Next:
14. 3T Capabilities for
Up:
flash4_ug
Previous:
13.2 Python
Contents
Index
V
. Physics Units
Subsections
14
. 3T Capabilities for Simulation of HEDP Experiments
15
. Hydrodynamics Units
15
.
1
Gas hydrodynamics
15
.
1
.
1
Usage
15
.
1
.
2
The piecewise-parabolic method (PPM)
15
.
1
.
3
The unsplit hydro solver
15
.
1
.
3
.
1
Implementation of Stationary Rigid Body in a Simulation Domain for Unsplit Hydro Solver
15
.
1
.
4
The Volume-of-Fluid Solver
15
.
1
.
5
Multitemperature extension for Hydro
15
.
1
.
5
.
1
The Entropy Advection Approach
15
.
1
.
5
.
2
The RAGE-like Approach
15
.
1
.
5
.
3
Use, Implications, and Limitations of Multitemperature Hydro Approaches
15
.
1
.
6
Chombo compatible Hydro
15
.
2
Relativistic hydrodynamics (RHD)
15
.
2
.
1
Overview
15
.
2
.
2
Equations
15
.
2
.
3
Relativistic Equation of State
15
.
2
.
4
Additional Runtime Parameter
15
.
3
Magnetohydrodynamics (MHD)
15
.
3
.
1
Description
15
.
3
.
2
Usage
15
.
3
.
3
Algorithm: The Unsplit Staggered Mesh Solver
15
.
3
.
3
.
1
Slowly moving shock handling in PPM
15
.
3
.
4
Algorithm: The Eight-wave Solver
15
.
3
.
5
Extended MHD
15
.
3
.
5
.
1
Hall effect
15
.
3
.
5
.
2
Biermann battery mechanism
15
.
3
.
5
.
3
Resistive MHD
15
.
3
.
5
.
4
Thermoelectric transport
15
.
4
Radiation-Flux-Limiter Aware Hydrodynamics
16
. Incompressible Navier-Stokes Unit
17
. Equation of State Unit
17
.
1
Introduction
17
.
2
Gamma Law and Multigamma
17
.
2
.
1
Ideal Gamma Law for Relativistic Hydrodynamics
17
.
3
Helmholtz
17
.
4
Multitemperature extension for Eos
17
.
4
.
1
Gamma
17
.
4
.
1
.
1
Gamma/Ye
17
.
4
.
2
Multigamma
17
.
4
.
3
Tabulated
17
.
4
.
3
.
1
SESAME TEOS
17
.
4
.
3
.
2
Interpolation strategy for SESAME
17
.
4
.
3
.
3
Use of the SESAME database
17
.
4
.
3
.
4
Types and structures thereof of SESAME data records
17
.
4
.
3
.
5
Example format of a SESAME table
17
.
4
.
4
Multitype
17
.
5
MultiFluid
17
.
6
Usage
17
.
6
.
1
Initialization
17
.
6
.
2
Runtime Parameters
17
.
6
.
3
Direct and Wrapped Calls
17
.
7
Unit Test
18
. Local Source Terms
18
.
1
Burn Unit
18
.
1
.
1
Algorithms
18
.
1
.
2
Reaction networks
18
.
1
.
2
.
1
Two linear algebra packages: MA28 and GIFT
18
.
1
.
2
.
2
Two time integration methods
18
.
1
.
3
Detecting shocks
18
.
1
.
4
Energy generation rates and reaction rates
18
.
1
.
5
Temperature-based timestep limiting
18
.
2
Ionization Unit
18
.
2
.
1
Algorithms
18
.
2
.
2
Usage
18
.
3
Stir Unit
18
.
3
.
1
Stir Unit: Generate Implementation
18
.
3
.
2
Stir Unit: FromFile Implementation
18
.
3
.
3
Using the StirFromFile Unit
18
.
3
.
3
.
1
Runtime Parameters
18
.
3
.
3
.
2
Preparing the Stirring Sequence (
st_infilename
)
18
.
3
.
4
Stirring Unit Test
18
.
