guard cell regions.

In 3D, a block has 26 guard cell regions!

❑ During guard cell filling, each guard
cell region may get filled from a
different data source:

❑ A local neighbor block

❑ A remote neighbor block

❑ A boundary condition

❑ using data from adjacent
interior cells

❑ Using fixed or coordinate-
based data

❑ Interpolation from parent (if the
block touches a fine/coarse
boundary)

-1,-1 0,-1 1,-1

1,0

-1,1 0,1 1,1

face neighbor

diagonal neighbor

-1,0

The ASC/Alliance Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Filling guard cells from neighbors I

❑ For purposes of guard cell filling, guard
cells are organized into guard cell
regions. ❑ During guard cell filling, each guard

cell region may get filled from a
different data source:

❑ A local neighbor block

❑ A remote neighbor block

❑ A boundary condition

❑ using data from adjacent
interior cells

❑ Using fixed or coordinate-
based data

❑ Interpolation from parent (if the
block touches a fine/coarse
boundary)

cell data from
neighbor blocks

The ASC/Alliance Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Filling guard cells at Boundary I

❑ For purposes of guard cell filling, guard
cells are organized into guard cell
regions.

Now assume a block at the corner of the
domain:

❑ During guard cell filling, each guard
cell region may get filled from a
different data source:

❑ A local neighbor block

❑ A remote neighbor block

❑ A boundary condition

❑ using data from adjacent
interior cells

❑ Using fixed or coordinate-
based data

❑ Interpolation from parent (if the
block touches a fine/coarse
boundary)

-1,-1 0,-1 1,-1

1,0

-1,1 0,1 1,1

Domain boundaries

-1,0

The ASC/Alliance Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Filling guard cells at Boundary II

❑ For purposes of guard cell filling, guard
cells are organized into guard cell
regions.

The guard cell regions in red represent
locations outside of the domain:

❑ During guard cell filling, each guard
cell region may get filled from a
different data source:

❑ A local neighbor block

❑ A remote neighbor block

❑ A boundary condition

❑ using data from adjacent
interior cells

❑ Using fixed or coordinate-
based data

❑ Interpolation from parent (if the
block touches a fine/coarse
boundary)

-1,-1 0,-1 1,-1

1,0

-1,1 0,1 1,1

-1,0

The ASC/Alliance Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Filling guard cells at Boundary III

❑ For purposes of guard cell filling, guard
cells are organized into guard cell
regions.

❑ During guard cell filling, each guard
cell region may get filled from a
different data source:

❑ A local neighbor block

❑ A remote neighbor block

❑ A boundary condition

❑ using data from adjacent
interior cells

❑ Using fixed or coordinate-
based data

❑ Grid_bcApplyToRegionSpecialized is
called and passed a pointer to the data
in the blue region.

(actually, a copy of the block data)
-1,-1 0,-1 1,-1

1,0

-1,1 0,1 1,1

The ASC/Alliance Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Filling guard cells at Boundary IV

❑ For purposes of guard cell filling, guard
cells are organized into guard cell
regions.

❑ During guard cell filling, each guard
cell region may get filled from a
different data source:

❑ A local neighbor block

❑ A remote neighbor block

❑ A boundary condition

❑ using data from adjacent
interior cells

❑ Using fixed or coordinate-
based data

❑ Grid_bcApplyToRegionSpecialized
may fill in the guard cell region.

❑ OR it may decline to handle this, and
then:

❑ The subroutine Grid_bcApplyToRegion
is called and passed a pointer to the
data in the blue region.

-1,-1 0,-1 1,-1

1,0

-1,1 0,1 1,1

The ASC/Alliance Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Implementing Boundary Conditions

 Grid_bcApplyToRegionSpecialized gets called first

❑ This is normally a no-op stub

❑ This is the preferred place to users to hook in customized implementations.

❑ This interface provided more information to an implementation than
Grid_bcApplyToRegion, most importantly:

❑ A block handle (usually, block ID) identifying the block being filled

❑ Location of the data region within the Grid block

❑ May decide to handle the call, based on BC type, direction, ...

❑ Before returning, sets “applied” flag to signal that the BC was handled.

 Grid_bcApplyToRegion gets called if Grid_bcApplyToRegionSpecialized did not
handle the case.

❑ The standard implementation of Grid_bcApplyToRegion in
source/Grid/GridBoundaryConditions provides the standard simple BC types:
REFLECTING, OUTFLOW, DIODE, ...

❑ It is a good place to start if you need to write your own!

The ASC/Alliance Center for Astrophysical Thermonuclear Flashes
The University of Chicago

BCs – Complications

 Grid_bcApplyToRegion* may be called on a non-LEAF block.

 Grid_bcApplyToRegion* may be called on a block that is not even local!

❑ This can happen if a parent block needs to be filled to provide input data for
interpolation, and the parent resides on a different PE from the leaf.

❑ Simple BC methods don't have to be aware of this.

❑ But if your method depends on coodinate information, or needs to access the
block by its ID, beware!

❑ See source/Grid/GridBoundaryConditions/README and Users Guide in those
cases.

 The data region passed to Grid_bcApplyToRegion* is in transposed form:

Reference it like regionData(I,J,k,ivar), where

❑ I counts cells in the normal direction (NOT always: x direction!),

❑ J,K cont cells in the other directions

❑ Ivar counts variables

This is convenient for implementing simple BC where location does not matter, but

complicates things if you need to know where a cell is within the block.

❑ Use provided examples!

The ASC/Alliance Center for Astrophysical Thermonuclear Flashes
The University of Chicago

BCs – Simplifications

 If you prefer a simpler interface:
❑ Handle one data row at a time (vector of data in normal direction)

❑ Powerful enough to implement hydrostatic boundaries

❑ REQUIRES Grid/GridBoundaryConditions/OneRow (see source files there!)

❑ Implements a version of Grid_bcApplyToRegionSpecialized

❑ Provides functions Grid_applyBCEdge, Grid_applyBCEdgeAllUnkVars

❑ Too customize, user should provide own implementation of
Grid_applyBCEdge.F90 (or Grid_applyBCEdgeAllUnkVars.F90)

The ASC/Alliance Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Hydrostatic Boundary Conditions

❑ The ones released are ported from FLASH2 defaults and probably not the best
implementation. You may want to write your own!

❑ To use: REQUIRES Grid/GridBoundaryConditions/Flash2HSE

❑ Works by implementing Grid_bcApplyToRegionSpecialized, which calls a function
gr_applyFlash2HSEBC.F90 on rows (i.e., vectors) of data

Grid/GridBoundaryConditions/Flash2HSE/Grid_bcApplyToRegionSpecialized.F90

may be a good template for your own implementation of BCs.

❑ To use, in flash.par:
❑ xl_boundary_type = “hydrostatic-F2+nvout” # etc.

❑ xl_boundary_type = “hydrostatic-F2+nvrefl” # etc.

❑ xl_boundary_type = “hydrostatic-F2+nvdiode” # etc.

❑ The three variants differ in the handling of normal velocities.

❑ The next FLASH release will contain an improved implementation of hydrostatic
boundaries.

The ASC/Alliance Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Driver & Grid

• Questions?