4
Energy Deposition Unit
18
.
4
.
1
Ray Tracing in the Geometric Optics Limit
18
.
4
.
2
Laser Power Deposition
18
.
4
.
3
Laser Energy Density
18
.
4
.
4
Algorithmic Implementations of the Ray Tracing
18
.
4
.
4
.
1
Cell Average (AVG) Algorithm
18
.
4
.
4
.
2
Cubic Interpolation with Piecewise Parabolic Ray Tracing (CIPPRT)
18
.
4
.
4
.
3
Cubic Interpolation with Runge Kutta Integration (CIRK)
18
.
4
.
5
Setting up the Laser Pulse
18
.
4
.
6
Setting up the Laser Beam
18
.
4
.
6
.
1
The Local Elliptical Semiaxis Unit Vectors
18
.
4
.
6
.
2
Extremum Values for the Elliptical Target Zone
18
.
4
.
7
Setting up the Rays
18
.
4
.
7
.
1
The Elliptical Lens/Target Local Square Grid
18
.
4
.
7
.
2
The Elliptical Lens/Target Local Radial Grid
18
.
4
.
7
.
3
The Elliptical Lens/Target Local Delta Grid
18
.
4
.
7
.
4
The Elliptical Lens/Target Local Statistical Grid
18
.
4
.
7
.
5
Beam Cross Section Power Function
18
.
4
.
7
.
6
The Rays Initial Position and Velocity
18
.
4
.
8
3D Laser Ray Tracing in 2D Cylindrical Symmetry
18
.
4
.
8
.
1
The Exact 3D in 2D Ray Tracing Solution
18
.
4
.
8
.
2
The Approximate 3D in 2D Ray Tracing Solution
18
.
4
.
8
.
3
Extremum Global Radial 3D and 2D Distance Values for 3D Elliptical Lens and Target Zones
18
.
4
.
8
.
4
Initial Placement of the 3D Rays on the 2D Cylindrical Domain
18
.
4
.
8
.
5
Tracing the Rays through the Truncated Wedges
18
.
4
.
9
Ray Tracing in 3D Cylindrical Domains
18
.
4
.
10
Synchronous and Asynchronous Ray Tracing
18
.
4
.
11
Usage
18
.
4
.
11
.
1
Laser Pulses Runtime Parameters
18
.
4
.
11
.
2
Laser Beams Runtime Parameters
18
.
4
.
11
.
3
Laser General Runtime Parameters
18
.
4
.
11
.
4
LaserIO Runtime Parameters and Usage
18
.
4
.
11
.
5
Laser Energy Density Output
18
.
4
.
12
Unit Tests for 3D/2D Cartesian Domain Geometries
18
.
4
.
12
.
1
Analytic Path Solution for the Ellipsoidal Quadratic Potential Tube
18
.
4
.
12
.
2
Analytic Power Deposition Solution for the Ellipsoidal Quadratic Potential Tube
18
.
4
.
12
.
3
Unit Tests Parameters and Results
18
.
4
.
13
Unit Tests for 3D Cylindrical Domain Geometries
18
.
4
.
13
.
1
Laser Ring on Mantle of 3D Cylindrical Can with No Domain Acceleration
18
.
4
.
13
.
2
Unit Test Parameters and Results
18
.
4
.
13
.
3
Laser Ring on Lid of 3D Cylindrical Can with Uniform Radial Acceleration
18
.
4
.
13
.
4
Unit Test Parameters and Results
18
.
5
Heatexchange
18
.
5
.
1
Spitzer Heat Exchange
18
.
5
.
2
LeeMore Heat Exchange
18
.
6
Flame
18
.
6
.
1
Reaction-Diffusion Forms
18
.
6
.
2
Unit Structure
18
.
6
.
2
.
1
Flame Speed
18
.
6
.
2
.
2
Flame Effects
18
.
7
Turbulence Measurement
18
.
8
Circuit
18
.
8
.
1
Constant
18
.
8
.
2
FileInput
18
.
8
.
3
McBride
18
.
8
.
4
CESZAR
19
. Diffusive Terms
19
.
1
Diffuse Unit
19
.
1
.
1
Diffuse Flux-Based implementations
19
.
1
.
2
General Implicit Diffusion Solver
19
.
1
.
2
.
1
Boundary Conditions
19
.
1
.
3
Flux Limiters
19
.
1
.
4
Isotropic Thermal Diffusion
19
.
1
.
5
Anisotropic Thermal Diffusion
19
.
1
.
6
Magnetic Diffusion
19
.
1
.
6
.
1
Ohmic Heating
20
. Gravity Unit
20
.
1
Introduction
20
.
2
Externally Applied Fields
20
.
2
.
1
Constant Gravitational Field
20
.
2
.
2
Plane-parallel Gravitational field
20
.
2
.
3
Gravitational Field of a Point Mass
20
.
2
.
4
User-Defined Gravitational Field
20
.
3
Self-gravity
20
.
3
.
1
Coupling Gravity with Hydrodynamics
20
.
3
.
2
Tree Gravity
20
.
4
Usage
20
.
4
.
1
Tree Gravity Unit Usage
20
.
5
Unit Tests
21
. Particles Unit
21
.
1
Time Integration
21
.
1
.
1
Active Particles (Massive)
21
.
1
.
2
Charged Particles - Hybrid PIC
21
.
1
.
2
.
1
The hybrid equations
21
.
1
.
2
.
2
A cell-centered finite difference hybrid PIC solver
21
.
1
.
2
.
3
Hybrid solver implementation
21
.
1
.
3
Passive Particles
21
.
2
Mesh/Particle Mapping
21
.
2
.
1
Quadratic Mesh Mapping
21
.
2
.
2
Cloud in Cell Mapping
21
.
3
Using the Particles Unit
21
.
3
.
1
Particles Runtime Parameters
21
.
3
.
2
Particle Attributes
21
.
3
.
3
Particle I/O
21
.
3
.
4
Unit Tests
21
.
4
Sink Particles
21
.
4
.
1
Basics of Sink Particles
21
.
4
.
2
Using the Sink Particle Unit
21
.
4
.
3
The Sink Particle Method
21
.
4
.
4
Sink Particle Unit Test
22
. Cosmology Unit
22
.
1
Algorithms and Equations
22
.
2
Using the Cosmology unit
22
.
3
Unit Test
23
. Material Properties Units
23
.
1
Thermal Conductivity
23
.
1
.
1
Anisotropic Thermal Conductivity
23
.
2
Magnetic Resistivity
23
.
2
.
1
Constant resistivity
23
.
2
.
2
Spitzer HighZ resistivity
23
.
2
.
3
DaviesWen resistivity
23
.
2
.
4
Vacuum resistivity
23
.
3
Viscosity
23
.
3
.
1
Constant Viscosity
23
.
3
.
2
Spitzer Viscosity
23
.
4
Thermoelectric Coefficients
23
.
4
.
1
Constant thermoelectric coefficients
23
.
4
.
2
DaviesWen thermoelectric coefficients
23
.
5
Opacity
23
.
5
.
1
Constant Implementation
23
.
5
.
2
Constcm2g Implementation
23
.
5
.
3
BremsstrahlungAndThomson Implementation
23
.
5
.
4
OPAL Implementation
23
.
5
.
5
Multispecies Implementation
23
.
5
.
5
.
1
Runtime Parameters for the Multispecies Opacity
23
.
5
.
6
The IONMIX EOS/Opacity Format
23
.
6
Mass Diffusivity
24
. Physics Utilities
24
.
1
PlasmaState
25
. Radiative Transfer Unit
25
.
1
Multigroup Diffusion
25
.
1
.
1
Using Multigroup Radiation Diffusion
25
.
1
.
2
Using Mesh Replication with MGD
25
.
1
.
3
Specifying Initial Conditions
25
.
1
.
3
.
1
Initializing using a Radiation Temperature
25
.
1
.
3
.
2
Manually setting the radiation spectrum
25
.
1
.
4
Altering the Radiation Spectrum